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Abstract: Accurately identifying patients with pulmonary hypertension (PH) using noninvasive methods is challenging, and right heart
catheterization (RHC) is the gold standard. Magnetic resonance imaging (MRI) has been proposed as an alternative to echocardiography
and RHC in the assessment of cardiac function and pulmonary hemodynamics in patients with suspected PH. The aim of this study was
to assess whether machine learning using computational modeling techniques and image-based metrics of PH can improve the diagnostic
accuracy of MRI in PH. Seventy-two patients with suspected PH attending a referral center underwent RHC and MRI within 48 hours.
Fifty-seven patients were diagnosed with PH, and 15 had no PH. A number of functional and structural cardiac and cardiovascular markers
derived from 2 mathematical models and also solely from MRI of the main pulmonary artery and heart were integrated into a classification
algorithm to investigate the diagnostic utility of the combination of the individual markers. A physiological marker based on the quantifica-
tion of wave reflection in the pulmonary artery was shown to perform best individually, but optimal diagnostic performance was found by
the combination of several image-based markers. Classifier results, validated using leave-one-out cross validation, demonstrated that
combining computation-derived metrics reflecting hemodynamic changes in the pulmonary vasculature with measurement of right ventric-
ular morphology and function, in a decision support algorithm, provides a method to noninvasively diagnose PH with high accuracy (92%).
The high diagnostic accuracy of these MRI-based model parameters may reduce the need for RHC in patients with suspected PH.

Keywords: wave reflection, Windkessel, machine learning, noninvasive diagnostic.

Pulm Circ 2016;6(2):181-190. DOI: 10.1086/686020.

Pulmonary hypertension (PH) is defined at right heart catheteri-
zation (RHC) as a mean pulmonary arterial pressure (mPAP) of
≥25 mmHg.1 Although RHC is currently the gold standard for con-
firming the diagnosis of PH and assessing response to treatment, it
is an invasive procedure. In specialist centers, severe complications
following RHC are low but not negligible.2 Consequently, there is a
growing interest in noninvasive, alternative methods to diagnose
PH and assess response to therapy, using nonionizing, image-based
metrics. Magnetic resonance imaging (MRI) is considered the gold
standard for the assessment of right ventricular (RV) anatomy and
function,3 providing high resolution and better accuracy than echo-
cardiography, with a high degree of reproducibility of quantitative
metrics of ventricular morphology and function.4 Diagnostic metrics,
based on direct quantification of the cardiopulmonary anatomy and
blood flow from MRI measurements, have been proposed and show
promising results.5-12 However, in addition to structural and mor-
phological modifications of the heart and pulmonary arteries, PH
also changes physiological and hemodynamic parameters, includ-
ing increased pulmonary vascular resistance and decreased total
vascular compliance.13-15 Computational models can bring addi-
tional insight into the hemodynamic behavior of the pulmonary

vascular system. Windkessel models16 have been implemented by
several groups13,17,18 to characterize pulmonary circulation and
vessels in terms of resistance and compliance and the changes be-
tween healthy and PH subjects. The presence of PH modifies these
Windkessel parameters, and quantitative characterization can be
provided by measurement of the energy in the reflected waves in
the pulmonary artery as a percentage of the total wave energy.19,20

While showing potential for PH assessment, the results reported in
these articles were based on invasive catheter measurements. We
have recently shown21 that MRI measurements made in the main
pulmonary artery (MPA), together with the interpretation provided
by 2 such models, can provide a quantitative diagnostic character-
ization of PH. The first model is a 3-element Windkessel circuit
(RcCRd); the capacitor C represents the compliance of the system,
and Rc and Rd are proximal and distal resistors. The second is a
one-dimensional (1D) model of an elastic tube that is able to sepa-
rate forward-traveling and reflected waves, measured in the MPA.
These models were evaluated in a pilot study of normotensive indi-
viduals and patients with PH, diagnosed and stratified according to
RHC measurements of mPAP and pulmonary vascular resistance
(PVR), and we showed that the zero-dimensional (0D) and 1D
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proposed diagnosis indices can be used as differentiation criteria in
PH.

Our research hypothesis is that by combining already available
and developed noninvasive, MRI-based cardiopulmonary and com-
putational metrics into a machine learning classification algorithm,
we can improve the noninvasive diagnostic accuracy of MRI in PH.
The aim of this article is to test whether additional sensitivity and
specificity can be achieved by combining several MRI-derived
metrics of cardiopulmonary function and form into a decision-
making algorithm for PH diagnosis. To achieve the proposed aim,
3 main objectives have been defined: (1) to test the individual accu-
racy of several MRI-based PH metrics, (2) to identify the best com-
bination of metrics that will improve the machine learning–based
classifier’s diagnostic accuracy, and (3) to evaluate the performance
of the best model and discuss the results in the context of the
analyzed cohort.

METHODS

Patients
Seventy-two consecutive patients undergoing investigation for
suspected PH who underwent RHC and MRI examination within
48 hours were identified from the Sheffield Pulmonary Vascular Dis-
ease Unit, a National PH referral center. The patients were referred
from other centers to the Sheffield Unit on the basis of clinical

features and a local noninvasive assessment that usually included
echocardiography. The exclusion criteria were MRI incompatibility,
claustrophobia, and pregnancy.

The 72-patient cohort was divided into 2 groups—no PH and
PH—on the basis of a threshold of 25 mmHg, measured at RHC.22

PH was diagnosed in 15 patients, with 11 patients having an mPAP
between 22 and 24 mmHg, referred to in the literature23 as border-
line PH. Fifty-seven patients received the PH diagnostic. For
patients in whom PH was diagnosed, the distribution within the
PH subgroups was as follows: group 1, pulmonary arterial hyper-
tension (PAH; n = 21), with 13 idiopathic PAH, 4 PAH in associa-
tion with connective tissue diseases, 2 PAH in association with
congenital heart disease, 1 PAH related to drug use, and 1
portopulmonary hypertension; group 2, PH owing to left heart dis-
ease (n = 11); group 3, PH associated with respiratory disease (n =
8); group 4, chronic thromboembolic PH (n = 16); and group 5, PH
unclear/multifactorial (sarcoidosis; n = 1). Ethics approval was ob-
tained (North Sheffield Ethics Committee) for analysis of routinely
performed investigations, and written consent was not required.

RHC
RHC was undertaken using a balloon-tipped 7.5-Fr thermodilution
catheter (Becton-Dickinson). PH was defined as having an mPAP
of ≥25 mmHg at rest. Cardiac output was measured using the
thermodilution technique. PVR was calculated as follows: PVR

Figure 1. Descriptive diagram of the noninvasive pulmonary workflow. From synchronized flow (phase contrast) and anatomy (balanced
steady state free precession) images of the main pulmonary artery (MPA) over the cardiac cycle, the area A(t) and flow Q(t) were derived.
A zero-dimensional model (Windkessel) and a one-dimensional model were solved, using the latter as input, and computational metrics
were computed: Rc: characteristic resistance; Rd: distal resistance; C: total pulmonary compliance; Wb/Wtot: contribution of the backward
reflected wave to the total pressure wave. The anatomy metrics were calculated from main pulmonary artery and cardiac images alone:
RAC: relative area change; RVEDVI: right ventricle end-diastolic volume index; RVEF: right ventricle ejection fraction; VMI: ventricular
mass index; RVMI: right ventricle mass index; syst angle: systolic angle. A random forest classification algorithm was applied, including
all the metrics as well as their in-turn addition, and a no–pulmonary hypertension (PH)/PH diagnosis was attributed to each subject.
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(Wood units) = (mPAP − pulmonary capillary wedge pressure)/
cardiac output.

MRI acquisition
All the patients underwent MRI in the supine position on a 1.5-
tesla whole-body scanner (GE HDx, GE Healthcare, Milwaukee)
using an 8-channel cardiac coil. Two-dimensional (2D) phase con-
trast images of the MPA were acquired to quantify the flow Q(t)
through the artery. Although the magnitude of images of the phase
contrast sequence can be used to segment the MPA area, the main
drawback of this approach is that extraction of accurate area during
the diastolic period—when there is low flow in the pulmonary ar-
tery and therefore low signal—is difficult because the vessel con-

tour is not well defined. A balanced steady state free precession
(bSSFP) cine anatomical sequence with better vessel/blood delinea-
tion was used to quantify the area A(t) during the entire cardiac
cycle. The 2 sequences measuring blood flow and distension were
spatially and temporally synchronized, using the same imaging
dimensions with retrospective cardiac gating, which generated the
same number of cardiac images per heartbeat. The images were
acquired during breath hold, with a slice perpendicular to the pul-
monary trunk at approximately 2 cm from the pulmonary valve.

Four-chamber and short-axis cine cardiac images were also ac-
quired, using a retrospective cardiac gated multislice bSSFP se-
quence. The imaging parameters for all the sequences are detailed
in the appendix, available online.

Table 1. Patients demographics, right heart catheterization (RHC) data, and mathematical model–image-derived parameters

No PH PH

Median Mean ± SD IQR Median Mean ± SD IQR P

Demographics

Patients, no. 15 57

Male/female sex, no. 7/8 25/32

Age, years 59 56 ± 16 29 67 64 ± 16 23 0.084

RHC data

mPAP, mmHg 22 21 ± 3 2.75 45 44.7 ± 14.3 16.5 <0.001

PVR, Wood units 2 1.9 ± 0.7 1.28 6 6.9 ± 4.5 5.39 <0.001

mRAP, mmHg 5 4.9 ± 2.4 4 10 11.3 ± 3.1 7.5 <0.001

CO, L/min 7 6.5 ± 1.4 2.42 5 5.2 ± 1.5 1.9 0.005

1D model–derived parameter

Wb/Wtot 0.26 0.26 ± 0.1 0.12 0.42 0.4 ± 0.1 0.12 <0.001

0D model–derived parameters

Rd, mmHg s/mL 0.3 0.36 ± 0.24 0.23 0.59 0.87 ± 0.73 0.53 <0.001

Rc, mmHg s/mL 0.038 0.037 ± 0.013 0.07 0.003 0.051 ± 0.13 0.05 0.05

C, mL/mmHg 1.29 4.74 ± 12.9 0.91 0.69 0.73 ± 0.4 0.43 <0.001

PA imaging–derived parameters

RAC, % 26.2 25.9 ± 12.52 16.84 13.9 14.6 ± 7.41 11.74 <0.001

CMR

RVEDVI, mL/m2 72.8 69.9 ± 21.9 40.54 78 87.6 ± 34.2 43.31 0.095

RVEF, % 50.3 51.4 ± 8.86 9.78 41 40.3 ± 13.5 18.6 0.004

VMI, ratio 0.23 0.28 ± 0.15 0.1 0.37 0.45 ± 0.27 0.29 0.006

RVMI, g/m2 10.3 12.1 ± 3.95 6.87 20.1 21.6 ± 11.2 14.14 <0.001

Systolic septal angle, degrees 142 144 ± 10.3 15 168 168 ± 22.3 32.25 <0.001

Note: PH: pulmonary hypertension; SD: standard deviation; IQR: interquartile range; mPAP: mean pulmonary arterial pressure
measured at RHC; PVR: pulmonary vascular resistance measured at RHC; mRAP: mean right atrium pressure measured at RHC; CO:
cardiac output, measured using thermodilution; Wb/Wtot: ratio of backward to total wave power computed from one-dimensional (1D)
model; Rd: distal resistance computed from Windkessel (zero-dimensional [0D]) model; Rc: characteristic resistance computed from
Windkessel model; C: total pulmonary compliance computed from Windkessel model; RAC: relative area change calculated from two-
dimensional images of main pulmonary artery (PA); RVEDVI: right ventricle end-diastolic volume index calculated from cardiac magnetic
resonance (CMR) images; RVEF: right ventricle ejection fraction calculated from CMR images; VMI: ventricular mass index calculated
from CMR images; RVMI: right ventricle mass index calculated from CMR images.
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Derivation of diagnostic metrics
On the basis of the acquired MRI images of the MPA and heart,
3 sets of metrics were derived.

Physiology-based computational modeling from image
data. A workflow to compute Windkessel and wave reflection
parameters 21 was implemented in a graphical user interface writ-
ten in MATLAB. The 2D bSSFP images were semiautomatically
segmented to extract the area of the MPA at every instance in
time over the entire cardiac cycle. The spatial resolution of the re-
constructed images was 0.94 mm × 0.56 mm. For a circular vessel
cross section with a minimum vessel radius of 10 mm, there were
approximately 600 pixels inside the region of interest, allowing for
a good representation of the vessel’s cross-sectional area. The re-
gions of interest were mapped onto the phase contrast images to
compute the flow through the artery, Q(t).24 The temporal resolu-
tion of the reconstructed flow Q(t) and area A(t) waveforms used
as input for the mathematical models was 40 frames/cardiac cycle.
For a typical length of the cardiac cycle of 0.8 seconds, this corre-
sponds to an image frame acquired every 20 milliseconds. Follow-
ing our previous results,21 this temporal resolution can adequately
capture the wave reflection.

Twenty image data sets were selected at random from the 72 cases
and segmented by 2 operators. Operator A performed the analysis
twice within 1 week to assess the intraoperator variability, and oper-
ator B segmented the same data independently to assess the inter-
operator variability.

The parameters in the Windkessel model that best reproduced
the measured relationship between the flow Q(t) and pressure p(t)
(which was derived from the PA radius)21 were determined. For the
1D model, the pressure wave was decomposed into its forward-
and backward-traveling components, and the power of each com-
ponent was computed. We previously showed21 that the percentage
of reflection in healthy systems is considerably lower than in dis-
eased systems, and this phenomenon was quantified by the ratio of
the backward wave power to the total wave power (Wb/Wtot).

Anatomical metrics from MPA images. The relative area
change of the pulmonary artery was computed,6 using the mini-
mum and maximum values of the area waveform, A(t).

Anatomical metrics from cardiac images. Cardiac MRIs
were manually segmented by an experienced radiographer, using
MRI workstation software (GE Advantage Workstation Report-
Card). Following the methods described by Swift et al.,11 the RV
mass index, ventricular mass index, interventricular septal systolic
angle, RV end-diastolic volume index, and RV ejection fraction
were calculated. Measurements were indexed for body surface area
where appropriate.

Decision tree classifier
Ten noninvasive PH metrics of cardiopulmonary vascular function
were computed or measured: (1) distal resistance Rd, (2) character-
istic resistance Rc, (3) total compliance C, (4) ratio of backward to

total pressure wave power Wb/Wtot, (5) relative area change, (6) RV
end-diastolic volume index, (7) RV ejection fraction, (8) ventricu-
lar mass index, (9) systolic septal angle, and (10) RV mass index.
A random forest classification algorithm25 in MATLAB (R2014a;
MathWorks) was used to assign a diagnosis of PH or no PH for
each subject. Machine learning algorithms such as this—including
neural networks, support vector machines, classification, and re-
gression trees—are frequently used in the artificial intelligence do-
main and are increasingly applied to medical applications.26-29 The
random forest classification method is a supervised learning al-
gorithm that requires 2 sets of variables: a training set, where the
classification is known, and a validation set, in which the classi-

Figure 2. Total (blue lines) pressure wave decomposition into for-
ward (green lines) and backward (red lines) components for a no–
pulmonary hypertension (PH; top) and a PH patient (bottom),
obtained from applying the one-dimensional model. Total fitted
pressure wave returned by the zero-dimensional (0D) model (ma-
genta lines) for the same patients. The proportion of the backward
wave component to the total wave is higher for the PH patient
than for the no-PH patient. Good fit (root mean square = 0.08
and 0.04) is returned by the 0D model in both examples.
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fication is determined by the algorithm. Although a validation set
would be ideal to test the classifier’s performance, the often scarce
clinical data require most efficient usage. Tools such as k-fold cross
validation (CV), leave-one-out cross validation (LOOCV),30 and
bootstrap were proposed31 for estimating the classifier’s prediction
error when there are insufficient data. The LOOCV scheme max-
imizes the data usage and is almost unbiased. The reduced bias
comes, however, at the expense of a larger variation, which affects
the prediction error. On a larger sample size, the k-fold CV better
balances the bias-variance trade-off than LOOCV and bootstrap,
having a misclassification error closer to the expected prediction
error. On the other hand, although on reduced sample size the
bootstrap scheme has a smaller variance than LOOCV (because
of its randomness), it has a larger bias. Therefore, the choice of
method very much depends on the desired application. The ran-
dom forest has an inherent lower bias and variance. Randomness
is added in each tree for both data and variable selection. As a
consequence of the small sample size and the nature of the selected
classier, an LOOCV scheme was employed here for testing the mis-
classification error.

In order to test the diagnostic power added by coupling computa-
tion- and image-derived metrics, first the individual parameter accu-
racy was tested. The improvement in the algorithm accuracy was
then tested by the sequential addition of image-derived parameters
to the computational model indices. It is recognized that several of
the proposed measures are not truly independent since they are de-
scribing aspects of the same phenomena; nevertheless, each contrib-
utes to the overall strength of the diagnostic process.

Receiver operator characteristic (ROC) curves were drawn for
each parameter, and the area under the curve (AUC) was com-
puted. For each parameter, the sensitivity, specificity, and mis-
classification error were computed in a data-driven manner;32 the
threshold value that maximized the Youden index was chosen.33

The parameters with AUC > 0.8 were selected for inclusion in the
classification algorithm. The workflow employed for the noninva-
sive diagnosis method is displayed in Figure 1.

Statistics
IBM SPSS 20 (SPSS, Chicago) was used for the statistical analysis
and MATLAB (R2014a; MathWorks) and GraphPad Prism 6.0
(San Diego, CA) for data presentation. To evaluate the statistical
differences between samples, all the variables were tested first for
normality within each group by visual inspection of the histo-
gram, confirmed by the Shapiro-Wilk test. The normality test was
found to be significant (P < 0.05) for all the parameters in at least
1 of the groups, and the statistical significance between the 2 inde-
pendent groups was tested using a nonparametric Mann-Whitney
test. The results of the test were considered statistically significant
for P < 0.05 and are displayed in Table 1, together with the median,
interquartile range, mean, and standard deviation from the mean.

The accuracy of the proposed diagnostic metrics was evaluated
using the AUC of the ROC curve, sensitivity specificity, and mis-
classification error. The inter- and intraoperator variabilities for
the metrics that depend on the MPA segmentation (Wb/Wtot, Rd,
C, and relative area change) were tested for consistency and abso-
lute agreement, using intraclass correlation coefficients with a 2-way

Table 2. Noninvasive metrics’ individual accuracies evaluated for a cutoff value corresponding to maximum Youden index

Noninvasive PH markers (data-driven threshold) AUC Misclassification error Sensitivity Specificity Threshold

1D model

Wb/Wtot 0.88 0.25 0.68 1 0.35

0D model

Rd, mmHg s/mL 0.85 0.25 0.72 0.87 0.45

Rc, mmHg s/mL 0.67 0.38 0.56 0.86 0.01

C, mL/mmHg 0.83 0.25 0.72 0.87 0.88

PA imaging

RAC, % 0.81 0.29 0.67 0.87 16

CMR

RVMI, g/m2 0.81 0.26 0.68 0.93 16.01

RVEDVI, mL/m2 0.64 0.51 0.36 0.93 0.94

VMI 0.73 0.26 0.74 0.73 0.27

RVEF, % 0.74 0.38 0.56 0.87 43

Systolic septal angle, degrees 0.81 0.35 0.56 1 164

Note: PH: pulmonary hypertension; AUC: area under the curve; 1D: one-dimensional; Wb/Wtot: ratio of backward to total
wave power; 0D: zero-dimensional (Windkessel); Rd: distal resistance; Rc: characteristic resistance; C: total pulmonary compli-
ance; RAC: relative area change of main pulmonary artery (PA); CMR: cardiac magnetic resonance; RVEDVI: right ventricle
end-diastolic volume index; RVEF: right ventricle ejection fraction; VMI: ventricular mass index; RVMI: right ventricle mass
index.
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mixed model and Bland-Altman analysis (for Bland-Altman graphs,
bias, and limits of agreement, see the appendix).

RESULTS

Patient characteristics
Of 75 patients, 3 had MRIs that were not of sufficient quality to
allow detailed analysis, leaving 72 patients in the final study cohort.
The patient demographics, RHC measurements, and image-derived
parameters are presented in Table 1. Statistical significance (P <
0.05) was found between the no-PH and PH groups for all image-
derived parameters, with the exception of RV end-diastolic volume
index (P = 0.095) and Rc (P = 0.05).

Computational models
Figure 2 illustrates the decomposition of the pressure waves for
a no-PH and a PH patient into their backward- and forward-
traveling components. On average, the power of the backward wave
contributed 26% to the total wave power in the no-PH group and
40% in the PH group.

In most of the cases (85%), the optimization algorithm returned
parameters that produced a good fit to the data (see, e.g., Fig. 2,
with normalized root mean square errors in the range of 0.03–
0.15). However, there were a few cases for which the fit was poorer,
with root mean square error up to 0.35. While Rd was less influ-
enced by the higher root mean square, Rc and C showed a greater
degree of variability. In particular, the mean value of C for the no-
PH group was strongly affected by 1 outlier. Elimination of the
outlier brought the mean value for the group to 1.4 ± 0.7, with a
confidence interval (CI) of 0.98–1.84.

Operator variability
The intra- and interoperator variability was performed twice by
operator A and once by operator B. The 2 measurements of oper-
ator A were compared independently with the results for opera-
tor B. Overall, the values of MPA area-dependent metrics showed
high reproducibility, evaluated using intraclass correlation coeffi-
cients. Relative area change and Wb/Wtot are the parameters with
the tighter limits of agreement for both intra- and interoperator tests.
Detailed results on intraclass correlation coefficients and Bland-
Altman analysis are included in the appendix.

Data-driven individual accuracies
Individual accuracies—quantified in terms of AUC, misclassifica-
tion error, sensitivity, and specificity for each of the proposed diag-
nostic parameters—are displayed in Table 2. The ratio of the wave
power, Wb/Wtot, showed the highest individual AUC, whereas the
RV end-diastolic volume index and the characteristic resistance Rc
performed the worst. The poor performance of the latter 2 metrics
was also indicated by the significance test.

On the basis of the chosen criterion (Youden index maximiza-
tion) to find the optimal threshold value that maximizes sensitiv-
ity and specificity, the best accuracy was returned by the relative
area change parameter, which at a threshold of 16% correctly
classified 79% of cases. With a threshold value of 0.35, the ratio of
the wave power correctly classified all the no-PH cases (100%

specificity) and 68% of the PH cases, with a misclassification error
of 25%.

The parameters with an AUC higher than 0.8 were selected for
inclusion in the decision-making algorithm to test the additional
diagnostic power resulting from the combination of physiological
and anatomical metrics. The results of Table 2 are confirmed

Figure 3. Top, receiver operator characteristic (ROC) curves corre-
sponding to the parameters with area under the curve (AUC) >
0.8. Bottom, ROC curves for the random forest classification mod-
els. Top, 6 out of the 10 proposed computational and anatomy
metrics had AUC > 0.8. Zero-dimensional (0D): Rd: distal resis-
tance (red line), AUC = 0.85; C: pulmonary vascular compliance
(black line), AUC = 0.83. One-dimensional (1D): Wb/Wtot: ratio of
backward to total wave power (green line), AUC = 0.88; RAC:
main pulmonary artery (PA) relative area change (brown line),
AUC = 0.81; CMR: cardiac magnetic resonance imaging; syst ang:
systolic septal angle (light blue line), AUC = 0.81; RVMI: right
ventricle mass index (dark blue line), AUC = 0.81. Bottom, in-turn
addition of the metrics improved the AUC. 0D and 1D metrics
(red line), AUC = 0.89; 0D, 1D, and PA (green line), AUC = 0.9; all
6 parameters, 0D, 1D, PA, and CMR (blue line), AUC = 0.91.
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graphically by the ROC curves, illustrated in Figure 3 (top) for the
metrics selected for the classification model.

The results of the random forest classification algorithm, vali-
dated using the LOOCV method, are displayed numerically in
Table 3 and graphically in the ROC curves in Figure 3 (bottom).
Combining the 0D model parameters (Rd and C) with the 1D
model parameter (Wb/Wtot) correctly classified 79% of subjects
with an AUC of 0.89. Sensitivity, specificity, and classification ac-
curacy improved considerably when the anatomical parameters
were added to the classification model. The addition of relative
area change reduced the misclassification error to 13%, increasing
both sensitivity and specificity. Combining all of the noninvasive
PH metrics correctly classified 66 out of 72 patients (92%), with a
high sensitivity of 97% (95% CI: 87.89%–99.57%) and a good
specificity of 73% (95% CI: 44.90%–92.21%). The corresponding
positive and negative predicted values are 93.22% (95% CI:
83.54%–98.12%) and 84.62% (95% CI: 54.55%–98.08%), respec-
tively. Figure 4 displays all the individual patients against their
mPAP measured at RHC, following the classification performed
by our best model.

DISCUSSION

We have demonstrated with MRI that combining computation-
derived metrics—which reflect hemodynamic changes in the pul-
monary vasculature—with additional MRI measures of RV mor-
phology and function into a decision support algorithm provides a
method to noninvasively diagnose PH with high accuracy (92%),
without the need for RHC. Moreover, none of the patients
misclassified as not having PH received a diagnosis of PAH.

The noninvasive computation-derived parameters Wb/Wtot, Rd,
and C had the highest individual AUC, confirming the diagnostic
potential showed by these metrics in our previous work.21 More
importantly, combining these computation-derived metrics with
measurement of RV morphology and function into a decision
support algorithm provides a method to noninvasively distinguish
between no-PH and PH patients with high accuracy (92%).

All 3 computational metrics included in the decision process
had the same misclassification error (0.25), when a threshold that
maximizes the Youden index was chosen. The parameter Wb/Wtot

performed better than the 0D parameters in terms of inter- and
intraoperator variability, limits of agreement, CIs, and SD.

While in principle a 0D (Windkessel family) model presents a
simple overall characterization of the pulmonary vascular system,
the determination of the parameters represents more of a chal-
lenge. The optimization process applied to estimate Rd, Rc, and C
returned a good fit in most of the cases, but there were situations
when the performance was poorer (root mean square: 0.2–0.3).
These outliers degrade the overall performance of these measures.
Nevertheless, the combination of 1D- and 0D-derived metrics us-
ing the random forest classification algorithm improves the AUC
and classification accuracy by 4%.

Pulmonary arterial relative area change also showed relatively
good individual performance as a single diagnostic measure. Max-

Table 3. Classification accuracies for the coupled pulmonary hypertension metrics models

LOOCV AUC Misclassification error Sensitivity Specificity

0D + 1D 0.89 0.21 0.88 0.47

0D + 1D + PA 0.9 0.13 0.93 0.67

0D + 1D + PA + CMR (all) 0.89 0.14 0.97 0.47

0D + 1D + PA + CMR 0.91 0.08 0.97 0.73

Note: LOOCV: leave-one-out cross validation; AUC: area under the curve. For all models, threshold is not applica-
ble. Zero-dimensional (0D) metrics derived from the 0D Windkessel model. One-dimensional (1D) metrics derived
from the 1D wave model. Pulmonary artery (PA) metrics derived from the two-dimensional images of the main PA.
Cardiac magnetic resonance (CMR) metrics derived solely from measurements on the cardiac images, with AUC > 0.8.
CMR (all) includes all measured metrics derived from the cardiac images.

Figure 4. Patients’ classification returned by our best model, leave-
one-out cross validation. Six out of the 72 patients were misclas-
sified by the model: 2 false negative (squares), where patients had a
mean pulmonary arterial pressure (mPAP) of >25 mmHg and were
identified by the model as not having pulmonary hypertension
(PH), and 4 false positive (triangles), where patients had an mPAP
of <25 mmHg and had been identified by the model as having PH.
The mPAPs of all misclassified patients were close to the 25-mmHg
threshold.
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imum sensitivity and specificity, according to our data-driven cri-
teria, were obtained at a threshold of 16%. The same threshold,
using measurements performed in the right pulmonary artery, has
been suggested as a mortality predictor,9 whereas other authors5,6

indicated 15% and 24%, respectively, as diagnosis thresholds for
relative area change, on the basis of measurements in the MPA.

Previous studies7,8,34,35 using quantitative MRI-derived param-
eters have shown promise in the assessment of PH. However, our
results showed poorer performance for the RV end-diastolic volume
index and ventricular mass index as markers of PH. This might be
explained by the challenging nature of our cohort: 30% of subjects
had an mPAP close to the borderline threshold of 25 mmHg. RV
remodeling occurs secondary to changes in the pulmonary vascula-
ture, suggesting that for the borderline cases, the RV image-derived
parameters might have less diagnostic power for mild elevation of
pulmonary artery pressure than measurements reflecting more subtle
changes in vascular pathophysiology. In particular, remodeling in the
distal pulmonary vasculature or any system disturbance leading to an
impedance mismatch will lead to higher wave reflections,21 which
are detected by the 0D-1D computational models.

The decision to include metrics with high diagnostic value in
the classification algorithm defined by AUC was confirmed by the
final results. An improvement in the classification accuracy was
demonstrated as more diagnostic metrics were added (from using
just 0D + 1D to then adding the MPA and cardiac MRI metrics),
suggesting that the more the model knows about the features de-
fining a certain individual, the more confident the final classifica-

tion will be. However, not just the quantity but also the quality of
the input data is important: the use of metrics preselected for
significance (AUC > 0.8) produced 5% better accuracy than the
use of all of the proposed metrics.

For all the proposed combinations of metrics, the random forest
model performed better than the individual parameters in terms of
misclassification error and AUC. The best classification model,
which combined the most comprehensive set of preselected diagnos-
tic metrics, had an AUC of 0.91, high sensitivity (97%), and fair spec-
ificity (73%). The model incorrectly classified 6 out of 72 patients:
no PH (false negative) was diagnosed in 2 PH subjects (mPAP ≥
25 mmHg), and PH (false positive) was diagnosed in 4 no-PH sub-
jects (mPAP < 25 mmHg). As discussed above, several of the pa-
tients were close to the diagnosis threshold, using the gold standard
RHC, and we investigated whether those who were classified incor-
rectly by our algorithm were close to the threshold. Table 4 shows the
misclassified patients’ demographics and hemodynamics. One of the
false negatives had an mPAP of 28 mmHg, and the other had an
mPAP of 26 mmHg; both were very close to the PH threshold, and
both had normal PVRs of 1.3 and 2.7 Wood units, respectively. Both
of the PH patients misclassified by the model as not having the condi-
tion were in group 3 PH (PH owing to lung disease/hypoxia), and
neither of them had underlying PAH. All 4 of the false-positive sub-
jects had mPAPs between 22 and 24 mmHg and PVRs ranging from
2.04 to 2.7 Wood units, with diagnoses of mixed aortic valve disease,
chronic thromboembolic disease, sinus venous atrial septal defect
with partial anomalous venous drainage, and partial anomalous pul-

Table 4. Misclassified patients’ demographics and hemodynamics

False negative False positive

Demographics and hemodynamics 1 2 1 2 3 4

Diagnosis PH resp PH resp No PH No PH No PH No PH

Age, years 64 65 77 72 61 77

Sex F F F F M F

BSA, m2 1.79 2.1 1.9 1.8 1.79 1.67

Heart rate, bpm 74 92 83 76 84 66

PVR, Wood units 2.68 1.3 2.61 2.04 2.23 2.51

mPAP, mmHg 26 28 22 23 24 23

sPAP, mmHg 141 38 34 40 35 36

dPAP, mmHg 29 18 14 11 16 7

WHO FC 3 3 2 2 3 2

PAWP, mmHg 12 15 9 9 4 10

mRAP, mmHg 8 10 3 5 2 5

CO, mL/min 5.23 10.03 4.97 6.87 9 5.17

Note: PH: pulmonary hypertension; PH resp: PH associated with respiratory disease; F: female; M: male; BSA: body surface area; bpm:
beats per minute; PVR, pulmonary vascular resistance measured at right heart catheterization (RHC); mPAP: mean pulmonary arterial
pressure measured at RHC; sPAP: systolic pulmonary arterial pressure measured at RHC; dPAP: diastolic pulmonary arterial pressure
measured at RHC; WHO FC: World Health Organization functional class; PAWP: pulmonary arterial wedge pressure measured at RHC;
mRAP: mean right arterial pressure measured at RHC; CO: cardiac output measured using thermodilution.
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monary venous drainage. Previous research has found the mPAP of
healthy volunteers to be 14 ± 3.3 mmHg, and patients with an mPAP
between 21 and 24 mmHg are considered borderline PH.23 Thus, the
final result is that all of the 6 cases that were misclassified were in the
region of clinical uncertainty. Machine learning algorithms are well
documented in the literature, and clinical applications were previ-
ously proposed.26-29 We have shown that a high-accuracy noninva-
sive PH diagnosis can be achieved by maximizing the use of MRI,
by integrating already developed noninvasive PH metrics—derived
by the means of different MRI measurements and computational
models—into random forest classifiers.

Limitations
The main limitations of this single-center, retrospective study are
the relatively small sample size of the analyzed cohort and the
imbalance between the low- and high-risk individuals, although it
is representative of patients referred to a PH referral center, where
such techniques could be employed to avoid cardiac catheteriza-
tion. Further work to prospectively validate the results of this
study in other centers would be desirable.

Conclusions
Our findings confirm the potential of wave reflection quantifica-
tion from functional MRI of the pulmonary artery and RV in the
assessment of PH. The ratio of the backward to total wave power,
Wb/Wtot, is an effective stand-alone marker and also has high im-
portance in the combined classification model.

Combining computational metrics with the ones derived di-
rectly from MRI offered a strong PH classifier, on the basis of MRI
input measurements only. The PH classification model accurately
classified 92% of the patients, with a misclassification error of 8%,
justified by the difficult borderline cases. The high diagnostic ac-
curacy of this approach may reduce the need for RHC in patients
with suspected PH.
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