Skip to main content
. Author manuscript; available in PMC: 2017 Feb 15.
Published in final edited form as: Neuroimage. 2015 Dec 9;127:158–172. doi: 10.1016/j.neuroimage.2015.11.061

Algorithm 2.

fiber orientation mixture estimation

Input:
  p0: the input spatial position for estimation
  M0: the input reference model
  {(pi,Mi)}i=1C: the local neighborhood of C position/model pairs
  Ni: the number of fibers in the i-th local model
  fij: the volume fraction of the j-th fiber of the i-th local model
  vij: the fiber orientation of the j-th fiber of the i-th local model
  hpos: the spatial positional bandwidth
  hdir : the bilateral data-adaptive bandwidth
  λ: the model complexity regularization parameter
  Kmax: the maximum number of fiber compartments
Output:
  : estimated number of fiber compartments
  M^={(f^k,v^k)}k=1K^: estimated model
/* Compute sum-normalized model weights */
Ksum ← 0
for i=1 to C do
graphic file with name nihms744072t7.jpg   kiK(p0pi2/hpos2)
  kiki*K(dm2(M0,Mi)/hdir2)
  KsumKsum + ki
for i=1 to C do
graphic file with name nihms744072t8.jpg   kiki/Ksum
/* Compute fiber weights */
L ← 0, Fsum ← 0
for i=1 to C do
graphic file with name nihms744072t9.jpg   for j=1 to Ni do
graphic file with name nihms744072t10.jpg   wLki * fij, vLvij
  LL + 1, FsumFsum + fij
/* Optimize by clustering with Algo. 1 */
K^,{(ŵk,v^k)}k=1K^cluster({(wi,vi)}i=1L,λ,Kmax)
for k=1 to do
graphic file with name nihms744072t11.jpg   kŵk * Fsum
return