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Abstract

Traumatic brain injury (TBI) affects over 1.7 million people in the United States alone and poses 

many clinical challenges due to the variability of the injuries and complexity of biochemical 

mechanisms involved. Thus far, there is still no effective therapy for TBI. Failure of preventative 

therapeutic strategies has led studies focusing on regenerative approaches. Recent studies have 

shown evidence that mature brains harbors multipotent neural stem cells capable of becoming 

mature neurons in the neurogenic regions. Following brain insults including TBI, the injured brain 

has increased level of neurogenic response in the subventricular zone and dentate gyrus of the 

hippocampus and this endogenous response is associated with cognitive function following injury. 

In this review, we highlight recent development and strategies aimed at targeting this endogenous 

cell response to enhance post-TBI functional recovery.
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Introduction

Millions of people suffer from traumatic brain injury (TBI) every year. According to the 

Centers for disease control and prevention, in the United States alone, about 1.7 million 

people sustain a TBI annually (Faul et al., 2010). Following TBI, the primary injury induces 

irreversible brain damage which is untreatable. The subsequent secondary injury plays a 

profound role in the evolution of the injury and clinical prognosis. Thus, preventing/treating 

the additional tissue damage caused by secondary brain insults is the major focus of 

therapies for TBI. Drug therapies aimed at controlling the spread of secondary injury have 

shown great success in experimental TBI models, however, more than 30 phase III clinical 

trials have failed to show successful results in clinical setting (Maas et al., 2010; Schouten, 
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2007). These failures may be due to the overwhelming complexity of variables involved in 

TBI and complications of translating animal research to human clinical trials. To date, there 

is no effective treatment for TBI, proving the urgent need to explore new strategies. Recent 

findings of the existence of neural stem cells in the adult brain and their ability to proliferate 

and generate functional neurons following injury have raised the hope of developing 

therapies targeting these endogenous cells to achieve repair and regeneration in the injured 

brain following TBI.

Neurogenesis was once thought to be discontinued after development in the mammalian 

brain. Recent studies show that certain areas of the brain, specifically the dentate gyrus (DG) 

of the hippocampus and the subventricular zone (SVZ), retain the ability to generate neurons 

and glia (Lois and Alvarez-Buylla, 1993; Gage et al., 1998). Neural stem cells (NSC) in 

these areas continue the developmental mechanisms to replace and replenish old and 

damaged cells. The primary physiological role of the NSC of the SVZ surrounding the 

lateral ventricles is to give rise to olfactory interneurons (Gritti et al., 2002). Whereas in the 

DG, newly proliferated cells become dentate granule neurons forming axon connections to 

their target CA3 region (Kempermann and Gage, 2000; van Praag et al., 2002; Hastings and 

Gould, 1999). In both regions, this neurogenic process continuously produces significant 

number of new neurons enough to affect network functions (Cameron and McKay, 2001; 

Imayoshi et al., 2008). Studies have shown that in the hippocampus, newly generated 

neurons integrate into the existing neuronal circuitry involving learning and memory 

functions, and enhancing or inhibiting this hippocampal neurogenesis can affect cognitive 

ability (van et al., 1999; Sun et al., 2009; Jessberger et al., 2009; Sun et al., 2015). Similarly, 

olfactory interneurons generated in the SVZ of the adult brain are involved in some olfactory 

functions such as olfactory discrimination, acquisition of new odor related behaviors, and 

short term olfactory memory functions (Breton-Provencher et al., 2009; Gheusi et al., 2000; 

Moreno et al., 2009).

Neurogenic response includes three different phases: proliferation or generation of new 

cells, migration of new cells to target areas, and differentiation into proper cell types 

(Hallbergson et al., 2003). The degree of adult neurogenesis is affected by many factors. 

Biochemical factors such as growth factors and steroids tightly regulate the proliferation and 

differentiation of the NSC (Tanapat et al., 1999; Cameron and Gould; 1994 and Kuhn et al., 

1997). Other factors such as exercise, enriched environment, or stress can also affect the 

level of neurogenesis (Gould et al., 1997, Kempermann et al., 1997, van et al., 1999 and 

Kempermann et al., 2000). Studies have shown that TBI induces an up-regulation of 

neurogenesis in varying types of TBI models as described in a previous review (Sun 2015). 

The injury-induced adult born neurons are also capable of functional integration into the 

hippocampal network (Villasana et al., 2015) and are directly associated with spontaneous 

cognitive functional recovery observed following injury (Sun et al., 2007; Sun et al., 2015; 

Blass et al. 2013). Thus far, strategies such as supplementing varying types of growth 

factors, manipulating transcriptional regulators, or other pharmacological approaches 

targeting different aspects of the endogenous neurogenic response have shown promising 

results improving functional recovery following TBI as summarized in a recent review (Sun 

2015). These studies clearly demonstrate that manipulation of this endogenous cell response 

holds potential for therapeutic advances in TBI treatments. This review will provide more 
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detailed information about factors/strategies that are utilized to influence adult neurogenesis 

following TBI.

Growth/Neurotrophic Factors

In the developing brain, high levels of many growth factors and neurotrophic factors, such as 

basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), brain-derived 

neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) etc., are expressed at 

high levels responsible for the proliferation, differentiation and survival of cells in the 

central nervous system (CNS) (Caday et al., 1990; Plata-Salaman, 1991; Maisonpierre et al., 

1990). Some of these factors and their effects on post-TBI neurogenesis have been briefly 

mentioned in a previous review (Sun, 2015), and they will be discussed in more detail in this 

review. The expression levels of these factors and the degree of endogenous cell proliferation 

decreases with increasing age (Seki and Arai, 1995). Among these factors, bFGF and EGF 

are essential for maintenance and proliferation of neural stem and progenitor cells (NS/NPC) 

in vitro and in vivo during developmental neurogenesis (Vicario-Abejon, 2004; Cameron et 

al., 1998). In the normal mature brain, administration of bFGF or EGF enhances 

proliferation of NS/NPCs in the SVZ and the DG (Kuhn et al., 1997; Wagner et al., 1999.). 

Furthermore, exogenous bFGF can also restore neurogenesis in the hippocampus and SVZ 

in the aged animals (Jin et al., 2003; Rai et al., 2007). Following TBI, in a controlled cortical 

impact (CCI) model of bFGF-null mice, the absence of injury-induced proliferative response 

in the DG can be restored by focal intracerebral injection of exogenous bFGF one hour after 

injury at 0.1 μl/min for 10 minutes, as demonstrated by a significant increase of 

bromodeoxyuridine (BrdU) positive cells in the DG at 9 days post-injury (Yoshimura et al., 

2003). In a lateral fluid percussive injury (LFPI) model, we have shown that intraventricular 

infusion of bFGF or EGF significantly increases injury–induced cell proliferation in the DG 

and SVZ, leading to increased total number of newly generated neurons in the DG and 

enhanced cognitive functional recovery (Sun et al., 2009; Sun et al., 2010). In our studies, 

adult male Sprague-Dawley rats were subjected to a moderate LFPI and received a 7-day 

intraventricular infusion of recombinant bFGF or EGF (400 ng/day) through an osmatic 

mini-pump immediately after injury, significant increases of BrdU+ cells in the SVZ and DG 

at 7 days and 4 weeks post-injury and improved cognitive recovery measured by Morris 

Water Maze (MWM) were observed (Sun et al., 2009; Sun et al., 2010). Compared to bFGF 

and EGF, which function by promoting cell proliferation, two other notable trophic factors, 

IGF-1 and BDNF, have been reported playing a more specific role in enhancing survival and 

maturation of newly generated neurons in the DG following TBI. IGF-1, a mitogenic factor 

with multiple functions in the developing and adult brain, can enhance cell proliferation in 

normal adult and aged rats when administrated exogenously (Aberg, 2000; Aderson et al., 

2002). In the injured brain following CCI, transgenic mice overexpressing IGF-1 had a 

significant increase in the number of BrdU+/doublecortin (DCX) double-labeled new 

neurons in the hippocampus and with better dendritic development whereas the level of cell 

proliferation was not changed (Carlson et al., 2014). Similarly, BDNF, a member of the 

neurotrophin family of growth factors which regulates diverse and important functions in the 

CNS, has also shown to enhance neurogenesis through promoting survival of newly 
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generated neurons, dendritic arborization, and synaptic formation rather than cell 

proliferation in the injured brain (Gao and Chen, 2009; Gao et al., 2009).

Apart from aforementioned factors, vascular endothelial growth factor (VEGF) and S100β 

also show effectiveness in enhancing neurogenesis and improving functional recovery of the 

injured brain following trauma. Adult male mice which were subjected to a closed head 

injury and exogenously infused with recombinant VEGF into the lateral ventricles for 7 days 

immediately following injury at a dose of 0.5μl/h, had increased BrdU+ cells in the SVZ, 

corpous callosum, and perilesion cortex, and reduced lesion size and better motor functional 

performance (Thau-Zuchman et al., 2010). In another study, adult rats infused with 

recombinant VEGF 1 day after LFPI at the rate of 0.5 μl/h for 13 days showed increased 

survival of newly generated neurons in the DG marked by Prox1+/BrdU+ double labeling 

(Lee and Agoston, 2010). S100β, a neurotropic protein secreted by astrocytes, when given 

intraventricularly for 7 days immediately following LFPI, increased cell proliferation and 

generation of new neurons in the hippocampus and improved cognitive function were 

observed (Kleindienst et al., 2005).

Small Molecules Imitating Growth/Neurotrophic Factors

Growth/neurotrophic factors can enhance neurogenesis and improve functional recovery 

following TBI, however, their utility is limited to invasive delivery such as intraventricular 

infusion due to their big molecular size incapable of crossing the blood brain barrier and the 

limited time length of bioavailability. Strategies targeting growth/neurotrophic factor 

signaling pathways with small molecules/peptides could retain similar beneficial effects with 

better translation potential. For example, cerebrolysin, a pharmacologically prepared low 

molecular weight neuropeptide derived from purified porcine brain proteins, which has 

pharmacodynamic properties similar to endogenous neurotrophic factors (Plosker and 

Gauthier, 2009), have shown enhancing cognitive improvements in mild TBI in clinical trials 

(Chen et al., 2013), In a mild impact acceleration model, intraperitoneal injection of 

cerebrolysin in rats increases the number of DCX labeled neuroblasts and BrdU/NeuN 

double-labeled newly generated mature neurons in the DG, and significantly improves long-

term learning and memory functions of the injured animals (Zhang et al., 2015).

A synthetic neurotrophin TrkB receptor agonist 7,8-dihydroxyflavone, a small molecule that 

imitates BDNF, when administered intraperitoneally before or after a moderate CCI injury in 

mice, it can increase the survival of DCX+ newly generated neurons in the hippocampus, 

and promote their dendritic arborization similar to BDNF (Chen et al., 2015; Zhao et al., 

2015). Neurotrophin p75 receptor (p75NTR) plays a physiological role in regulating 

hippocampal neurogenesis as p75NTR null mice demonstrated reduced number of new 

neurons in the hippocampus and subtle cognitive impairment (Catts et al., 2008; Bernabeu 

and Longo, 2010). Following CCI in male Sprague-Dawley rats, intranasal administration of 

a small-molecule p75NTR signaling modulator, LM11A-31, starting 10 minutes after injury 

and then once daily for 14 days with 6 μl of 33.3 μM, enhances proliferation and survival of 

NPCs in the hippocampus and ameliorates spatial learning impairments in MWM tests (Shi 

et al., 2013). It is also reported that mice treated with a small molecule peptide 6, which 

corresponds to an active region of human ciliary neurotrophic factor (CNTF), increases the 
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number of neurons in the DG and improves memory function following CCI (Chohan et al., 

2014)

Other Peptides or Pharmacological Agents

Erythropoietin (EPO), a hormone that regulates production of red blood cells, has shown 

neuroprotective effects in stroke and TBI studies (Wang et al., 2004; Lu et al., 2005; Xiong 

et al., 2010). Intraperitoneal administration of carbamylated EPO either as a single dose (50 

μg/kg) at 6 hours post CCI injury or once daily at 1, 2, and 3 days post injury in young male 

rats significantly increases BrdU+ cells and new neurons co-stained with BrdU+/NeuN+ in 

the DG; animals also show better functional recovery assessed by spatial memory task in 

MWM tests (Xiong et al., 2010), while inhibition of EPO-enhanced endogenous 

neurogenesis with mitotic inhibitor Ara-C blocks EPO-enhanced functional recovery (Zhang 

et al., 2012).

Thymosin β4 (Tβ4), a small peptide G-actin sequestering molecule, has pro-survival 

properties to promote tissue regeneration (Goldstein et al., 2005; Smart et al., 2007), and is 

involved in many cellular properties including proliferation and neuronal survival (Sun and 

Kim, 2007; Morris et al., 2010; Yang et al., 2008). Intraperitoneal injection of Tβ4 starting at 

6 hr post CCI in rats for three doses shows increased number of BrdU+ newly proliferated 

cells and BrdU/NeuN double-labeled new neurons in the DG, with improved cognitive 

functional recovery (Xiong et al., 2012).

P7C3 class of aminopropyl carbazole agents, are small drug-like molecules with neurogenic 

effects identified through a target-agonist screen study. P3C3 and its derivative P7C3-A20 

have shown to induce hippocampal neurogenesis by enhancing survival of newly generated 

neurons (Pieper et al., 2010). Following TBI in a rat LFPI model, P7C3-A20 given at 30min 

post-injury for 7 days can increase cell proliferation and survival of newly generated neurons 

in the subgranular zone and improve cognitive recovery in the MWM tests (Blaya et al., 

2014).

Physical/Electrical Stimulations

Increased hippocampal neurogenesis is observed in response to several physiological 

stimulants such as physical exercise and environmental enrichment (EE). Studies have 

shown experimental treatments with EE result in increased survival rate of NSC and newly 

generated mature neurons (Nilsson et al., 1999). EE consists of animals being placed in large 

housing conditions equipped with objects such as climbing ladders, plastic tubing, racks of 

different dimensions, etc., allowing the animal to explore and receive exercise (Gaulke et al., 

2005). EE has also shown to increase number of new neurons, dendritic branching, induces 

neuroplasticity, and improves performance in spatial learning (Kempermann et al., 1997; 

Greenough and Volkmar, 1973; Nakamura et al., 1999; Nilsson et al., 1999). Over the past 

two decades, many studies have demonstrated the beneficial effects of EE for TBI (Bondi et 

al., 2014). In an experimental study of TBI, rats that were exposed to EE for 20 days after 

LFPI showed significant increase in NS/NPCs in the DG due to increased survival of these 

cells (Gaulke et al., 2005). Physical exercise, another easy to implement stimulant, has 
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shown enhancing neurogenesis in normal brains (Brown et al., 2003). Studies have shown 

that running wheel exercise implemented in rats 14–20 days after LFPI can improve 

cognitive functional recovery due to exercise-induced production of BDNF (Griesbach et al., 

2009). A more recent study compared early post-TBI running wheel exercise (starting 1 

week post-TBI) to delayed exercise (starting at 5 weeks post-injury) in a CCI mice model, 

and found that delayed exercise significantly increased generation of new neurons, reduced 

lesion volume and inflammation together with reduced cognitive deficits in injured animals 

whereas early exercise had no such effects (Piao et al., 2013).

Recently, some radical approaches have been explored to stimulate the endogenous 

neurogenic response after TBI. Transcranial low light laser therapy (LLLT) is a new 

approach for TBI treatment. LLLT penetrates through the scalp and skull reaching the brain 

and has shown neuroprotective and neurogenic effects after brain injury (Xuan et al., 2015). 

In a CCI mice model, LLLT delivered either as a single treatment at 4 hours post TBI or 

daily treatment starting 4 hours post-injury for 3 days with 810 nm laser 1 cm in diameter 

positioned centrally showed increased cell proliferation, reduced lesion size, and significant 

improvement in sensorimotor functions, however, daily treatment for 14 days had no 

beneficial effect (Xuan et al., 2013). Single or 3 daily LLLT treatment starting at 4 hours 

post-CCI with 810-nm laser can also increase the number of newly generated neurons, 

decrease apoptosis and improve cognitive function in MWM performance tests (Xuan et al., 

2014). The beneficial effect of LLLT is likely due to the increased expression of BDNF in 

the DG and SVZ following LLLT (Xuan et al., 2015).

Deep brain stimulation (DBS) is another radical approach to target neurogenesis. DBS has 

been used to treat many neurological disorders such as depression, movement disorders, and 

psychiatric disorders (Encinas et al., 2011). DBS has shown to induce sustained 

hippocampal neurogenesis by implanting electrodes in the anterior thalamic nucleus and 

stimulating at variable frequencies (10, 50, 130 Hz) for one hour (Toda et al., 2008). Thus 

far there is no report about the beneficial effects of DBS in TBI studies.

Existing FDA Approved Drugs

Recent studies have found several drugs that have already been used in clinic to treat other 

diseases having a specific effect on neurogenesis. Statins, a class of hydroxymethylglutaryl-

coenzyme A reductase inhibitors, are used to treat hyperlipidemia in clinic, and have shown 

beneficial effects for neurological disorders including TBI (Peng et al., 2014; Béziaud et al., 

2011). Oral administration of synthetically derived statins, simvastatin or atorvastatin, to rats 

at a dose of 1mg/kg starting at day 1 following CCI injury significantly increases BrdU-

labeled newly proliferated cells and BrdU/NeuN co-labeled new neurons in the DG, and 

improves functional recovery of the injured animals, and the effect is particularly significant 

with simvastatin treatment (Lu et al., 2007; Xie et al., 2014).

Tissue plasminogen activator (tPA) is the only FDA approved drug for stroke. Intranasal 

administration of tPA 600μg given at days 7 and 14 following a moderate CCI injury in rats, 

significantly enhances neurogenesis by increasing the number of DCX+ cells and BrdU/
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NeuN double-labeled cells in the DG, and improves motor function and cognitive 

performance (Meng et al., 2014).

Imipramine, a commonly used tricyclic antidepressant, selectively inhibits reuptake of 

serotonin and norepinephrine. Chronic treatment of imipramine has shown significant 

neurogenic effect in the DG (Santarelli et al., 2003). When administered intraperitoneally at 

20 mg/kg daily for 2 or 4 weeks to mice starting 1 hour following CCI injury, imipramine 

treated mice showed significant increase in cell proliferation and in the total number of new 

neurons in the DG which is accompanied with better cognitive performance (Han et al., 

2011). Similar effect of chronic imipramine treatment-enhanced post-TBI cell proliferation 

was observed in rats following a fluid percussive injury (Zhang J et al., 2014). Fluoxetine, 

another selective serotonin reuptake inhibitor, has similar effects as imipramine in inducing 

hippocampal neurogenesis in normal animals (Wang et al., 2008). When administered 

intraperitoneally at 10 mg/kg daily starting 4 days after a severe CCI injury, mice treated 

with fluoxetine for 4 weeks had significantly higher number of DCX+ cells in the DG, 

although functional improvement was not observed in the treated animals (Wang et al., 

2011).

NeuroAid (MLC601 and MLC901), a traditional Chinese medicine used for stroke 

treatment, has shown effects of neuroprotection, neuroplasticity, and neurogenesis 

(Heurteaux et al., 2013; Quintard et al., 2014). In a rat LFPI study, animals which received 

MLC901 single i.p. injection at 2h post-injury, thereafter through drinking water until 

sacrificed, had significantly increased BrdU+ cells and BrdU/NeuN double-labeled cells in 

the DG, and improved cognitive recovery compared to vehicle-treated animals (Quintard et 

al., 2014).

Angiotensin II receptor type 2 (AT2) agonists have shown to limit brain ischemic insult and 

to improve functional outcome (Chao et al., 2013; Gendron et al., 2003; Li et al., 2005). 

Activation of AT2 increases the expression levels of BDNF and its receptors in neurons 

(Namsolleck et al., 2013). Activating AT2 via pharmacological agent CGP42112A in a 

closed head injury model in mice via intraventricular infusion for 3 days immediately 

following injury shows a dose dependent improvement in functional recovery accompanied 

by enhanced cell proliferation and generation of new neurons in the DG (Umschweif et al., 

2014a & 2014b).

Modulating Signaling Pathways

During development, neurogenesis is controlled by several signaling pathways. Notch 

signaling is the major mitogenic pathway regulating cell genesis in many organs during 

development and in adulthood. In the developing CNS, the Notch signaling pathways play 

critical roles in proliferation and differentiation of NSC (Imayoshi et al., 2010). In recent 

years, Notch signaling has emerged as a dominant player in cell fate and maintenance of 

NSC in the adult brain. Notch1 is required for the continued production of mitotically active 

progenitor cells and neuroblasts in the SVZ and olfactory bulb (Imayoshi et al., 2010; 

Imayoshi and Kageyama, 2011; Basak et al., 2012), as well as in the hippocampus (Ables et 

al., 2010; Ehm et al., 2010). In the injured brain following TBI, a study showed that Notch 1 
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signaling may play an important role in regulating post-injury neurogenesis. Intracerebral 

delivery of adenovirus serotype 5 expressing Hes1 gene, one of the down-stream Notch 

effector genes, directly to the hippocampus in mice before receiving a fluid percussive 

injury, decreased cell proliferation and neuronal differentiation in the DG, whereas 

downregulation of Hes1 via injection of Hes1-siRNA increased neuronal differentiation and 

improved MWM performance (Zhang Z et al, 2014).

Wnt/β-catenin signaling is another key regulatory pathway influencing cell proliferation and 

differentiation in the neurogenic regions (Lie et al., 2005; Jang et al., 2013). Increased 

expression of β-catenin was found in newly derived glial progenitors and astrocytes in the 

injured cortex following a mild CCI in β-catenin reporter mice (White et al. 2010). Although 

there is no report examining the effect of manipulating this pathway for treating TBI, studies 

have found that the neurogenic effect of simvastatin following TBI is through enhancing 

Wnt signaling pathway to increase generation of new neurons in the DG, and this effect is 

mediated by inhibition of isoprenoid biosynthesis, independent of cholesterol (Robin et al., 

2014). Survivin, a member of the inhibitor of apoptosis (IAP) gene family, is a downstream 

target gene of the Wnt/β-catenin signaling pathway. Following FPI in mice, increased 

Survivin expression was observed correlating with the increased cell proliferation in the DG 

(Zhang et al., 2013).

These limited studies suggest that manipulation of the Notch or Wnt singling pathways can 

modulate endogenous neurogenesis following TBI. However, as these pathways regulate cell 

proliferation/differentiation of various stem and progenitor cells in many organs including 

tumor cells, their therapeutic potential for treating TBI is uncertain.

Conclusion

TBI is perhaps one of the most complicated neurological disorders due to the high degree of 

heterogeneity of injury. Thus far there is still no effective treatment for TBI. Modulating 

endogenous repair mechanisms through enhancing neurogenesis could be an attractive 

approach for TBI therapy. Many strategies for enhancing neurogenesis that are summarized 

in this review (table 1) are also reported to have other neuroprotective and regenerative 

effects, which could contribute to their benefits of enhancing functional recovery following 

TBI. Nevertheless, convincing evidence has clearly demonstrated the importance of this 

endogenous neurogenic cell response in relation to learning and memory functions, and 

harnessing this response is important and necessary for therapeutic development for TBI.
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Table 1

Summary of studies cited in this review with treatment targeting endogenous neurogenic response following 

TBI.

Category Authors Study design Findings

Growth/Neurotrophic Factors Yoshimura et al., 
2003;

CCI, bFGF-null mice, 
intracerebral injection of 
bFGF.

Restoration of injury-induced proliferative 
response in the DG

Sun et al., 2009 LFPI, rats, intraventricular 
infusion of bFGF.

Increased proliferation in the DG and SVZ 
and improved cognitive recovery

Sun et al., 2010 LFPI, rats, intraventricular 
infusion of EGF.

Increased proliferation in the DG and SVZ 
and improved cognitive recovery

Carlson et al., 2014 CCI, IGF-1 over expression 
mice.

Increased survival of newly generated 
neurons in the DG without affecting cell 
proliferation

Gao and Chen, 2009 
& Gao et al., 2009

CCI, BDNF conditional 
knockout mice.

Deficits in survival and maturation of 
newly generated neurons without affecting 
cell proliferation in the DG

Thau-Zuchman et al., 
2010

Closed head injury, mice, 
intraventricular infusion of 
VEGF.

Increased cell proliferation in SVZ, 
corpous callosum, and perilesion cortex, 
reduced lesion size, and improved 
cognitive recovery

Lee and Agoston, 
2010

LFPI, rats, intraventricular 
infusion of VEGF.

Increased survival of newly generated 
neurons in the DG

Kleindienst et al., 
2005

LFPI, rats, intraventricular 
infusion of S100β.

Enhanced cell proliferation and generation 
of new neurons in the DG and SVZ and 
improved cognitive recovery.

Small Molecules Imitating Growth/
Neuro trophic Factors

Zhang et al., 2015 Impact acceleration injury, 
rats, cerebrolysin i.p.

Increased generation of new neurons and 
improved cognitive functional recovery.

Chen et al., 2015 and 
Zhao et al., 2016

CCI, mice, i.p. administration 
of 7,8-dihydroxyflavone.

Increased survival of newly generated 
neurons and dendritic development in the 
DG

Shi et al., 2013 CCI, rats, intranasal 
administration of LM11A-31.

Enhanced proliferation and survival of 
NPC in DG and improved cognitive 
recovery.

Chohan et al., 2014 CCI, mice, a small molecule 
peptide 6, i.p.

Increases the number of neurons in the DG 
and improves memory function

Other Peptides or Pharmacologic al 
Agents

Xiong et al., 2010 CCI, rats, carbamylated EPO 
i.p.

Increased proliferation and generation of 
new neurons in DG and improved 
cognitive recovery

Xiong et al., 2012 CCI, rats, Tβ4 i.p. Increased proliferation and generation of 
new neurons in DG and improved 
cognitive recovery

Blaya et al., 2014 LFPI, rats, P7C3-A20, i.p. Increased proliferation and survival of 
newly generated neurons in DG and 
improved cognitive recovery

Physical/Electrical Stimulations Gaulke et al., 2005 LFPI, rats, EE housing Increased survival of endogenous NSC

Griesbach et al., 
2009

LFPI, rats, running wheel 
exercise.

Improved cognitive functional recovery

Piao et al., 2013 CCI, mice, delayed running 
wheel exercise.

Increased generation of new neurons, 
reduced lesion volume and inflammation 
with reduced cognitive deficits

Xuan et al., 2013, 
2014

CCI, mice, LLLT. 1 or 3 treatments increased cell 
proliferation, reduced lesion size, and 
improved neurobehavioral function
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Category Authors Study design Findings

Xuan et al., 2015 CCI, mice, LLLT. Stimulates synaptic plasticity in the SVZ, 
up-regulates BDNF in the DG and SVZ, 
and improves cognitive function

Existing FDA Approved Drugs Xie et al., 2014 CCI, rats, simvastatin or 
atorvastatin, oral.

Increased proliferation and generation of 
new neurons in DG and improved 
cognitive recovery

Meng et al., 2014 CCI, rats, tPA intranasal 
administration.

Increased number of new neurons in the 
DG and improved motor function and 
cognitive performance

Han et al., 2011 CCI, mice, imipramine i.p. Increased proliferation and generation of 
new neurons in DG and improved 
cognitive performance

Wang et al., 2011 CCI, mice, fluoxetine i.p. Increased generation of new neurons in 
DG with no observed functional 
improvements

Quintard et al., 2014 LFPI, rats, NeuroAid i.p. Increased proliferation and generation of 
new neurons in DG and improved 
cognitive performance

Umschweif et al., 
2014a & 2014b

Closed head injury, mice, 
AT2 agonist intraventricular 
infusion.

Increased proliferation and generation of 
new neurons in DG and improved 
functional recovery

Modulating Signaling Pathways Zhang Z et al, 2014 FPI, mice, intracerebral 
injection of Notch effector 
genes.

Affecting cell proliferation, neuronal 
differentiation and cognitive function

Recent studies have shown evidence that mature brains harbors multipotent neural stem cells capable of becoming mature neurons in the 
neurogenic regions. Following brain insults including TBI, the injured brain has increased levels of neurogenic response in the subventricular zone 
and dentate gyrus of the hippocampus and this endogenous response is associated with cognitive function following injury. In this review, we 
highlight recent development and strategies aimed at targeting this endogenous cell response to enhance post-TBI functional recovery.
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