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Abstract

Lipid peroxidation can be broadly defined as the process of inserting a hydroperoxy group into a 

lipid. Polyunsaturated fatty acids present in the phospholipids are often the targets for 

peroxidation. Phospholipids are indispensable for normal structure of membranes. The other 

important function of phospholipids stems from their role as a source of lipid mediators – 

oxygenated free fatty acids that are derived from lipid peroxidation. In the CNS, excessive 

accumulation of either oxidized phospholipids or oxygenated free fatty acids may be associated 

with damage occurring during acute brain injury and subsequent inflammatory responses. There is 

a growing body of evidence that lipid peroxidation occurs after severe traumatic brain injury in 

humans and correlates with the injury severity and mortality. Identification of the products and 

sources of lipid peroxidation and its enzymatic or non-enzymatic nature is essential for the design 

of mechanism-based therapies. Recent progress in mass spectrometry-based lipidomics/oxidative 

lipidomics offers remarkable opportunities for quantitative characterization of lipid peroxidation 

products, providing guidance for targeted development of specific therapeutic modalities. In this 

review, we critically evaluate previous attempts to use non-specific antioxidants as neuroprotectors 

and emphasize new approaches based on recent breakthroughs in understanding of enzymatic 

mechanisms of lipid peroxidation associated with specific death pathways, particularly apoptosis. 

We also emphasize the role of different phospholipases (calcium-dependent and -independent) in 

hydrolysis of peroxidized phospholipids and generation of pro- and anti-inflammatory lipid 

mediators.
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1. Introduction

Oxygenated lipid mediators and reactive oxygen species play important roles in maintaining 

homeostatic balance under normal conditions (Halliwell, 1991; Niki, 2009). However 

excessive generation of reactive oxygen species with depletion of antioxidant reserves 

resulting in lipid peroxidation have been implicated in programmed cell death pathways and 

inflammation (Niki, 2009). After the identification of soybean lipoxygenase, lipid 

peroxidation has been studied extensively to understand its mechanisms, dynamics and 

effects on biological systems (Bergstrom, 1945; Halliwell and Chirico, 1993; Khan, 1955). 

Apart from producing local effects such as altering membrane structure, integrity, fluidity, 

permeability and functionality, the products of lipid peroxidation are effective in initiating 

secondary cellular responses (Ernster et al., 1968; Sevanian and Hochstein, 1985).

The central nervous system (CNS) is particularly vulnerable to uncontrolled lipid 

peroxidation upon injury for several reasons. First, the brain exhibits high metabolic activity 

receiving 20% of the oxygen despite accounting for 2% of the body weight (Pratico et al., 

2002). With high rates of oxidative metabolic activity, the brain generates large quantities of 

reactive oxygen metabolites (Ames et al., 1993). Second, neurons lack the capacity to 

regenerate. Third, neurons exhibit a high membrane-to-cytoplasm ratio (Evans, 1993). 

Fourth, the brain has high levels of redox transition metals such as iron that can catalyze 

reactive metabolite generation (Halliwell, 1992). While catalytically-active iron is typically 

sequestered intracellularly by ferritin and extracellularly by transferrin, low pH conditions 

observed after traumatic brain injury (TBI) might facilitate iron release for oxidative 

reactions (Hall et al., 2010). Furthermore, disruption of the vasculature by mechanical forces 

can lead to release of free hemoglobin into the brain parenchyma providing an additional 

source of redox-active iron. Finally, despite high oxidative metabolic activity, the brain has a 

relatively low antioxidant capacity compared to other tissues (Markesbery and Lovell, 2007). 

Generation of lipid mediators from lipid hydroperoxides has important functions in normal 

CNS physiology (Niki, 2009). However their uncontrolled and excessive production plays an 

important role in secondary injury mechanisms that are set into motion after TBI (Kasprzak 

et al., 2001).

Lipid peroxidation can be broadly defined as the process of inserting a hydroperoxy group 

into a lipid. Polyunsaturated fatty acids (PUFA) present in the glycerolipids, phospholipids 

and cholesterols are often the targets for peroxidation, where the peroxyl groups are derived 

from an oxygen molecule or from hydrogen peroxide. PUFAs are fatty acids containing two 

or more double bonds each separated by a methylene bridge (-CH2-) at their aliphatic carbon 

back bone. The bis-allelic hydrogen or the hydrogen attached to the methylene bridge are 

very easy to remove, thus making these lipids highly susceptible to lipid peroxidation 

(Gardner, 1989). Due to their ability to form a flexible membrane structure (Feller et al., 

2002), PUFAs are an important and major fatty acid class accounting for approximately 50% 
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of total membrane fatty acids (Tinoco, 1982). Among the PUFAs, various species are 

observed in different locations. For example, the major ω-6 fatty acids linoleic acid and 

arachidonic acid are seen across the membrane systems, whereas the ω-3 fatty acid 

docosahexaenoic acid is concentrated in the brain cortex and organelles such as 

synaptosomes, synaptic vesicles, mitochondria and microsomes (Bradbury, 2011; Tinoco, 

1982). The omnipresence, high abundance and sensitivity towards oxidation makes PUFAs 

one of the major targets of oxidative stress through lipid peroxidation in the cellular system.

In TBI, lipid peroxidation is marked by two major pathways: enzymatic and non-enzymatic. 

The enzymatic pathways involve activation of phospholipase A2 (PLA2) (Bazan et al., 

1995), cyclooxygenases (COX) (Dash et al., 2000), lipoxygenases (LOX) (Zhang et al., 

2006), cytochrome c and other peroxidases (Ji et al., 2012a; Mendes Arent et al., 2014). 

Non-enzymatic pathways primarily involve interaction of transition metals with reactive 

oxygen species (ROS) (Bayir et al., 2006). Moreover, the cellular defense system against 

lipid peroxidation is also compromised with TBI. This defense system includes various free 

radical removal enzymes such as catalase, superoxide distmutases (SOD) and glutathione 

peroxidases(Ansari et al., 2008) as well as sacrificial antioxidants such as Vitamin C and E 

(Bayir et al., 2006). Accumulation of many of the lipid peroxidation products are known to 

be toxic for the cells. Lipid mediators generated from oxidation of free or esterified PUFA 

have been implicated in dysregulation of cerebral blood flow, blood brain barrier damage, 

activation of inflammatory response and programmed cell death pathways (Williams and 

Higgs, 1988); (Kagan et al., 2009a; Friedmann Angeli et al., 2014). On the other hand some 

of the lipid mediators generated from multistage enzymatic oxidation of PUFA support the 

resolution of inflammatory process (Serhan, 2014).

In the following sections, we will describe the mechanisms of lipid peroxidation; summarize 

detection of lipid peroxidation in clinical TBI, and we will review previous attempts to use 

non-specific antioxidants as neuroprotectors and emphasize new approaches based on recent 

breakthroughs in understanding of enzymatic mechanisms of lipid peroxidation.

2. Mechanism of Lipid peroxidation

Classic description of the chain reaction of lipid peroxidation involves three main steps: 

initiation, prolongation and termination as shown in Figure 1. Initiation is the removal of a 

hydrogen atom from the PUFA to form a carbon-centered lipid free radical (Pederson and 

Aust, 1975). After the hydrogen is removed, the unpaired electron is rearranged to form a 

more stable radical containing conjugated dienes. The lipid radical then attracts molecular 

oxygen from the available dissolved oxygen pool to form lipid peroxyl radicals. The lipid 

peroxyl radical initiates a new cycle by extracting a hydrogen, thereby perpetuating the 

peroxidation reaction. The final step, or termination, is the formation of a non-radical from 

the combination of two radicals (Halliwell and Chirico, 1993; Porter et al., 1995; Wills, 

1966; Witting, 1965). Apart from hydroperoxides, lipid peroxidation produces many 

products which include: lipid hydroxides, isoprostanes, neuroprostanes, aldehydes (such as 

4-hydroxy-2-nonenal or 4-HNE), ketones, alkanes, lyso-phospholipids and aldehyde 

modified proteins (Gueraud et al., 2010; Porter, 1984). In this section, we will primarily 

review the peroxidation of phospholipids since phospholipids constitute 25% of brain’s dry 
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weight (Yusuf, 1992) and have high PUFA content. The majority of brain phospholipids 

contain PUFAs in their sn-2 position and some of them also contain PUFA in their sn-1 

position making them vulnerable to oxidation (Bayir et al., 2007b; Ji et al., 2012a; Sparvero 

et al., 2010).

2.1. Enzymatic lipid peroxidation

Phospholipid hydroperoxides are the primary product of phospholipid oxidation and are 

mainly generated by enzymatic pathways in the cells. Enzymes containing iron in either the 

heme or non-heme form can catalyze the peroxidation of phospholipids. Cyclooxygenases 

(prostaglandin-endoperoxide synthase or COX) are the major phospholipid-oxidizing 

enzymes and produce prostanoids such as prostaglandins, prostacyclin and thromboxane 

(Bergstroem et al., 1964; Dubois et al., 1998; Samuelsson, 1979). COX primarily acts on 

free arachidonic acid to produce various prostanoids; however there is evidence that it can 

also act on a variety of other PUFAs including linoleic acid, gamma-linolenic acid, 

eicosadienoic acid, eicosatrienoic acid, eicosapentanoic acid, adrenic acid and 

docosahexaenoic acid (Laneuville et al., 1995; Wada et al., 2007; Yuan et al., 2009). The 

enzymatic activity of COX was originally described to utilize free fatty acids as substrates, 

but recent studies report COX oxidizes fatty acids esterified to phospholipids (Hammond 

and O'Donnell, 2012). The mechanism underlying the production of such esterified 

prostaglandins is not clearly understood (Aldrovandi et al., 2013). There are three types of 

COX enzymes present in the mammalian system: COX1, COX2 and COX3. COX1 is 

constitutively expressed, whereas the others are expressed upon induction (Chandrasekharan 

et al., 2002; Crofford, 1997).

Another major class of lipid peroxidation enzymes are the LOX. While COX generates 

cyclic lipid peroxidation byproducts, LOX produce linear peroxidation products (Kuhn et 

al., 2015). Lipoxygenases form positional, stereo- and enantio-specific lipid peroxidation 

products. Lipoxygenases are responsible for the production of hydroperoxy, hydroxy, epoxy 

and ketoxy fatty acids, leukotrienes (Hammarstrom, 1983), hepoxilins (Nigam et al., 2007) 

and lipoxins (Serhan et al., 1984). Lipoxygenases can effectively oxidize both free and 

esterified fatty acid chains (Clark et al., 2011; Maskrey et al., 2007; O'Donnell and Murphy, 

2012). Based on the peroxide attachment position on the fatty acid chain, the mammalian 

lipoxygenases are classified as LOX3, LOX5, LOX8, LOX12 and LOX15. LOX3 mainly 

acts as an isomerase, while the others are primarily involved in peroxidation of 

phospholipids (Kuhn et al., 2015).

While COX and LOX play a primary role in phospholipid oxidation, other enzymes such as 

the major xenobiotic-metabolizing cytochrome p-450 family can also oxidize phospholipids 

(Serbinova et al., 1989). Cytochrome p-450 enzymes belong to the class of ω-hydroxylases 

(Kawashima et al., 1997), epoxygenases (Wang et al., 2004) and bisallylic hydroxylases 

(Brash et al., 1995) which generate terminal hydroxylated fatty acids, epoxy fatty acids and 

HETEs, respectively. The cytochrome p-450 family consists of 500 genes and 78 different 

membrane-bound, heme-containing, NADPH-dependent oxidases (Roman, 2002).

Aside from COX, LOX and cytochrome p-450, various iron-containing proteins can gain 

lipid peroxidase activity. One such protein that has gained attention in the field of lipid 
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peroxidation is the mitochondrial electron transport chain complex protein, cytochrome c. 

Upon pro-apoptotic stimulation, cytochrome c selectively oxidizes the anionic phospholipid 

cardiolipin in mitochondria and phosphatidylserine in the plasma membrane (Bayir et al., 

2007b; Ji et al., 2012b; Kagan et al., 2005a; Tyurina et al., 2006). Similar to cytochrome c, a 

number of other membrane proteins with heme catalytic centers have been implicated in 

lipid peroxidation: myeloperoxidase (Davidenkova et al., 1982; Goldman et al., 1999), 

cytoglobin (Reeder et al., 2011), myoglobin (Grisham, 1985) and hemoglobin (Szebeni et 

al., 1984).

2.2. Non-enzymatic lipid peroxidation

Non-enzymatic lipid peroxidation is primarily derived from free radical reactions. Hydroxyl 

radical formed from the interaction of transition metals with reactive oxygen species (ROS) 

is the major radical involved in this process (Kappus, 1987). ROS are derived from 

molecular oxygen, hydrogen peroxide (Fridovich and Porter, 1981) and organic peroxides 

(Girotti, 1985). Although molecular oxygen is thought to be a powerful oxidizing agent, it is 

not directly involved in free radical-mediated lipid peroxidation reactions. Acceptance of a 

single electron by molecular oxygen forms a superoxide anion radical (O2
•−) (Kellogg and 

Fridovich, 1975). Under normal conditions, superoxide is reduced by SOD to form hydrogen 

peroxide (Fridovich, 1989). Hydrogen peroxide in turn reacts with ferrous ion via Fenton 

reaction to form hydroxyl radical, hydroxyl anion and ferric ions (Repetto et al., 2010) 

(Figure 2). Superoxide can also be utilized for the reduction of ferric ion to ferrous ion as the 

first step of Haber–Weiss reaction (Thomas et al., 1985).

In addition to ferrous iron, other transition metal ions such as Cu2+, Co2+, Ni2+ can generate 

hydroxyl radicals through Fenton-like reaction, albeit with much slower reaction rates. Both 

iron and copper ions are also involved in the degradation of organic hydroperoxides into 

organic peroxyl radicals and hydroxyl radicals (Repetto et al., 2010). While the amount of 

free ionic iron or copper is extremely low under normal conditions due to effective handling 

of these transition metals within and outside of the cellular environment (MacKenzie et al., 

2008), there are conditions where transition metals are elevated as a result of disturbed 

handling. In disorders characterized by disturbed handling of transition metals, such as 

hemochromatosis (Papanikolaou and Pantopoulos, 2005) and neurodegenerative conditions 

(Lee et al., 2006), free transition metals may play a significant role in the generation of lipid 

hydroperoxides.

Another pathway that can generate hydroxyl radicals is the decomposition of peroxynitrous 

acid (Beckman et al., 1990). Reaction of superoxide anion radical with nitric oxide (NO) 

radical forms peroxynitrite anion (Robak and Gryglewski, 1993). The hydroxyl radicals 

produced by this pathway can act as the initiation step of the lipid peroxidation reaction 

(Beckman et al., 1990; Beckman et al., 1994; Pryor and Squadrito, 1995). Overall, the non-

enzymatic generation of lipid hyrodperoxides is difficult to target therapeutically due to the 

high reaction rates and non-specific nature of generated products.
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3. Detection of lipid peroxidation in clinical TBI

Oxidative stress and lipid peroxidation have been widely studied in experimental TBI 

(Bazan, 1976; Bazan et al., 2005; Chan, 1996; Hall, 1989; Hall, 1993; Hall et al., 1996). In 

this section we will briefly review detection of lipid peroxidation in clinical TBI. Lipid 

peroxidation end products such as malondialdehyde, 4-HNE and isoprostanes have been 

shown to increase in bio-fluids and brain tissue samples from TBI patients (Al Nimer et al., 

2013; Cristofori et al., 2001; Cristofori et al., 2005; Kasprzak et al., 2001; Lin et al., 2014b; 

Lorente et al., 2015; Niki, 2014). Despite criticism for lack of specificity and artefactual 

production during analytical processing, malondialdehyde (MDA) and thiobarbituric acid 

reactive substances (TBARS) remain the most commonly used markers of lipid peroxidation 

in clinical TBI, and their increase in cerebrospinal fluid (CSF) and serum have been 

associated with severity of injury and mortality (Cristofori et al., 2001; Cristofori et al., 

2005; Kasprzak et al., 2001; Lin et al., 2014b; Lorente et al., 2015). Thiobarbituric acid 

(TBA) is not specific for MDA but can react with other aldehydes and decomposition 

products of hydroperoxides (Yoshida et al., 2010). In a heated sample at low pH, interaction 

of MDA and TBA generates pink chromogen that can be measured by spectrophotometry or 

spectrofluorophotometry (Niki, 2014) . In order to improve the specificity for lipid oxidation 

measurements, High Performance Liquid Chromatography (HPLC) methods have been 

developed and applied to CSF (Cristofori et al., 2001; Cristofori et al., 2005). Another lipid 

oxidation marker, 4- HNE, is an aldehyde end product of lipid hydroperoxide break down. It 

forms covalent adducts with proteins and can be detected by immunohistochemistry (Niki, 

2014). A recent study reported that 4-HNE-conjugates are present in neurons in human TBI 

but were not detected in CSF (Al Nimer et al., 2013).

Isoprostanes are a series of prostaglandin-like compounds produced by free radical-mediated 

lipid peroxidation of arachidonic acid and can be quantified with Enzyme Linked 

Immunosorbent Assay (ELISA), Radio Immuno Assay (RIA), HPLC, Gas Chromatography-

Mass Spectrometry (GC-MS) or Liquid Chromatography-Mass Spectrometry LC-MS 

(Roberts and Morrow, 2002). Isoprostanes can be formed by cyclooxygenase-catalyzed 

oxidation of arachidonic acid, however the enzyme does not normally utilize arachidonyl 

phospholipids as substrates (Bayir et al., 2006). Increases in F2 isoprostane or 8-epi 

prostaglandin F2α generation have been observed in the CSF of adult TBI patients (Bayir et 

al., 2004; Wagner et al., 2004). Interestingly, F2-isoprostane levels were two-fold higher in 

males than females on day 1 post-injury and were reduced with therapeutic hypothermia in 

the male TBI population (Bayir et al., 2004). Studies in the infant and child TBI population 

also demonstrated elevation of CSF F2 isoprostane concurrent with other biomarkers of 

oxidative stress (Bayir et al., 2002). Assessment of end product of lipid hydroperoxides can 

give a general idea about the involvement of lipid peroxidation in TBI; however, it does not 

identify the origin and identity of oxidized phospholipids. The latter is important for 

identification of causal links between lipid peroxidation and mechanisms of secondary 

injury after TBI.

The primary product of lipid peroxidation is phospholipid hydroperoxides (Niki, 2014). 

Their short half-life makes them difficult to detect in biological samples. Nevertheless, 

recent developments in mass spectrometry-based oxidative lipidomics approaches make it 
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possible to detect phospholipid hydroperoxides in plasma and tissue samples (Ji et al., 

2012a); (Tyurin et al., 2010; Tyurina et al., 2015). Using this oxidative lipidomics approach, 

we have shown that lipid peroxidation is a nonrandom event after experimental and clinical 

TBI, and it is most prominent in the mitochondria early after injury as cytochrome c-

catalyzed cardiolipin oxidation (Bayir et al., 2007b; Ji et al., 2012a). Accumulation of 

cardiolipin oxidation products is essential for the release of pro-apoptotic factors such as 

cytochrome c into cytosol (Kagan et al., 2005b; Tyurin et al., 2010). Furthermore, 

cytochrome c-mediated oxidation of cardiolipin is involved in the synthesis of various lipid 

mediators through hydrolysis by calcium independent iPLA2γ (Tyurina et al., 2014). Overall 

there is accumulating evidence demonstrating that lipid peroxidation occurs after severe TBI 

in humans and correlates with injury severity and mortality. Thus the secondary injury 

cascades leading to lipid peroxidation, particularly enzyme-mediated lipid peroxidation, 

constitute viable therapeutic targets for neuroprotection.

4. Therapeutic strategies targeting lipid peroxidation

In this section we will briefly review therapies targeting specific enzymatic pathways of 

lipid peroxidation including mitochondria-targeted electron scavengers and general 

antioxidant strategies in TBI. For the therapeutic strategies with limited data in TBI, we will 

also present available information from other acute CNS insults such as stroke and spinal 

cord injury.

4.1. Phospholipase A2

Phospholipase A2 (PLA2) is an esterase that specifically cleaves the fatty acyl group 

attached to the sn-2 position in phospholipids. PLA2 enzymes are grouped into four classes 

based on their activity and subcellular localization, namely secretory PLA2 (sPLA2), 

cytoplasmic PLA2 (cPLA2), plasmalogen-selective PLA2 (Pls-PLA2) and calcium-

independent PLA2 (iPLA2) (Dennis, 1994). Even though PLA2 is not directly involved in 

the peroxidation of lipids, it is the first rate-limiting step in the production of multiple 

oxygenated lipid mediators (Farooqui and Horrocks, 2006).

PLA2 activity has been shown to increase after TBI (Shohami et al., 1987), stroke (Yagami 

et al., 2014) , and SCI (Horrocks et al., 1985). PLA2 generates lysophospholipid and free 

fatty acid, primarily arachidonic acid. Accordingly, the increase in arachidonic acid and its 

oxidized derivatives such as eicosanoids and leukotrienes observed after closed head injury 

were shown to be due to increased cPLA2 activity (Shohami et al., 1989). On the other hand 

increased activities of both cPLA2 and Pls-PLA2 contribute to increased free fatty acid 

content after cerebral ischemia (Bazan et al., 1993) (Farooqui and Horrocks, 1994). It was 

shown that cPLA2 elevation initiate the neural injury and Pls-PLA2 triggers secondary 

injury (Farooqui et al., 2003; Farooqui and Horrocks, 2004; Fujishima et al., 1999; 

Sapirstein and Bonventre, 2000). Activation of Pls-PLA2 as well as loss of plasmalogen-

containing phospholipids were also reported after compression and sheer stress spinal cord 

injury (Lukacova et al., 1996).

A number of experimental studies utilizing PLA2 inhibitors have shown benefit in acute 

CNS injury models. Examples include Cytidine-5'-diphosphocholine (CDP-choline) in TBI 
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and stroke (Hurtado et al., 2007; Jacotte-Simancas et al., 2015; Secades and Frontera, 1995), 

quinacrine in middle cerebral artery occlusion (MCAO) (Estevez and Phillis, 1997), and 

arachidonyl trifluoromethyl ketone in SCI (Huang et al., 2009). CDP-choline is also 

investigated for its neuroprotective potential in clinical TBI (Adibhatla, 2013; Zafonte et al., 

2009). Apart from inhibition of PLA2 activity, CDP-choline also stimulates synthesis of 

phosphatidylcholine (Grieb, 2014). Despite promising results in TBI and stroke models and 

in small clinical studies (Calatayud Maldonado et al., 1991; Clark et al., 1997; Clark et al., 

1999; Clark et al., 2001; Davalos et al., 2002; Tazaki et al., 1988) two recent large clinical 

trials showed no benefit in TBI and ischemic stroke (Zafonte et al., 2012; Davalos et al., 

2012). It is worth mentioning that glycosphingolipids, primarily gangliosides, strongly 

inhibit PLA2 activity ex vivo (Bianco et al., 1989), thus they have been tested for their 

neuroprotective potential in a number of CNS injury models (Sabel et al., 1984) (Toffano et 

al., 1984) as well as in patients with spinal cord injury. Although the results of the initial 

single center randomized control trial (RCT) with GM1 ganglioside were protective (Geisler 

et al., 1991) subsequent multicenter RCT failed to show a significant difference between 

GM1 treatment and placebo (Geisler et al., 2001). Nevertheless, there was a trend favoring 

treatment in the subgroup analysis of those with ASIA Impairment Scale-B (AIS B) 

classification.

4.2. Cyclooxygenase

Cyclooxygenase or prostaglandin-endoperoxide synthase catalyzes the production of 

prostaglandin H2 (PGH2), which is a precursor of many prostanoids and thromboxanes 

formed from arachidonic acid (DeWitt, 1991). Among the COX enzymes, COX1 is widely 

expressed in neurons and microglia, whereas COX2 is expressed constitutively in 

hippocampal and cortical neurons (Yermakova and O'Banion, 2000). A number of studies 

reported increased COX2 activity after TBI (Hickey et al., 2007; Morrison et al., 2000; 

Strauss et al., 2000). Higher levels of COX2 expression are associated with functional deficit 

and worse outcome after TBI.

Table 1 summarizes experimental studies evaluating COX inhibitors in TBI models. Overall 

the studies in TBI models suggest that selective inhibitors of COX-2 are not effective in 

improving outcome. Nonselective COX inhibitors on the other hand might be beneficial 

depending on the model and timing of the therapy after TBI. But the antiplatelet effects of 

nonselective COX inhibitors might overweigh the benefit that can be obtained from them in 

TBI. Notably long-term use of selective COX-2 inhibitors has been associated with an 

increase in ischemic cerebrovascular events (Bresalier et al., 2005). In contrast, inhibition of 

COX1 by aspirin has been associated with a reduction in adverse cardiovascular events 

(Berger et al., 2006; Bhatt et al., 2006). Evidence suggests that beneficial effects of aspirin, 

particularly low dose aspirin (72–162 mg/day), could be in part related to acetylation of 

COX2. COX2 acetylation triggers synthesis of novel specialized pro-resolving lipid 

mediators (SPMs) with anti-inflammatory actions such as 15-epi-lipoxin A4 (Serhan et al., 

2000). In agreement with this concept, a recent study in fluid percussion injury model 

showed improved motor and cognitive function when rats were pretreated with aspirin-

triggered SMP, 17(R)-Resolvin D1 (Harrison et al., 2015). Although aspirin may have 

beneficial effects by preventing secondary injury from ischemia in subarachnoid hemorrhage 
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(Dorhout Mees et al., 2003), pre-injury intake of aspirin was shown to increase the risk of 

lesion progression and unfavorable outcome after TBI in a recent large multicenter study 

(Fabbri et al., 2013).

4.3. Lipoxygenases

Lipoxygenases catalyze the di-oxygenation of PUFA containing a 1, 4 diene structure. 

Lipoxygenases are involved in the production of octanoids, eicosanoids and docosanoids 

(Brash, 1999; Kuhn et al., 2015). Among several LOX enzymes, 5 LOX protein levels were 

reported to increase in glial cells and neutrophils after TBI (Zhang et. al, 2006). Following 

fluid percussion injury, plasma levels of 12-HETEand PGE-2 were found to increase during 

the first hour after injury with peak levels at 5 minutes (Ellis et al., 1989). Among these 

products 12-HETE is produced from Arachidonic acid by 12-LOX and PGE-2 by COX2. 

Corroborating the findings in experimental TBI, 12-HETE and 5-HETE levels in the CSF of 

patients with head injury were found to increase 10–17 fold vs. control (Farias et al., 2011). 

The source of increased 12-HETE and 5-HETE production after TBI is likely glia, 

neutrophils and to a lesser extent neurons (Hariri et al., 1989; Zhang et al., 2006). Among 

several LOX enzymes 12/15 LOX protein levels were reported to increase primarily in 

neurons in the peri-infarct area after transient MCAO in mice (van Leyen et al., 2006). 

Furthermore baicalein, a nonspecific 12/15 LOX inhibitor, ameliorated brain edema and 

improved neurological deficits after transient focal ischemia (Cui et al., 2010) (Jin et al., 

2008; Moskowitz et al., 1984). Leukotriene synthesis indicative of 5 LOX activity was also 

reported during ischemia and reperfusion and was thought to play an important role in the 

development of cerebral edema (Ban et al., 1989; Moskowitz et al., 1984). The lipid 

mediators generated by LOX activity have strong effects on neutrophil recruitment and 

vascular permeability, thus LOX are thought be important therapeutic targets. Table 2 

summarizes the studies evaluating therapeutic potential of LOX inhibition in TBI and other 

CNS injuries. Recent studies utilized more specific inhibitors of LOX, whereas earlier 

studies used less selective inhibitors with activity against both COX and LOX.

Interestingly several lipid mediators generated by LOX from arachidonic, eicosapentaenoic 

and docosahexaenoic acids called SPMs (Figure 3) play an important role in the resolution 

of inflammation primarily by attenuating neutrophil infiltration and enhancing phagocyte 

efferocytosis (Dennis and Norris, 2015). Among the SPMs generated as depicted in the 

figure 3., the arachidonic acid derivative, lipoxin A4, and its derivatives, ATLA4 (aspirin-

triggered lipoxin A4) and BMA-11, were shown to exert neuroprotective effects in stroke 

models (Hawkins et al., 2014; Wu et al., 2010; Wu et al., 2012; Ye et al., 2010). 

Intracerebroventricular administration of lipoxin A4 10 minutes after weight drop model of 

experimental TBI was reported to decrease BBB breakdown and brain edema and attenuate 

brain levels of TNFα, IL1β and IL6 mRNA (Luo et al., 2013). Similarly, lipid mediators 

derived from ω3-fatty acids docosahexaenoic acid and eicosapentanoic acid, namely 

resolvins and neuroprotectins, were also shown to exert beneficial effects in cerebral 

ischemia reperfusion injury (Bazan, 2005; Marcheselli et al., 2003; Serhan et al., 2004). 

Figure 4. Summarizes all the LOX and COX dependent mediators and its role in 

inflammation. Taken together, the beneficial vs. detrimental effects of LOX may depend on 
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the spatial (including subcellular localization) and temporal profiles of the lipid mediators 

they generate after injury.

4.4. Mitochondrial targeted lipid peroxidation inhibitors

The classic pathway of lipid mediator synthesis includes (Figures 3 and 4) hydrolysis of 

esterified PUFA by one of the Ca2+-dependent PLA2, followed by oxygenation of the 

released free PUFA by COX, LOX and P450 enzymes. Recently an alternative Ca2+-

independent pathway was described whereby oxygenation of esterified PUFA within the 

phospholipid molecule is followed by Ca2+-independent PLA2-mediated hydrolysis to yield 

lipid mediators (Figure 5) (Tyurina et al., 2014). It has been shown that peroxidized 

cardiolipin can be hydrolyzed by mitochondrial Ca2+-independent iPLA2γ to release 

linoleic- and arachidonic acid-derived lipid mediators (HODE and HETE) after controlled 

cortical impact (CCI) and global cerebral ischemia (Ji et al., 2015; Tyurina et al., 2014). 

Cardiolipin oxidation is catalyzed by cytochrome c, an electron transport protein in 

mitochondria (Kagan et al., 2005b). Normally all six of the coordination positions in the 

heme iron of cytochrome c are occupied, thus preventing its interactions with small ligands 

such as hydrogen peroxide (Stellwagen, 1968). Upon interaction with cardiolipin, 

cytochrome c loses its tertiary structure resulting in loss of ability to participate in electron 

transfer and gain peroxidase function (Kapralov et al., 2007); (Basova et al., 2007). The 

resultant cytochrome c/cardiolipin complex leads to cardiolipin oxidation (Kagan et al., 

2005b). It has been shown that in addition to being a source for lipid mediator synthesis, 

cardiolipin peroxidation is essential for the release of pro-apoptotic factors, including 

cytochrome c, from mitochondria into the cytosol (Ji et al., 2012a; Kagan et al., 2005b). 

Subsequently, the released cytochrome c participates in apoptosome formation and catalysis 

of phosphatidylserine oxidation ultimately leading to externalization of phosphatidylserine, 

a recognition signal for phagocytosis of apoptotic cells by microglia (Fadeel et al., 2010).

Several different mitochondria-targeted inhibitors of the cardiolipin oxidation pathway have 

been developed based on: i) inhibition of production of hydrogen peroxide, which is utilized 

as an oxidizing equivalent in the peroxidase reaction; ii) inhibition of the peroxidase activity 

of cytochrome c in the complex (Kagan et al., 2009b). Among the first category, 

mitochondria-targeted electron acceptor XJB-5-131 was shown to concentrate >500-fold in 

neuronal mitochondria. Mitochondrial accumulation of XJB-5-131 prevents formation of 

superoxide and thus hydrogen peroxide, resulting in improved neurocognitive outcome after 

TBI and asphyxial cardiac arrest in PND17 rats (Ji et al., 2012a; Ji et al., 2015). Among the 

second category, triphenylphosphonium conjugated imidazole oleic acid (TPP-IOA) and 

stearic acid (TPP-ISA) block peroxidase activity of cytochrome c/cardiolipin complex by 

specifically binding to its heme-iron. Both compounds inhibit pro-apoptotic oxidative 

events, suppress cytochrome c release and prevent cell death (Atkinson et al., 2011). 

Another target in the cardiolipin oxidation pathway is Ca2+-independent iPLA2γ. Inhibition 

of Ca2+-independent iPLA2γ by its selective inhibitor R-BEL (R)-(E)-6-

(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one prevents generation of 

lipid mediators from oxidized cardiolipin in the intestine (Tyurina et al., 2014). There has 

not been a study evaluating the neuroprotective potential of R-BEL administration after TBI. 

It is possible that the lipid mediators generated upon cardiolipin oxidation during apoptosis, 
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such as 9-HODE and 13-HODE, are modulating the inflammatory process after injury. It is 

possible that timing of therapy could be important after injury, as constitutive genetic 

ablation of Ca2+-independent iPLA2γ was shown to alter hippocampal cardiolipin content 

and molecular species and lead to mitochondrial degeneration, autophagy and cognitive 

dysfunction (Mancuso et al., 2009).

4.5. General inhibitors of lipid peroxidation

Apart from specific inhibitors of enzymatic lipid oxidation, a number of therapies can 

attenuate lipid peroxidation and have shown neuroprotective potential in experimental 

studies after TBI. These therapies generally fall under the following categories; a) general, 

nonspecific antioxidants that act as a free radical scavengers in the biological system 

including endogenous antioxidants and b) antioxidant enzymes. In this section we will 

briefly discuss therapies in these two categories.

4.5.1. Vitamin E—Vitamin E family is composed of 8 compounds (4 tocopherols (d-α, d-

β, d-γ, d-δ) and 4 tocotrienols (d-α, d-β, d-γ, d-δ)) that exhibit the biological activity of 

naturally occurring vitamin E, d-α-tocopherol. Tocopherols are lipid-soluble and scavenge 

lipid peroxyl radicals, inhibiting the chain reaction of lipid peroxidation (Figure 1). The 

resultant tocopherol radical is reduced back to tocopherol by ascorbic acid and lipoic acid 

via the vitamin E recycling process (Chan, 1993). Vitamin E levels have been shown to 

decrease concomitant with enhanced accumulation of MDA in jugular venous blood samples 

of patients with TBI (Paolin et al., 2002). Interestingly, there was no change in the peripheral 

venous blood levels of vitamin E and MDA in these patients. Experimental studies have 

shown beneficial effects of Vitamin E treatment in TBI. Dietary vitamin E supplementation 

attenuated elevated brain free fatty acid levels induced by sudden decompression-mediated 

vasogenic cerebral edema (Yoshida et al., 1985) and improved cerebral blood flow in the 

cortex after epidural compression injury (Busto et al., 1984). Furthermore, improvement in 

functional outcome has been reported with Vitamin E post-treatment after fluid percussion 

injury (Clifton et al., 1989) and with Vitamin E pre-treatment after repetitive mild TBI 

(Conte et al., 2004). Accumulating evidence in experimental stroke suggests that the 

neuroprotective potential of tocotrienols may be greater than tocopherols (Patel et al., 2011), 

but no studies in TBI have evaluated the effect of tocotrienols.

The only published RCT of Vitamin E (at a dose of 400 IU/d IM for 7 days) in severe TBI 

showed decreased hospital mortality and improved 6 month Glasgow Outcome Scale Score 

(GOS) vs. placebo in adults (Razmkon et al., 2011). Due to the small size of this trial (n = 

23–27 patients/group), known antiplatelet effects of Vitamin E, and associated risk of 

hemorrhagic stroke with Vitamin E supplementation (Schurks et al., 2010), a multicenter 

RCT is necessary before Vitamin E can be recommended for routine use in severe TBI .

4.5.2. Vitamin C—Ascorbate or Vitamin C acts as a primary defense against aqueous 

oxygen, nitrogen and sulfhydryl radicals in the blood. Vitamin C is very effective in trapping 

free radicals, preventing formation of lipid hydroperoxyides and reducing membrane 

damage (Frei et al., 1989; Frei, 1991). There is a high concentration of ascorbate in both 

gray and white matter of the brain Additionally, the choroid plexus has a specific active 
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transport system that increases the ascorbate concentrations in CSF to a level approximately 

10-times higher than in the plasma (Spector and Eells, 1984). Ascorbate level in the brain is 

decreased after traumatic brain injury (Awasthi et al., 1997; Tyurin et al., 2000) , however 

the extracellular ascorbate increases after ischemia (Hillered et al., 1988) and trauma 

(Hillered et al., 1990).

A 2–3-fold decrease in CSF ascorbate levels was reported in clinical TBI in infants, children 

and adults (Bayir et al., 2002) (Cristofori et al., 2001). Similarly, plasma ascorbate levels are 

decreased after stroke (Yokoyama et al., 2000), intracranial hemorrhage and head trauma 

(Polidori et al., 2001). Razmkon and colleagues (Razmkon et al., 2011) compared treatment 

with low-dose (500 mg/d IV for 7 days) and high-dose Vitamin C (10 g IV on the 1st and 4th 

days followed by 4 g/d IV for 3 days) with placebo after severe TBI in adults. While high-

dose Vitamin C decreased the diameter of perilesional hypodense region on head CT 

(defined as edema), low-dose Vitamin C increased the diameter of this region compared with 

placebo. There was no effect of either dose of Vitamin C on mortality or 6 month GOS 

scores. Unfortunately the effect of Vitamin C or E supplementation on plasma, CSF or 

interstitial fluid ascorbate and Vitamin E levels was not evaluated in this trial. The results of 

this placebo-controlled randomized single center trial are interesting and further studies 

should evaluate the safety and efficacy of high-dose Vitamin C in severe TBI patients.

4.5.3. Glutathione (GSH)—GSH is the most abundant intracellular non-protein thiol. 

Along with Vitamin E and C, GSH completes the major elements of endogenous antioxidant 

reserve. GSH is a co-substrate in the reduction of hydrogen peroxide and lipid 

hydroperoxides by glutathione peroxidase (GPx). When it is involved in direct scavenging of 

free radicals, the antioxidant function of GSH is largely achieved as thiyl radicals are 

formed. Decrease in GSH is implicated in TBI (Xiong et al., 1999), SCI (Azbill et al., 1997) 

and cerebral infarction (Frithz et al., 1982). Brain tissue GSH levels decrease at 6–24 h after 

controlled cortical impact (CCI) with restoration of normal levels at 72 h in adult rats 

(Tyurin et al., 2000). In contrast, GSH levels increase in CSF on day 1 after injury with 

normalization by day 7 in infants and children with severe TBI compared to controls (Bayir 

et al., 2002).

GSH is synthesized from glutamate, glycine, and cysteine. N-acetylcysteine (NAC) is a 

cysteine donor, and when administered within 1 h of CCI in rats, it was shown to restore 

brain and mitochondrial GSH levels and improve mitochondrial function (Xiong et al, 

1999). NAC has limited permeability through the intact BBB. A novel cell-permeable amide 

form of NAC has better bioavailability and was shown to decrease lesion volume and 

improve cognitive function compared to NAC or vehicle treatment when given 30 minutes 

after CCI in rats (Pandya et al., 2014). Another GSH-replenishing compound, gamma-

glutamylcysteinyl ethyl ester (GCEE) provides glutamate and cysteine and bypasses the rate-

limiting step in the GSH synthesis. Treatment with GCEE 10 minutes after CCI in mice 

reduced autophagy and led to partial improvement in behavioral and histologic outcome 

compared to vehicle (Lai et al., 2008). NAC has been evaluated in a double-blind, placebo-

controlled randomized study after blast-induced mild TBI. The results of this trial showed 

that supplementation of standard therapy with oral NAC decreased number of symptoms 

such as dizziness, hearing loss, headache, memory loss, sleep disturbances, and 
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neurocognitive dysfunction ,assessed during the first 7 days after injury in the combat setting 

(Hoffer et al., 2013). To date, there has not been a clinical study evaluating the efficacy of 

NAC in severe TBI.

4.5.4. Other antioxidants—A number of other antioxidants have also been evaluated in 

experimental studies for their neuroprotective role in TBI, including curcumin(Wu et al., 

2011; Zhu et al., 2014), epigallocatechin gallate (Itoh et al., 2011), 2-methylaminochromans 

(Hall, 1995), resveratrol (Lin et al., 2014a), melatonin (Ding et al., 2015) and alpha lipoic 

acid (Ozbal et al., 2015) . Although the multicenter trial with tirilizad showed no overall 

benefit (Marshall et al., 1998), subgroup analysis suggested that it may be effective in 

reducing mortality in male patients suffering from severe TBI with accompanying traumatic 

subarachnoid hemorrhage. Progesterone, a pleiotropic agent, was shown to be 

neuroprotective in part through attenuation of lipid peroxidation in experimental TBI 

(Djebaili et al., 2005; Roof et al., 1997). Despite initial promising results in single center 

studies, multicenter clinical trials of progesterone failed to show benefit relative to placebo 

in severe, moderate-to-severe, or moderate acute TBI (Skolnick et al., 2014; Wright et al., 

2014).

4.5.5. Superoxide Dismutase (SOD)—Similar to the biological antioxidant reserve, 

some of the endogenous enzymes also play an important role in removing ROS and the 

associated lipid peroxidation and toxic effects. One such enzyme is SOD, which converts 

superoxide into hydrogen peroxide. Although small fluctuations in the steady state 

concentrations of superoxide play an important role in learning and memory, its enhanced 

production after injury is deleterious (Knapp and Klann, 2002; Thiels et al., 2000). 

Numerous sources including the mitochondrial electron transport chain and NADPH oxidase 

generate excess superoxide after injury (Brennan et al., 2009). Excess superoxide production 

combined with the decreased SOD activity (both cytosolic CuZnSOD and mitochondrial 

MnSOD (Bayir et al., 2007a; Wang et al., 2015) results in elevated superoxide levels 

following TBI.

The reaction rate for formation of peroxynitrite from superoxide and nitric oxide is 

comparable to the reaction rate of SOD (Gray and Carmichael, 1992; Kissner et al., 2003), 

thus it is important to maintain high activity of SOD. In agreement with this, mice 

expressing 50% of the normal complement of MnSOD display worse outcome after CCI 

(Gray and Carmichael, 1992; Kissner et al., 2003). Similarly, treatment with SOD or 

overexpression of CuZnSOD was associated with beneficial effects including decreased 

brain edema and improved motor function after diffuse TBI (Kontos and Wei, 1986; Mikawa 

et al., 1996). However the beneficial effects of increasing SOD activity may depend on the 

SOD variant, injury type and age. Beni et al., has shown that CuZnSOD knock out mice but 

not CuZnSOD transgenics showed better neurological scores than the wild type mice after 

contusion head injury (Beni et al., 2006). Similarly, immature CuZnSOD transgenic mice 

sustain worse injury than their wild type littermates after hypoxia-ischemia (Ditelberg et al., 

1996). It is likely that increasing SOD activity without a concomitant increase in the 

activities of catalase or GPx will result in enhanced hydrogen peroxide accumulation, which 

can activate apoptotic death pathways (Kagan et al., 2005a) as well as NFκB-mediated 
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inflammation (Beni et al., 2006). Administration of SOD-mimics has been evaluated in 

clinical TBI. A large clinical trial with polyethylene glycol (PEG)-conjugated SOD showed 

no improvement in survival or neurological outcome after moderate to severe TBI (Young et 

al., 1996), although an earlier small phase II study reported a positive trend (Muizelaar, 

1993).

4.5.6. Catalase—Catalase converts hydrogen peroxide into water and molecular oxygen. It 

has a low affinity for hydrogen peroxide, thus it is only effective in eliminating hydrogen 

peroxide at high concentrations. Catalase activity was shown to increase after TBI (Goss et 

al., 1997). The increase in catalase activity is region specific after controlled cortical impact, 

with hippocampus having a higher increase vs. cortex (DeKosky et al., 2004; Miller et al., 

2014). Pre-treatment with polyethylene glycol SOD/catalase restored opioid-induced 

vasodilation and cyclic GMP production after fluid percussion injury, suggesting that both 

superoxide and hydrogen peroxide might have a causal role in decreased cerebral blood flow 

observed after injury (Thorogood and Armstead, 1996). Hypothermia treatment decreased 

catalase activity in the hippocampus after controlled cortical impact (DeKosky et al., 2004; 

Miller et al., 2014). In patients, this is likely secondary to attenuated endogenous antioxidant 

consumption and lipid peroxidation with hypothermia (Bayir et al., 2009).

4.5.7. Glutathione peroxidase (GPx)—GPx are selenoenzymes involved in the 

conversion of peroxides into hydroxides. There are 8 different classes of GPx enzymes that 

can metabolize hydrogen peroxide or lipid hydroperoxides. Among these, Gpx4 is the only 

GPx that accepts phospholipid hyroperoxides in membranes as substrate using GSH as 

hydrogen donor (Roveri et al., 1994). The critical importance of this enzyme is evident from 

the studies demonstrating embryonic lethality of GPx4 deficient mice (Yant et al., 2003). 

Gpx4 ablation in adult mice reportedly results in delayed death accompanied by neuronal 

loss in hippocampus and reactive gliosis (A Khan and JT Gowder, 2014). GPx4 plays an 

important role in apoptotic and ferroptotic cell death pathways (Friedmann Angeli et al., 

2014; Yang et al., 2014). Conditions of cysteine and glutathione depletion favor ferroptosis 

and lead to oxidation of PUFAs in membrane phospholipids (Friedmann Angeli et al., 2014; 

Yang et al., 2014). GPx4 is expressed in all neuronal layers of the immature brain (Savaskan 

et al., 2007). In the adult brain, GPx4 expression becomes more restricted to neurons of the 

cerebral cortex, hippocampus and cerebellum, whereas glial cells are devoid of GPx4 

(Savaskan et al., 2007). Following bilateral entorhinal cortex lesion, GPx4 expression is 

upregulated in reactive astrocytes of lesioned areas but not in neurons. The GPx mimic, 

Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], is reported to reduce NO levels and 

modulate the TL4-mediated p38-MAPK pathway after weight drop injury in rats (Wei et al., 

2014).

5. Concluding remarks and Future Directions

Lipids are indispensable for normal structure of organelles and cells. Furthermore, lipid 

mediators derived from oxidized phospholipids and free fatty acids play important signaling 

functions to maintain homeostasis (Balasubramanian et al., 2015; Chu et al., 2013; Fadeel et 

al., 2010). Increased ROS generation, enhanced activity of lipid peroxidation enzymes, and 
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decreases in reductants and activity of antioxidant enzymes result in uncontrolled oxidation 

of phospholipids that contributes to secondary injury after TBI.

Lipid peroxidation inhibitors such as free radical scavengers have been used numerous times 

in TBI, but clinical trials of these agents in TBI and other free radical diseases have largely 

failed. The reasons for to the negative results are multiple and include: 1) limited CNS 

penetration of the drugs tested; 2) complex actions of mediators formed from peroxidized 

lipids depending on the time and the extracellular milieu after injury; and 3) inadequate 

understanding and identification of the sources and mechanisms of redox imbalance after 

TBI. Unless the true sources and mechanisms of TBI redox imbalance are identified, the use 

of sacrificial antioxidants and free radical scavengers will fail.

Recent improvements in LC-MS based lipidomics and oxidative lipidomics approaches offer 

remarkable opportunities for identification, characterization and quantification of lipid 

oxidation products and their source. This information is critical for targeted therapy 

development. Future experimental studies evaluating therapies targeting lipid peroxidation 

should consider assessment of therapeutic target specificity and CNS penetration of the 

compounds being tested in diverse experimental models of TBI. In addition, the effect of the 

targeted therapies on lipid peroxidation should be evaluated using contemporary methods in 

experimental and clinical TBI. Combined these approaches might improve the likelihood of 

successful translation of promising therapies targeting lipid peroxidation to clinical TBI.
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Highlights

• Description of attempts to use non-specific antioxidants as neuroprotectors

• Enzymatic lipid peroxidation in specific death pathways - particularly apoptosis

• Generation of lipid mediators from peroxidized phospholipids by 

phospholipases
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Figure 1. Chain reaction of lipid peroxidation
Chain reaction of lipid peroxidation involves a three step pathway: 1) initiation - removal of 

a hydrogen from PUFAs to form a carbon-centered lipid radical; 2) propagation - attachment 

of a peroxy group to the lipid radical to form a lipid peroxyl radical. This lipid peroxyl 

radical initiates a new cycle by extracting a hydrogen, thereby perpetuating the peroxidation 

reaction; and 3) termination - disappearance of free radical by forming a non-radical such as 

hydroxide.
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Figure 2. 
Reactions involved in the production of free radicals.
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Figure 3. Biosynthetic pathways of specialized pro-resolving lipid mediators (SPMs)
Free fatty acids produced after the hydrolysis of phospholipids such as phosphatidylcholine 

(PC), phosphatidylserine (PS), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) 

are modified by either LOX or acetylated COX to produce the hydroperoxy fatty acids. 

Hydroperoxy arachidonic acids are directly converted into lipoxin and epi lipoxin by the 

LOX enzyme, and Hydroperoxy EPA is converted into Resolvin E1, and E2. In the case of 

hydroperoxy DHA, further conversion to epoxy products and consequently into maresins 

and resolvin D1, D2 occurs.

Anthonymuthu et al. Page 33

Brain Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Lipid mediators and their roles in inflammation
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Figure 5. Lipid peroxidation mechanisms after TBI and possible therapeutic targets
Lipid peroxidation after TBI follows two main pathways: 1) Calcium-dependent pathway in 

which PUFAs are initially hydrolyzed from phospholipids by PLA2 and subsequently 

oxidized by various enzymes; 2) Calcium-independent mitochondrial pathway in which 

mitochondria specific phospholipid cardiolipin is oxidized by cytochrome c/H2O2 and 

further hydrolyzed by calcium independent PLA2 to form lipid peroxides. Inhibition or 

reduction of marked components or enhanced activity of marked components in lipid 

peroxidation pathways are possible therapeutic options after TBI.
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