Skip to main content
. 2016 May 18;7:673. doi: 10.3389/fmicb.2016.00673

Table 1.

Common environmental processes catalyzed by microbial guilds.

Catalytic microbial guild Catalyzed environmental process Service/Application Guild's model species References
Aerobic heterotrophic bacteria Organic carbon degradation (breakdown of suspended carbon to soluble carbon) Organic matter removal from wastewater Bacteroidetes α- and β- proteobacteria, Acidovorax spp., Fermicutes spp. Wagner and Loy, 2002; Wagner et al., 2002; Das et al., 2011
Organic carbon oxidation (soluble carbon to CO2) Organic matter removal from wastewater Bacteroidetes α- and β- proteobacteria, Acidovorax spp., Fermicutes spp. Wagner and Loy, 2002; Wagner et al., 2002; Das et al., 2011
Proteolysis (organic nitrogen to NH4+) Global nitrogen cycle, organic matter removal from wastewater Bacteroidetes α- and β- proteobacteria, Acidovorax spp., Fermicutes spp. Wagner and Loy, 2002; Wagner et al., 2002; Das et al., 2011; Schreiber et al., 2012
Heterotrophic denitrifiers Denitrification (NO3-/NO2- reduction to N2) Global nitrogen cycle, biological nitrogen removal from wastewater Paracoccus denitrifican, Pseudomonas aeruginosa, Acidovorax spp., α-, and β- Proteobacteria Ferguson, 1998; Brown, 2010; Kraft et al., 2011; Schreiber et al., 2012
Autotrophic nitrifiers, including both, ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) Nitritation (NH4+ oxidation to NO2-) Global nitrogen cycle, nitrogen removal from wastewater Nitrosomonas europaea, Nitrosomonas eutropha, Nitrosospira spp. Hooper, 1991; Arp et al., 2002; Chain et al., 2003; Ferguson et al., 2007; Perez-Garcia et al., 2014b
Nitratation (NO2- oxidation to NO3-) Global nitrogen cycle, nitrogen removal from wastewater Nitrospira defluvii, Nitrobacter spp. Freitag and Bock, 1990; Ferguson et al., 2007; Lücker et al., 2010; Schreiber et al., 2012
Nitrifier denitrification and hydroxylamine incomplete oxidation (production of NO and N2O) Production and emission green house and ozone depleting gases Nitrosomonas europaea, Nitrosomonas eutropha Shaw et al., 2006; Yu et al., 2010; Chandran et al., 2011; Schreiber et al., 2012
Anaerobic ammonium oxidizers (ANAMMOX) Ammonium oxidation to di-nitrogen gas (NH4+ oxidation to N2) Global nitrogen cycle, nitrogen removal from wastewater Kuenenia stuttgartiensis, Candidatus Jettenia asiatica, Brocardia anammoxidans Kuypers et al., 2003; Kuenen, 2008; Hu et al., 2012
Glycogen accumulating organisms (GAOs) Anaerobic glycogen formation (carbon uptake and storage compound formation without phosphorus release) Phosphorus removal from wastewater Micropruina glycogenica, Tetrasphaera spp., Amaricoccus spp. Seviour et al., 2003; de-Bashan and Bashan, 2004; Martín et al., 2006; Wilmes et al., 2008
Phosphate accumulating organisms (PAOs) Anaerobic phosphorus release (hydrolysis of intracellular polyphosphates for carbon uptake and storage compound formation) Phosphorus removal from wastewater Acinetobacter spp., Microlunatus phosphovorus, Clostridium spp., Candidatus Accumulibacter phosphatis Seviour et al., 2003; de-Bashan and Bashan, 2004; Martín et al., 2006; Wilmes et al., 2008
Aerobic phosphorus uptake (storage compound degradation accompanied by soluble phosphorus uptake) Phosphorus removal from wastewater Acinetobacter spp., Microlunatus phosphovorus, Candidatus Accumulibacter phosphatis Seviour et al., 2003; de-Bashan and Bashan, 2004; Martín et al., 2006; Wilmes et al., 2008
Polyhydroxyalkanoates (PHA) accumulating bacteria Anaerobic formation of carbon storage compounds in form of polymers of the PHA family Polyhydroxybutyrate (PHB) base bioplastic production Pseudomonas oleovorans, Alcaligenes eutrophus, Azotobacter vinelandii, Alcaligenes latus Batstone et al., 2003; Patnaik, 2005; Dias et al., 2008
Hydrogen producing acetogenic bacteria/archea Fermentation of higher organic acids to produce acetate, H2, and CO2 Hydrogen and methane production Clostridium spp., Syntrophomonadaceae spp., Bacteriodetes Hatamoto et al., 2007; Rittmann et al., 2008; Khanal, 2009a,b
Autotrophic homoacetogenic bacteria Syngas fermentation (use of hydrogen carbon monoxide and dioxide as carbon and energy source) Ethanol, butanol, methane and small chain fatty acid production Clostridium ljungdahlii Khanal, 2009b; Abubackar et al., 2011
Heterotrophic homoacetogenic bacteria Fermentation of higher organic acids and alcohols to produce acetate and CO2 Methane production Streptococcaceae and Enterobacteriaceae families, Clostridium aceticum, Acetobacterium woodii, and Bacteroidetes spp., Clostridium spp., Lactobacillus spp. Hatamoto et al., 2007; Rittmann et al., 2008; Khanal, 2009a,b
Anaerobic methanogenic archea Acetotrophic conversion of acetate to methane Methane production Methanosarcina spp. and Methanosaeta spp. (Hatamoto et al., 2007; Rittmann et al., 2008; Khanal, 2009a,b)
Hydrogenotrophic conversion of carbon dioxide to methane Methane production Methanosarcina spp Hatamoto et al., 2007; Rittmann et al., 2008; Khanal, 2009a,b
Photo-autotrophs (Microalgae/Cyanobacteria) Nutrient assimilation (soluble N & P assimilation to organic molecules) Eutrophication of water bodies, nutrient removal from wastewater Clamydomonas reinhardtii, Chlorella vulgaris, Spirulina platensi, Microcystis aeruginosa, Anabaena spp., Oscilatoria spp., Nostoc spp. de-Bashan and Bashan, 2004, 2010; Perez-Garcia et al., 2010
Autotrophic CO2 fixation (CO2 fixation to biomass) Global carbon cycle, biomass formation, CO2 sequestration Clamydomonas reinhardtii, Chlorella spp., Spirulina platensi, Microcystis aeruginosa, Scenedesmus obliquus, Nanochloropsis spp. Das et al., 2011; Cheirsilp and Torpee, 2012; Girard et al., 2014; Wu et al., 2015
Autotrophic and heterotrophic lipid, starch and pigments production Biofuels and valuable chemical production Chlorella vulgaris, Chlorella prototecoides de-Bashan et al., 2002; Perez-Garcia et al., 2011; Choix et al., 2012a,b; Perez-Garcia and Bashan, 2015
Production of nitrous and nitrous oxides Production and emission green house and ozone depleting gases Chlorella vulgaris Guieysse et al., 2013; Alcántara et al., 2015
Synthesis of exo-polymers Bio-absorption of organic compounds and pollutants Clamydomonas reinhardtii, Chlorella vulgaris, Spirulina platensis. Markou and Georgakakis, 2011; Subashchandrabose et al., 2013
Cyanobacteria Production and realize of secondary metabolites and toxic organic compounds (microcystin, nodularin, cylindrospermopsin, among others) Self-population an grazer organism control Microcystis aeruginosa, Anabaena spp., Oscilatoria spp., Nostoc spp. Welker and Von Döhren, 2006; Yadav et al., 2009; Kaplan et al., 2012; Dittmann et al., 2013; Neilan et al., 2013
Dissimilatory metal-reducing bacteria. Anaerobic Fe3+ reduction to Fe2+ (reduction of insoluble iron to soluble form) Global iron cycle, bioremediation of metallic pollutants in soil and groundwater Geobacter metallireducens, Geobacter sulfurreducens, Albidoferax ferrireducens, Shewanella putrefaciens Lovley and Coates, 1997; Malik, 2004; Gadd, 2010; Melton et al., 2014
Anaerobic Mn4+ reduction to Mn2+ (reduction of insoluble iron to soluble form) Global iron cycle, bioremediation of metallic pollutants in soil and groundwater Geobacter metallireducens, Geobacter sulfurreducens, Albidoferax ferrireducens, Shewanella putrefaciens Lovley and Coates, 1997; Malik, 2004; Gadd, 2010; Melton et al., 2014
Anaerobic As5+ reduction to As3+ (reduction of insoluble arsenic to soluble) Bioremediation of metallic pollutants in soil Geospirillum arsenophilus, Geospirillum barnseii, Chrysiogenes arsenatis, Sulfurospirillum strain NP4 Lovley and Coates, 1997; Malik, 2004; Lear et al., 2007; Gadd, 2010
Aerobic Hg2+ reduction to Hg0 (reduction of soluble mercury to volatile form) Bioremediation of metallic pollutants in soil and water Pseudomonas spp. Lovley and Coates, 1997
Anaerobic U6+ reduction to U4+ (reduction of soluble uranium to insoluble form) Soil bioremediation of radioactive pollutants Thiobacillus thiooxidan, Rhodoferax ferrireducens, Geobacter sulfurreducens, Shewanella putrefaciens, Desulfotomaculum reducens Lovley and Coates, 1997; Malik, 2004; Gadd, 2010
Anaerobic Tc4+ reduction to Tc7+ (reduction of soluble technecium to poorly soluble form) Soil bioremediation of radioactive pollutants Geobacter spp. Lear et al., 2010
Anaerobic and aerobic Cr6+ reduction to Cr3+ (reduction of soluble chromium to insoluble form) Bioremediation of metallic pollutants in soil and water Pseudomonas spp., Achromobacter Eurydice, Desulfovibrio vulgaris, Bacillus spp., Desulfotomaculum reducens Wang and Shen, 1995; Lovley and Coates, 1997; Malik, 2004; Gadd, 2010
Heavy metal resistant microbes Heavy metal (Cu, Zn, Ni, Cd, Pb, Hg) immobilization by biosorption, bioaccumulation, biochelation Bioremediation of metallic pollutants in soil and water Alcaligenes eutrophus, Alcaligenes xylosoxidans, Stenotrophomonas sp., Ralstonia eutropha, Staphylococcus sp., Pseudomonas syringae Lovley and Coates, 1997; Diels et al., 1999; Malik, 2004; Gadd, 2010; Edwards and Kjellerup, 2013
Dissimilatory sulfate reducing bacteria Anaerobic SO42- reduction to H2S (reduction of soluble and insoluble sulfur to volatile form) Global sulfur cycle, treatment of sulfur and sulfate contaminated groundwater and industrial wastewater Desulfovibrio spp., Thermodesulfovibrio yellowstonii, Archaeoglobus spp., Desulfatibacillum spp. Desulfothermus spp., Desulfotomaculum reducens Lovley and Coates, 1997; Malik, 2004; Gadd, 2010; Pereira et al., 2011; Hao et al., 2014
Sulfur oxidizing bacteria Chemiolitotrophic H2S, S0 oxidation to SO42- (reduction of soluble and insoluble sulfur to volatile form) Global sulfur cycle, bioremediation of sulfur pollutants in water Beggiatoa spp., Thiobacillus novellus, Sulfolobus spp., Purple and green sulfur-oxidizing bacteria Lovley and Coates, 1997; Kappler et al., 2000; Malik, 2004; Gadd, 2010; Pokorna and Zabranska, 2015
Iron oxidizing bacteria Chemiolitotrophic Fe2+ oxidation to Fe3+ (oxidation of soluble iron to insoluble form) Global iron cycle, bioremediation of metallic pollutants in water Leptospirillum ferrooxidans, Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans Lovley and Coates, 1997; Malik, 2004; Gadd, 2010
Ectomycorrhizal fungi Filamentous (hyphae) extension of plant root systems (do not penetrate plant root cells) Enhance plant acquisition of nitrogen, minerals and water Russula xerampelina, Amanita francheti, Suillus bovinus Gardes and Bruns, 1996; Chalot and Brun, 1998; Reid and Greene, 2012
Arbuscular mycorrhizae fungi Filamentous (hyphae) extension of plant root systems (penetrate plant root cells) Enhance plant acquisition of nutrients, minerals and water Rhizophagus Irregularis, Piriformospora indica Reid and Greene, 2012
Endophytic fungi Fungi-plant symbiotic production of bioactive compounds Pathogen and predator resistance Clavicipitaceae family Reid and Greene, 2012
Lignocellulosic fungi Lignin degradation to soluble carbohydrates mediated by peroxidases and laccase Global carbon cycle, lignocellulosic biomass degradation, biofuel production, bio-refining of valuable chemicals Phanerochaete chrysosporium, Pleurotus spp., Trametes versicolor, Phanerochaete chrysosporium Bugg et al., 2011; Harms et al., 2011
Organic pollutant degradation to harmless compounds mediated by peroxidase, laccase and cytochromes Organic pollutant degradation, bioremediation Gloeophyllum spp., Trabeum spp., Gliocladium virens, Trametes versicolor, Phanerochaete chrysosporium, Candida spp. Keller et al., 2005; Bugg et al., 2011; Harms et al., 2011; Lah et al., 2011; Margot et al., 2013
Recalcitrant pollutant degrading bacteria Organic pollutant degradation to harmless compounds mediated by peroxidase, laccase, and cytochromes Organic pollutant degradation (pesticides, pharmaceuticals, agrochemicals, industrial waste chemicals, oil, and petrochemicals) Pseudomonas spp., Streptomyces spp., Desulfovibrio spp., Brevundimonas diminuta, Díaz, 2004; Head et al., 2006; Singh, 2009; Guazzaroni and Ferrer, 2011; Nikel et al., 2014
Plant growth promoting bacteria (PGPB) Diazotrophic nitrogen fixation (di-nitrogen gas conversion to ammonia, which is available for plant assimilation) Global nitrogen cycle, increase biomass production yields of plants or microalgae Azospirillum brasilense, Azospirillum lipoferum, Bacillus pumilus, Azoarcus sp., Rhizobium leguminosarum Hartmann and Bashan, 2009; Hernandez et al., 2009; Reid and Greene, 2012
Plant and microalgae promoting bacteria Phytohormone production (indole-3-acetic acid and gibberellin production) Increase of starch formation, and ammonium and phosphate uptake by microalgae Azospirillum brasilense, Bacillus pumilus de-Bashan et al., 2002, 2005, 2011; Choix et al., 2012a, 2014; Meza et al., 2015a,b

Communities' microbial guilds can be modeled using metabolic networks by rendering genomic data of model species enlisted in the fourth column.