Table 1.
Catalytic microbial guild | Catalyzed environmental process | Service/Application | Guild's model species | References |
---|---|---|---|---|
Aerobic heterotrophic bacteria | Organic carbon degradation (breakdown of suspended carbon to soluble carbon) | Organic matter removal from wastewater | Bacteroidetes α- and β- proteobacteria, Acidovorax spp., Fermicutes spp. | Wagner and Loy, 2002; Wagner et al., 2002; Das et al., 2011 |
Organic carbon oxidation (soluble carbon to CO2) | Organic matter removal from wastewater | Bacteroidetes α- and β- proteobacteria, Acidovorax spp., Fermicutes spp. | Wagner and Loy, 2002; Wagner et al., 2002; Das et al., 2011 | |
Proteolysis (organic nitrogen to NH) | Global nitrogen cycle, organic matter removal from wastewater | Bacteroidetes α- and β- proteobacteria, Acidovorax spp., Fermicutes spp. | Wagner and Loy, 2002; Wagner et al., 2002; Das et al., 2011; Schreiber et al., 2012 | |
Heterotrophic denitrifiers | Denitrification (NO/NO reduction to N2) | Global nitrogen cycle, biological nitrogen removal from wastewater | Paracoccus denitrifican, Pseudomonas aeruginosa, Acidovorax spp., α-, and β- Proteobacteria | Ferguson, 1998; Brown, 2010; Kraft et al., 2011; Schreiber et al., 2012 |
Autotrophic nitrifiers, including both, ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) | Nitritation (NH oxidation to NO) | Global nitrogen cycle, nitrogen removal from wastewater | Nitrosomonas europaea, Nitrosomonas eutropha, Nitrosospira spp. | Hooper, 1991; Arp et al., 2002; Chain et al., 2003; Ferguson et al., 2007; Perez-Garcia et al., 2014b |
Nitratation (NO oxidation to NO) | Global nitrogen cycle, nitrogen removal from wastewater | Nitrospira defluvii, Nitrobacter spp. | Freitag and Bock, 1990; Ferguson et al., 2007; Lücker et al., 2010; Schreiber et al., 2012 | |
Nitrifier denitrification and hydroxylamine incomplete oxidation (production of NO and N2O) | Production and emission green house and ozone depleting gases | Nitrosomonas europaea, Nitrosomonas eutropha | Shaw et al., 2006; Yu et al., 2010; Chandran et al., 2011; Schreiber et al., 2012 | |
Anaerobic ammonium oxidizers (ANAMMOX) | Ammonium oxidation to di-nitrogen gas (NH oxidation to N2) | Global nitrogen cycle, nitrogen removal from wastewater | Kuenenia stuttgartiensis, Candidatus Jettenia asiatica, Brocardia anammoxidans | Kuypers et al., 2003; Kuenen, 2008; Hu et al., 2012 |
Glycogen accumulating organisms (GAOs) | Anaerobic glycogen formation (carbon uptake and storage compound formation without phosphorus release) | Phosphorus removal from wastewater | Micropruina glycogenica, Tetrasphaera spp., Amaricoccus spp. | Seviour et al., 2003; de-Bashan and Bashan, 2004; Martín et al., 2006; Wilmes et al., 2008 |
Phosphate accumulating organisms (PAOs) | Anaerobic phosphorus release (hydrolysis of intracellular polyphosphates for carbon uptake and storage compound formation) | Phosphorus removal from wastewater | Acinetobacter spp., Microlunatus phosphovorus, Clostridium spp., Candidatus Accumulibacter phosphatis | Seviour et al., 2003; de-Bashan and Bashan, 2004; Martín et al., 2006; Wilmes et al., 2008 |
Aerobic phosphorus uptake (storage compound degradation accompanied by soluble phosphorus uptake) | Phosphorus removal from wastewater | Acinetobacter spp., Microlunatus phosphovorus, Candidatus Accumulibacter phosphatis | Seviour et al., 2003; de-Bashan and Bashan, 2004; Martín et al., 2006; Wilmes et al., 2008 | |
Polyhydroxyalkanoates (PHA) accumulating bacteria | Anaerobic formation of carbon storage compounds in form of polymers of the PHA family | Polyhydroxybutyrate (PHB) base bioplastic production | Pseudomonas oleovorans, Alcaligenes eutrophus, Azotobacter vinelandii, Alcaligenes latus | Batstone et al., 2003; Patnaik, 2005; Dias et al., 2008 |
Hydrogen producing acetogenic bacteria/archea | Fermentation of higher organic acids to produce acetate, H2, and CO2 | Hydrogen and methane production | Clostridium spp., Syntrophomonadaceae spp., Bacteriodetes | Hatamoto et al., 2007; Rittmann et al., 2008; Khanal, 2009a,b |
Autotrophic homoacetogenic bacteria | Syngas fermentation (use of hydrogen carbon monoxide and dioxide as carbon and energy source) | Ethanol, butanol, methane and small chain fatty acid production | Clostridium ljungdahlii | Khanal, 2009b; Abubackar et al., 2011 |
Heterotrophic homoacetogenic bacteria | Fermentation of higher organic acids and alcohols to produce acetate and CO2 | Methane production | Streptococcaceae and Enterobacteriaceae families, Clostridium aceticum, Acetobacterium woodii, and Bacteroidetes spp., Clostridium spp., Lactobacillus spp. | Hatamoto et al., 2007; Rittmann et al., 2008; Khanal, 2009a,b |
Anaerobic methanogenic archea | Acetotrophic conversion of acetate to methane | Methane production | Methanosarcina spp. and Methanosaeta spp. | (Hatamoto et al., 2007; Rittmann et al., 2008; Khanal, 2009a,b) |
Hydrogenotrophic conversion of carbon dioxide to methane | Methane production | Methanosarcina spp | Hatamoto et al., 2007; Rittmann et al., 2008; Khanal, 2009a,b | |
Photo-autotrophs (Microalgae/Cyanobacteria) | Nutrient assimilation (soluble N & P assimilation to organic molecules) | Eutrophication of water bodies, nutrient removal from wastewater | Clamydomonas reinhardtii, Chlorella vulgaris, Spirulina platensi, Microcystis aeruginosa, Anabaena spp., Oscilatoria spp., Nostoc spp. | de-Bashan and Bashan, 2004, 2010; Perez-Garcia et al., 2010 |
Autotrophic CO2 fixation (CO2 fixation to biomass) | Global carbon cycle, biomass formation, CO2 sequestration | Clamydomonas reinhardtii, Chlorella spp., Spirulina platensi, Microcystis aeruginosa, Scenedesmus obliquus, Nanochloropsis spp. | Das et al., 2011; Cheirsilp and Torpee, 2012; Girard et al., 2014; Wu et al., 2015 | |
Autotrophic and heterotrophic lipid, starch and pigments production | Biofuels and valuable chemical production | Chlorella vulgaris, Chlorella prototecoides | de-Bashan et al., 2002; Perez-Garcia et al., 2011; Choix et al., 2012a,b; Perez-Garcia and Bashan, 2015 | |
Production of nitrous and nitrous oxides | Production and emission green house and ozone depleting gases | Chlorella vulgaris | Guieysse et al., 2013; Alcántara et al., 2015 | |
Synthesis of exo-polymers | Bio-absorption of organic compounds and pollutants | Clamydomonas reinhardtii, Chlorella vulgaris, Spirulina platensis. | Markou and Georgakakis, 2011; Subashchandrabose et al., 2013 | |
Cyanobacteria | Production and realize of secondary metabolites and toxic organic compounds (microcystin, nodularin, cylindrospermopsin, among others) | Self-population an grazer organism control | Microcystis aeruginosa, Anabaena spp., Oscilatoria spp., Nostoc spp. | Welker and Von Döhren, 2006; Yadav et al., 2009; Kaplan et al., 2012; Dittmann et al., 2013; Neilan et al., 2013 |
Dissimilatory metal-reducing bacteria. | Anaerobic Fe3+ reduction to Fe2+ (reduction of insoluble iron to soluble form) | Global iron cycle, bioremediation of metallic pollutants in soil and groundwater | Geobacter metallireducens, Geobacter sulfurreducens, Albidoferax ferrireducens, Shewanella putrefaciens | Lovley and Coates, 1997; Malik, 2004; Gadd, 2010; Melton et al., 2014 |
Anaerobic Mn4+ reduction to Mn2+ (reduction of insoluble iron to soluble form) | Global iron cycle, bioremediation of metallic pollutants in soil and groundwater | Geobacter metallireducens, Geobacter sulfurreducens, Albidoferax ferrireducens, Shewanella putrefaciens | Lovley and Coates, 1997; Malik, 2004; Gadd, 2010; Melton et al., 2014 | |
Anaerobic As5+ reduction to As3+ (reduction of insoluble arsenic to soluble) | Bioremediation of metallic pollutants in soil | Geospirillum arsenophilus, Geospirillum barnseii, Chrysiogenes arsenatis, Sulfurospirillum strain NP4 | Lovley and Coates, 1997; Malik, 2004; Lear et al., 2007; Gadd, 2010 | |
Aerobic Hg2+ reduction to Hg0 (reduction of soluble mercury to volatile form) | Bioremediation of metallic pollutants in soil and water | Pseudomonas spp. | Lovley and Coates, 1997 | |
Anaerobic U6+ reduction to U4+ (reduction of soluble uranium to insoluble form) | Soil bioremediation of radioactive pollutants | Thiobacillus thiooxidan, Rhodoferax ferrireducens, Geobacter sulfurreducens, Shewanella putrefaciens, Desulfotomaculum reducens | Lovley and Coates, 1997; Malik, 2004; Gadd, 2010 | |
Anaerobic Tc4+ reduction to Tc7+ (reduction of soluble technecium to poorly soluble form) | Soil bioremediation of radioactive pollutants | Geobacter spp. | Lear et al., 2010 | |
Anaerobic and aerobic Cr6+ reduction to Cr3+ (reduction of soluble chromium to insoluble form) | Bioremediation of metallic pollutants in soil and water | Pseudomonas spp., Achromobacter Eurydice, Desulfovibrio vulgaris, Bacillus spp., Desulfotomaculum reducens | Wang and Shen, 1995; Lovley and Coates, 1997; Malik, 2004; Gadd, 2010 | |
Heavy metal resistant microbes | Heavy metal (Cu, Zn, Ni, Cd, Pb, Hg) immobilization by biosorption, bioaccumulation, biochelation | Bioremediation of metallic pollutants in soil and water | Alcaligenes eutrophus, Alcaligenes xylosoxidans, Stenotrophomonas sp., Ralstonia eutropha, Staphylococcus sp., Pseudomonas syringae | Lovley and Coates, 1997; Diels et al., 1999; Malik, 2004; Gadd, 2010; Edwards and Kjellerup, 2013 |
Dissimilatory sulfate reducing bacteria | Anaerobic SO reduction to H2S (reduction of soluble and insoluble sulfur to volatile form) | Global sulfur cycle, treatment of sulfur and sulfate contaminated groundwater and industrial wastewater | Desulfovibrio spp., Thermodesulfovibrio yellowstonii, Archaeoglobus spp., Desulfatibacillum spp. Desulfothermus spp., Desulfotomaculum reducens | Lovley and Coates, 1997; Malik, 2004; Gadd, 2010; Pereira et al., 2011; Hao et al., 2014 |
Sulfur oxidizing bacteria | Chemiolitotrophic H2S, S0 oxidation to SO (reduction of soluble and insoluble sulfur to volatile form) | Global sulfur cycle, bioremediation of sulfur pollutants in water | Beggiatoa spp., Thiobacillus novellus, Sulfolobus spp., Purple and green sulfur-oxidizing bacteria | Lovley and Coates, 1997; Kappler et al., 2000; Malik, 2004; Gadd, 2010; Pokorna and Zabranska, 2015 |
Iron oxidizing bacteria | Chemiolitotrophic Fe2+ oxidation to Fe3+ (oxidation of soluble iron to insoluble form) | Global iron cycle, bioremediation of metallic pollutants in water | Leptospirillum ferrooxidans, Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans | Lovley and Coates, 1997; Malik, 2004; Gadd, 2010 |
Ectomycorrhizal fungi | Filamentous (hyphae) extension of plant root systems (do not penetrate plant root cells) | Enhance plant acquisition of nitrogen, minerals and water | Russula xerampelina, Amanita francheti, Suillus bovinus | Gardes and Bruns, 1996; Chalot and Brun, 1998; Reid and Greene, 2012 |
Arbuscular mycorrhizae fungi | Filamentous (hyphae) extension of plant root systems (penetrate plant root cells) | Enhance plant acquisition of nutrients, minerals and water | Rhizophagus Irregularis, Piriformospora indica | Reid and Greene, 2012 |
Endophytic fungi | Fungi-plant symbiotic production of bioactive compounds | Pathogen and predator resistance | Clavicipitaceae family | Reid and Greene, 2012 |
Lignocellulosic fungi | Lignin degradation to soluble carbohydrates mediated by peroxidases and laccase | Global carbon cycle, lignocellulosic biomass degradation, biofuel production, bio-refining of valuable chemicals | Phanerochaete chrysosporium, Pleurotus spp., Trametes versicolor, Phanerochaete chrysosporium | Bugg et al., 2011; Harms et al., 2011 |
Organic pollutant degradation to harmless compounds mediated by peroxidase, laccase and cytochromes | Organic pollutant degradation, bioremediation | Gloeophyllum spp., Trabeum spp., Gliocladium virens, Trametes versicolor, Phanerochaete chrysosporium, Candida spp. | Keller et al., 2005; Bugg et al., 2011; Harms et al., 2011; Lah et al., 2011; Margot et al., 2013 | |
Recalcitrant pollutant degrading bacteria | Organic pollutant degradation to harmless compounds mediated by peroxidase, laccase, and cytochromes | Organic pollutant degradation (pesticides, pharmaceuticals, agrochemicals, industrial waste chemicals, oil, and petrochemicals) | Pseudomonas spp., Streptomyces spp., Desulfovibrio spp., Brevundimonas diminuta, | Díaz, 2004; Head et al., 2006; Singh, 2009; Guazzaroni and Ferrer, 2011; Nikel et al., 2014 |
Plant growth promoting bacteria (PGPB) | Diazotrophic nitrogen fixation (di-nitrogen gas conversion to ammonia, which is available for plant assimilation) | Global nitrogen cycle, increase biomass production yields of plants or microalgae | Azospirillum brasilense, Azospirillum lipoferum, Bacillus pumilus, Azoarcus sp., Rhizobium leguminosarum | Hartmann and Bashan, 2009; Hernandez et al., 2009; Reid and Greene, 2012 |
Plant and microalgae promoting bacteria | Phytohormone production (indole-3-acetic acid and gibberellin production) | Increase of starch formation, and ammonium and phosphate uptake by microalgae | Azospirillum brasilense, Bacillus pumilus | de-Bashan et al., 2002, 2005, 2011; Choix et al., 2012a, 2014; Meza et al., 2015a,b |
Communities' microbial guilds can be modeled using metabolic networks by rendering genomic data of model species enlisted in the fourth column.