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Abstract Rickettsia felis is an emerging insect-borne rickett-
sial pathogen and the causative agent of flea-borne spotted
fever. First described as a human pathogen from the USA in
1991, R. felis is now identified throughout the world and con-
sidered a common cause of fever in Africa. The cosmopolitan
distribution of this pathogen is credited to the equally wide-
spread occurrence of cat fleas (Ctenocephalides felis), the pri-
mary vector and reservoir of R. felis. Although R. felis is a
relatively new member of the pathogenic Rickettsia, limited
knowledge of basicR. felis biology continues to hinder research
progression of this unique bacterium. This is a comprehensive
review examining what is known and unknown relative to
R. felis transmission biology, epidemiology of the disease,
and genetics, with an insight into areas of needed investigation.
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Introduction

Insect-borne rickettsiae are among the most influential zoo-
notic pathogens in human populations throughout the world,
with both historic (e.g., louse-borne epidemic typhus during
Napoleon’s retreat from Moscow) [1] and current (e.g., re-
emergence of flea-borne endemic typhus in southern

California and Texas) [2, 3] outbreaks. Recently, a third
insect-borne rickettsial pathogen, Rickettsia felis, has
progressed from a sporadic disease in the USA to a common
cause of fever in Africa [4]. First described in 1990 from
colonized cat fleas (Ctenocephalides felis) [5], this intracellu-
lar Gram-negative bacterium was associated with human dis-
ease by 1991 [6]. Many years passed before the species itself
was formally validated by molecular criteria in 2001, and
isolation of the reference strain (Marseille-URRWXCal2)
from cat fleas was completed shortly thereafter in 2002
[7, 8]. The definitive description of R. felis as the causative
agent of flea-borne spotted fever has dramatically in-
creased the appearance of this pathogen in the literature,
with roughly 315 peer-reviewed articles currently and
more than 90 % of which were published after 2002. The
ease of molecular tools, specifically polymerase chain re-
action (PCR), to detect pathogens from around the globe
has confirmed R. felis infections from every continent ex-
cept Antarctica [4, 6, 9]. Within the last decade, several
advances have been made towards the understanding of
basic R. felis biology (e.g., genomics and pathogenicity),
yet some deficiencies (e.g., transmission mechanisms, ep-
idemiology, and species diversity) remain and continue to
hinder investigative advances for this universal emerging
pathogen.

Transmission Biology of R. felis

Following the initial detection of R. felis from an isolated cat
flea colony, several other commercial and institutional organi-
zations confirmed the presence of R. felis in additional
laboratory-reared cat flea colonies (reviewed in [10]).
Sustained R. felis infections within cat flea populations were
first postulated to occur through stable vertical transmission
based on the detection of rickettsiae in flea reproductive
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tissues [11]. Later reports using PCR analyses confirmed ver-
tical transmission of R. felis in colonized cat fleas in both
freshly deposited flea eggs (transovarial transmission) and
newly emerged, unfed adult fleas (transstadial transmission)
[11, 12]. Subsequently, the cat flea was considered not only
the primary vector of R. felis but also the reservoir host due to
themaintenance of infection solely within the vector population
[12]. Although vertical transmission has been demonstrated,
prevalence of R. felis among cat flea colonies exhibits tremen-
dous variability. For example, prevalence of R. felis-infection in
adult cat fleas from a single colony ranged from 35 to 96 %
over the course of 1 year [13], while comparison of F1 infection
rates from distinct R. felis-infected cat flea colonies may range
from 0 to 100 % based on unknown mechanisms [10]. An
inverse correlation was observed between colony R. felis-infec-
tion prevalence and R. felis-infection load in individual cat-fed
fleas, suggesting that vertical transmission of R. felis is a main-
tenance strategy for persistence within cat flea populations [13];
however, vertical transmission efficiency of R. felis in cat fleas
fed on bovine blood, as opposed to cat-fed colonies, was shown
to severely diminish after 12 consecutive generations [14]. The
inefficient transfer of R. felis from adult to progeny fleas was
potentially linked to the vertebrate blood source, but cat fleas
lack true host specificity and R. felis-infected arthropods have
been recovered from numerous vertebrate species (e.g., cats,
dogs, rodents, opossums, hedgehogs, horses, sheep, goats, ger-
bils, and monkeys) [4, 10, 15]. Given that vertical transmission
of R. felis is not 100 % efficient, it is probable that horizontal
amplification is required for maintenance of this pathogen with-
in vector populations.

Further studies with cat flea colonies lacking a constitutive
R. felis-infection demonstrated favorable host-pathogen asso-
ciations for horizontal transmission. The initial report showed
that uninfected cat fleas were able to acquire R. felis by feed-
ing on a simulated infectious bloodmeal, and this newly ac-
quired infection persists the remainder of the vectors’ lifespan
[16]. Following R. felis acquisition in previously uninfected
cat fleas, the infection then disseminates from the gut to the
hemocoel and other tissues before reaching the salivary glands
[17•]. Subsequent transmission of R. felis to vertebrate hosts is
based on serum samples positive to rickettsial antigen and to a
lesser extent PCR-positive tissue samples, including blood,
resulting from exposure to infected cat fleas (reviewed in
[10]). Ultimately, horizontal transmission of R. felis was dem-
onstrated through a shared bloodmeal between R. felis-infect-
ed and uninfected cat fleas in an artificial host system [18•].
Contrary to other vector-borne pathogens, there appears to be
no correlation between rickettsial distribution in flea tissues
and distinct transmission routes, i.e., horizontal transmission
events occur well before the spread of R. felis to flea salivary
glands (authors’ unpublished data).

The majority of our current understanding of the life cycle
of R. felis in nature is derived from R. felis/C. felis laboratory

models. The dilemma in this transmission cycle is the subse-
quent acquisition of viable R. felis by cat fleas from vertebrate
hosts to complete the Bflea to mammal to flea^ succession
comparable to other insect-borne rickettsial pathogens.
Transmission of R. felis from cat fleas to vertebrate hosts is
presumed to occur through infectious flea bite and potentially
infected flea feces, which are also comprised of rickettsiae
[16]. Among the mammalian species found to be seropositive
or PCR-positive for R. felis in nature include cats, dogs, opos-
sums, raccoons, rodents, and humans [10, 19–22]. A defini-
tive mammalian host with a systemic R. felis infection has not
been identified and may vary by geographic location (e.g.,
lack of marsupials in Africa, Asia, and Europe) and distribu-
tion of arthropod vectors (e.g., sites that have few, if any, cat
fleas) [10, 23]. A recent study generated R. felis-infected
BALB/c mice via an artificial route, and subsequently pro-
duced infectious Anopheles gambiae mosquitoes that caused
transient rickettsemia in naïve mice [24]; nevertheless, natu-
rally infected mammalian blood or tissues have never been
shown as a source of R. felis infection from vertebrate to
arthropod hosts.

The transmission biology of flea-borne spotted fever is
complicated further by the progressive accumulation of field
surveys reporting molecular detection of this infectious agent
from other vectors, i.e., more than 40 additional species of
fleas, ticks, mites, and mosquitoes (Table 1) [4]. Given the
infrequency of a systemic vertebrate infection, the presence
of R. felis in these additional arthropod species is unclear.
Successful transmission of pathogens between actively
blood-feeding arthropods in the absence of a disseminated
vertebrate infection has been demonstrated (reviewed in
[25]). This transmission event, referred to as co-feeding, is
reliant on the temporal and spatial dynamics of infected and
uninfected arthropods as they blood feed. The infected arthro-
pod is both the vector and the reservoir for the pathogen, while
the vertebrate acts as a conduit for infection of naïve arthropods.
The potential for co-feeding transmission ofR. felis between cat
fleas was demonstrated with the use of a shared bloodmeal in
an artificial host system [18•]. Recently, both intra- and inter-
specific transmission of R. felis between co-feeding arthropods
on a vertebrate host was demonstrated (Fig. 1C and D) [26•].
Analyses revealed that infected cat fleas transmitted R. felis to
naïve cat fleas and Oriental rat fleas (Xenopsylla cheopis) via
flea bite on a non-rickettsemic vertebrate host [26•]. Also, cat
fleas infected by co-feeding were infectious to newly emerged
uninfected cat fleas in an artificial system (Fig. 1E) [26•].
Furthermore, a stochastic model was utilized to demonstrate
that co-feeding is sufficient to explain the enzootic spread of
R. felis among populations of the biological vector [26•]. These
results implicate cat fleas in the spread of R. felis among differ-
ent vectors, and the demonstration of co-feeding transmission
of R. felis through a vertebrate host represents a novel transmis-
sion paradigm for insect-borne Rickettsia.
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Table 1 Geographic distribution
of R. felis in wild-caught
arthropods since 2009 review [10]

Country Vector Prevalence of
infection

Reference

Albania Ctenocephalides felis 3 % (10/371) [71]

Algeria Archeopsylla erinacei 96 % (316/331) [72]

Xenopsylla cheopis, Leptopsylla segnis 15 % (10/69) [73]

Australia Fleas ND [74]

C. felis ND [55]

Liposcelis bostrychophila ND [75]

Brazil C. felis 38 % (268/701) [61]

Amblyomma humerale 14 % (1/7) [76]

Ticks and fleas ND [77]

C. felis ND [78]

Chile Rhipicephalus sanguineus ND [79]

China Eulaelaps stabularis ND [80]

C. felis 95 % (57/60) [81]

R. sanguineus 10 % (15/146)

Linognathus setosus 16 % (6/37)

Anopheles sinensis, Culex pipiens 6 % (25/428)

Colombia C. felis, Ctenocephalides canis,
Pulex irritans

ND [82]

Costa Rica C. felis ND [83]

C. felis ND [84]

Côte d’Ivoire Anopheles gambiae 1 % (1/77) [85]

Cyprus X. cheopis 1 % (4/400) [86]

Czech Republic Fleas 18 % (6/33) [87]

Democratic Republic of Congo
(Kinshasa)

C. felis 95 % (37/39) [88]

C. canis 42 % (10/24)

C. felis 57 % (13/23) [89]

Democratic Republic of Congo
(Ituri)

C. felis 23 % (15/64) [89]

Leptopsylla aethiopica 9 % (1/11)

Echidnophaga gallinacea 5 % (1/21)

Ethiopia Fleas 21 % (63/303) [90]

C. felis 100 % (3/3) [91]

P. irritans 43 % (23/53)

Fleas ND [92]

France A. erinacei 99 % (128/129) [93]

A. erinacei 11 % (2/19) [94]

Gabon Aedes albopictus 3 % (3/96) [95]

Guatemala C. felis ND [83]

Hungary C. felis ND [96]

Indonesia X. cheopis ND [97]

Italy C. felis 26 % (34/132) [57]

Fleas ND [98]

C. felis 12 % (38/320) [99]

C. felis 31 % (9/29) [100]

Ivory Coast C. canis 50 % (1/2) [101]

Kenya X. cheopis, C. felis, C. canis,
P. irritans, E. gallinacea

ND [49•]

Korea Ctenophthalmus congeneroides,
Stenoponia sidimi,
Rhadinopsylla insolita

ND [102]

Laos C. canis,C. felis,Ctenocephalides orientis 59 % (13/22) [103]
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Table 1 (continued)
Country Vector Prevalence of

infection
Reference

Lebanon C. felis 16 % (17/104) [104]

C. felis 44 % (8/18) [105]

Malaysia C. felis 32 % (57/177) [22]

C. felis 4 % (4/95) [106]

C. fels 75 % (337/450) [107]

Mexico C. felis 25 % (1/4) [108]

Polygenis odiosus 33 % (1/3)

Morocco Fleas 20 % (112/554) [109]

New Caledonia C. felis 81 % (17/21) [110]

Netherlands C. canis, C. felis ND [111]

Panama C. felis 35 % (7/20) [112]

Peru C. felis 67 % (2/3) [113]

Reunion Island X. cheopis, Xenopsylla brasiliensis 2 % (5/205) [114]

Senegal Aedes luteocephalus <1 % (1/203) [33]

Anopheles arabiensis 1 % (2/154)

Anopheles ziemanni 14 % (1/7)

Anopheles pharoensis 10 % (1/10)

Anopheles funestus 29 % (2/7)

Mansonia uniformis 25 % (2/8)

Cimex hemipterus 3 % (1/39)

Slovakia Ctenophthalmus agyrtes,
Ctenophthalmus solutus,
Ctenophthalmus uncinatus,
Nosopsyllus fasciatus

11 % (34/315) [115]

Spain C. felis 26 % (20/118) [116]

C. felis 44 % (34/78) [117]

C. felis 3 % (2/76) [118]

Taiwan C. felis ND [119]

C. felis 21 % (90/420) [120]

Stivalius aporus, Acropsylla episema 1 % (2/160) [121]

Tunisia C. felis 9 % (2/22) [122]

C. felis <1 % (1/322) [123]

Turkey Rhipicephalus bursa ND [124]

United Republic of
Tanzania

C. felis 65 % (13/20) [89]

C. canis 71 % (5/7)

Ctenophthalmus calceatus 25 % (5/20)

USA C. felis ND [125]

C. felis, P. irritans, X. cheopis,
E. gallinacea, Diamanus montanus

ND [126]

Amblyomma maculatum ND [127]

X. cheopis ND [31]

L. bostrychophila ND [41]

Carios capensis ND [128]

C. felis, P. irritans, X. cheopis,
E. gallinacea,Diamanus montanus,
L. segnis

ND [129]

Fleas ND [130]

Uruguay C. canis, C. felis 41 % (27/66) [131]

West Indies C. felis ND [132]

ND not determined
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Epidemiology of R. felis

Flea-borne spotted fever is considered an emergent global
threat to human health, with cases likely underestimated
due to similarities in clinical signs with other febrile
illnesses (e.g., fever, rash, headache, and myalgia) and
limited access to appropriate laboratory tests (e.g., mo-
lecular diagnostics) [4, 10, 15]. The first human case of
R. felis infection was misdiagnosed as flea-borne endemic
typhus (Rickettsia typhi) because the available serological re-
agents were unable to distinguish between the two rickettsial
species [6]. A retrospective investigation for R. felis among
endemic typhus patients was initiated because field surveys
revealed the presence of this agent within suspected vectors
and mammalian hosts of R. typhi in the USA [27–29].
Comparable to endemic typhus, serological and molecular
analyses have implicated cat fleas and Virginia opossums
(Didelphis virginians) as respective vectors and hosts of R.
felis in suburban regions of California and Texas [21, 27,
29]. The suburban cycle of endemic typhus is unique to the
USA due to urban expansion into suburban environments and
most likely supplementary to the classic association ofR. typhi

with rat fleas and commensal rats (Rattus sp.) [30].
Interestingly, a recent survey revealed a higher prevalence of
R. felis among Oriental rat fleas and Norwegian rats (Rattus
norvegicus) than R. typhi in endemic typhus areas of Los
Angeles [31]. It is unclear whether this urban focus was newly
established or represents an expansion of a persistent low-
level exposure rate of rat populations to R. felis-infected fleas.
The vulnerability of human populations to flea-borne rickett-
siae is of particular concern in developed countries where
aggressive pest management programs may not control for
ectoparasites, which can result in the relocation of arthropods
to new hosts (e.g., humans and their pets) following rodent
extermination. Given the indiscriminate feeding habits of cat
fleas [15], R. felis is essentially a household rickettsiosis in
human populations where peri-domestic animals (e.g., cats,
dogs, opossums) are in close contact.

Much of the latest work concerning the epidemiology of
R. felis has been conducted almost exclusively in Africa due to
the considerable frequency of flea-borne spotted fever in hos-
pitalized febrile patients. In sub-Saharan Africa, R. felis is
described as a common (3–15 %) cause of illness among
patients with Bfever of unknown origin^ in malaria-

RFLOR.felis (LSU) R.felis (LSU-Lb)

Ctenocephalides felis

Ctenocephalides felis

Ctenocephalides felis

Xenopsylla cheopis

A. Larval acquisition
B. Adult acquisition
C. Intrasp. transmission
D. Intersp. transmission
E. Sustained transmission

C E

D

Transmission routes:

B

A

Fig. 1 The proposed and described transmission routes necessary for
persistence and maintenance of R. felis infections within the
environment. (A) Vertical non-transovarial transmission, i.e., larval
acquisition by infectious adult feces, of R. felis within cat flea colonies
requires experimental confirmation. (B) Adult acquisition bioassays with
R. felis str. LSU and LSU-Lb resulted in infected cat fleas; however,
acquisition bioassays with RFLOs have not been attempted. (C)

Intraspecific transmission of R. felis between co-feeding cat fleas was
demonstrated both in an artificial system and on a vertebrate host. (D)
Interspecific transmission of R. felis between co-feeding cat fleas and rat
fleas was observed on a vertebrate host. (E) Sustained transmission of
R. felis by co-feeding was demonstrated by the continuous spread of
infection to newly emerged uninfected cat fleas in an artificial system
over the course of 4 weeks
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endemic regions [20, 32, 33]. Remarkably, the incidence of
human R. felis infections was higher than that of malaria in
two of the studied villages of Senegal [32]. This high pro-
portion of R. felis infections reported within the last 5 years
is in stark contrast to the total number of infections (∼100
human cases) documented worldwide [4]. Again, although
R. felis is classified as an emerging pathogen, it is unclear
whether this increased incidence in Africa reflects an overall
trend or represents an endemic state previously unknown for
this disease. Commonalities (e.g., geographic distribution,
seasonality, target population, incidence of relapses or re-in-
fections, and asymptomatic infections) were observed be-
tween the epidemiology of R. felis and Plasmodium
falciparum infections in Africa, which were initially hypoth-
esized to coincide because of a proposed common vector,
Anopheles mosquitoes [33]. At the time of the Mediannikov
et al. [33] publication, the role of Anopheles in the transmis-
sion of R. felis was ambiguous; however, the transmission
potential of R. felis by A. gambiae (the primary malaria vector
in sub-Saharan Africa) was recently demonstrated in a simu-
lated model [24]. Other arthropods infected with R. felis in
Africa include numerous species of fleas, mosquitoes, and
mites, as well as an individual bed bug [33]. The vertebrate
reservoir host responsible for maintenance of R. felis in Africa
is unknown, but molecular evidence for the presence of
R. felis in African apes (chimpanzees, gorillas, and bonobos)
was derived from PCR-positive stool samples [34]. It was
suggested that similar to malaria and other rickettsial species
(e.g., louse-borne epidemic typhus), the reservoir host of
R. felis in Africa might be primates, including humans [34].
As such, human fecal samples collected from two Senegalese
villages with documented R. felis infections were PCR-
positive for rickettsial DNA [35]. Conversely, it was demon-
strated that for predatory apes (chimpanzees and bonobos), the
ingestion of an infected prey species and associated ectopara-
sites might contribute significantly to the presence of parasite
nucleic acids in fecal samples and caution should be used
when interpreting these molecular analyses [36].

Genetic Diversity of R. felis

Historically, the genus Rickettsia (Rickettsiaceae) was desig-
nated as typhus group (TG) or spotted fever group (SFG)
rickettsiae; however, R. felis displayed phenotypic oddities
that confounded its categorization as either TG or SFG, e.g.,
association with an insect, hemolytic activity, actin-based mo-
tility, transovarial maintenance in the vector host, and serolog-
ical cross-reactivity [37]. Additionally, genetic analyses of
R. felis revealed a large genome size relative to other rickett-
siae, and the presence of plasmids [38]. Combined analyses of
genome and biological characteristics suggested that addition-
al groups exist within the genus Rickettsia, including a sister
clade of the SFG now known as the transitional group (TRG)

and a non-pathogenic clade, thought to be basal to all other
groups, called the ancestral group (AG) [37]. R. felis is a
member of the TRG rickettsiae, which may explain certain
anomalies (e.g., lack of a definitive mammalian host) as this
bacterium continues to undergo major life history transitions.

Several strains ofR. felis have been isolated from colonized
and wild-caught arthropods [39, 40], including the non-hema-
tophagous, parthenogenic booklouse Liposcelis bostrychophila
(Insecta: Psocoptera) [41]. In the booklouse host, R. felis is
an obligate mutualist required for the early development of
the oocyte and is maintained 100 % transovarially [42, 43].
Given that flea-borne strains are considered facultative par-
asites of the vector, distinct strains of R. felis employ dif-
ferent transmission routes for sustained infection within
unique arthropod populations [44]. In an effort to deter-
mine whether genetic variability determines R. felis host
specialization, the sequenced genomes of two strains,
R. felis (str. LSU-Lb) isolated from a booklice colony and
R. felis (str. LSU) isolated from a cat flea colony, were
compared to the flea-derived R. felis reference strain (str.
URRWXCal2) [44]. Sequence analyses revealed genomic
heterogeneity across the three strains of R. felis, suggesting
that spatial isolation (str. URRWXCal2 vs. str. LSU) and
potential host specialization (flea vs. booklouse) have re-
sulted from genetic divergence [44]. Specifically, the dis-
covery of a second, unique plasmid (pLbaR) in the R. felis
str. LSU-Lb assembly provides evidence for host-specific
strain variation [44]. This discovery coincides with other
studies that demonstrated differences in plasmid numbers
between R. felis strains, with some strains having no plasmids
and others having two [45, 46]. Towards this understanding,
experimental bioassays were generated to determine acqui-
sition of R. felis str. LSU-Lb by a colony of cat fleas, as
well as subsequent prevalence and infection load dynamics
(Fig. 1B). Surprisingly, not only did cat fleas become in-
fected with the booklice strain of R. felis, but there were
also negligible differences in prevalence and infection
loads between both strains within the same cat flea colony.
Additionally, similar to R. felis str. LSU, no overt fitness
effect on cat fleas infected with R. felis str. LSU-Lb was
observed, including the production and development of F1
progeny (authors’ unpublished data). Thus, the selective
forces operating on R. felis genomes from strains associat-
ed with different arthropod vectors remain unknown and
require further examination.

Within the last decade, numerous reports have identified
R. felis-like organisms (RFLOs) in different arthropods, in-
cluding cat fleas (Table 2), throughout the world based on
multilocus sequence typing (MLST). A gene sequenced-
based criterion was proposed for the identification of
Rickettsia isolates at the genus, group, and species level
[47]. As such, the number of newly identified Rickettsia, spe-
cifically RFLOs, has dramatically increased since this recent
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designation. The proposed genetic guidelines rely on similar-
ities (i.e., percent homology) in the sequences of the 16S
rRNA (rrs) (≥99.8 %) gene and four protein-coding genes,
the gltA (≥99.9 %), ompA (≥98.8 %), and ompB (≥99.2 %)
genes and gene D (≥99.3 %) to existing Rickettsia species
[47]. The concern with this approach is that 0.2 % divergence

in the rrs gene is the borderline for separation of 2 Rickettsia
species, whereas 1% divergence is known to mark the borders
of naturally occurring bacterial species [48]. For example, two
recently described Rickettsia species isolated from cat fleas,
Candidatus Rickettsia asemboensis and Candidatus
Rickettsia senegalensis, showed 99.5 and 99.65 % similarity

Table 2 Geographic distribution
of RFLO in wild-caught
arthropods

Country Vector Prevalence of
infection

Reference

Brazil Ctenocephalides felis ND [78]

China Eulaelaps stabularis ND [80]

Côte d’Ivoire Anopheles gambiae, Anopheles melas 7 % (5/77) [85]

Costa Rica C. felis ND [83]

Croatia Haemaphysalis sulcata 23 % (23/101) [133]

Czech Republic Fleas 3 % (1/33) [87]

Ecuador C. felis 100 % (8/8) [134]

Egypt Echidnophaga gallinacea 100 % (12/12) [135]

Ornithonyssus bacoti ND [136]

France Archaeopsylla erinacei 50 % (2/4) [105]

Gabon Ctencephalides canis 100 % (12/12) [105]

An. gambiae 1 % (1/88) [85]

An. melas 9 % (6/67)

Germany Archaeopsylla erinacei 96 % (144/150) [137]

Hungary Pulex irritans ND [96]

India Fleas 78 % (7/9) [138]

C. felis 73 % (56/77) [139]

Iran Pediobius rotundatus 20 % (1/5) [140]

Israel Xenopsylla ramesis, Synosternus cleopatrae ND [141]

Japan C. felis 39 % (26/67) [142]

Kenya Xenopsylla cheopis, C. felis, C. canis, P. irritans,
E. gallinacea

ND [49•]

C. canis, C. felis ND [143]

Malaysia C. felis 3 % (6/209) [144]

Peru C. felis 96 % (71/74) [145]

Portugal Ornithodoros erraticus ND [146]

Senegal Synosternus pallidus 91 % (31/34) [147]

Glossina morsitans 100 % (78/78) [148]

C. felis 17 % (5/29) [50]

Slovakia Ctenophthalmus agyrtes, Ctenophthalmus solutus,
Ctenophthalmus uncinatus, Nosopsyllus fasciatus

11 % (34/315) [115]

Spain C. canis, C. felis 28 % (25/88) [149]

Taiwan Leptotrombidium chigger mites, Ixodes granulatus,
Mesostigmata mites

ND [150]

Thailand C. canis, C. felis 43 % (66/152) [151]

Thai-Myanmar
border

C. canis, C. felis 4 % (4/54) [152]

USA C. felis 100 % (19/19) [153]

C. felis ND [154]

Carios capensis ND [128]

ND not determined
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to the rrs gene in validated species of R. felis, respectively
[49•, 50]. Given the potential for genetic diversity of R. felis
isolates due to spatial isolation, a more suitable approach to
justify the separation of RFLOs into species may be to seek
ecological, genomic, or phenotypic differences among the
major clusters resolved by MLST [48]. Recently, the
whole-genome of Candidatus Rickettsia asemboensis was
sequenced [51], and future comparative analyses may re-
veal genotypic differences responsible for phenotypic
characteristics.

Prospective Research for R. felis

The transmission routes required for persistence and mainte-
nance of R. felis infections in endemic-disease foci remains
unclear (Fig. 1A–E). Excretion of viable rickettsiae in the
feces of infected arthropods is crucial in transmission cycles
for both louse-borne epidemic typhus (Rickettsia prowazekii)
and flea-borne endemic typhus (R. typhi) [30, 52]. The direct
inoculation of fecal bacteria by scratching at the bite site con-
stitutes as a persistent source of infection from arthropod to
vertebrate hosts. Although R. felis-infected cat fleas generate
feces with detectable levels of rickettsial transcript [16], the
transfer of bacteria from freshly deposited adult feces to sus-
ceptible vertebrates has not been demonstrated. Another flea-
borne pathogen, Bartonella henselae, achieves successful
transmission from adult fleas to their progeny via vertical
non-transovarial transmission [53]. Vertical transmission of
Bartonella species was demonstrated, but a previous study
showed the absence of transovarial transmission of
B. henselae within flea colonies [54]; however, when flea
larvae were exposed to Bartonella-positive adult flea feces,
then the larvae acquired an infection that was maintained
through adulthood [53]. Thus, vertical non-transovarial trans-
mission of R. felis should be tested within cat flea colonies as
an additional route of pathogen maintenance in vector popu-
lations (Fig. 1A).

The lack of a description of a definitive vertebrate host
impedes epidemiological studies of R. felis throughout the
world. Doubts have been raised about whether R. felis trans-
mission from mammal to arthropod occurs given the efficien-
cy of pathogen transfer between co-feeding fleas without a
systemic vertebrate infection [26•]; however, field surveys
frequently identify mammalian hosts (e.g., cats, dogs, opos-
sums, rodents) as either seropositive or PCR-positive for
R. felis infections in endemic disease foci. Transmission of
R. felis within cat flea colonies has proved variable and adapt-
able, with decreased colony prevalence signaling to increase
infection burdens in individual fleas [13]. Thus, only occa-
sional amplification from vertebrate hosts may be needed to
enhance or maintain R. felis in nature. The latest reports from
urban environments have emphasized the potential of domes-
tic cats and dogs as mammalian reservoirs of R. felis infections

[55–61], while studies from uninhabited localities suggest the
importance of rodents and opossums [22, 62]. Accordingly, it
appears that a peri-domestic cycle exists for R. felis
where components of this enzootic cycle are present,
e.g., free-ranging cats and dogs, commensal rodents
and opossums, and associated flea species. Future stud-
ies should address Koch’s postulates to identify R. felis
as the causative agent of vertebrate infection, specifical-
ly isolation of R. felis for culture from these proposed
reservoir hosts.

Recently, R. felis infections in febrile and afebrile patients
were diagnosed by PCR detection in human blood samples
[33, 63]; thus, it was proposed that perhaps humans could be
the natural reservoir for R. felis, as they are for another insect-
borne rickettsial species (R. prowazekii). The transmission
cycle for R. prowazekii is louse to human to louse, with lice
ingesting bacteria by blood-feeding on infected humans and
subsequently transferring the bacterium to humans by excre-
tion of infectious feces at the bite site [52]. A delayed compli-
cation of R. prowazekii is Brill-Zinsser disease, or recrudes-
cent typhus, in which mild symptoms reappear after a latent
period [52]. Humanswith recrudescent typhus are still capable
of infecting lice and spreading the disease [52]. Similarly,
R. felis DNAwas detected in the blood of a patient at multiple
time points over a 1.5-month interval. While this initial obser-
vation suggests episodic rickettsial infection (relapse or rein-
fection) in humans, these samples were taken from a child in
the absence of antimicrobial therapy [32]. The occurrence of
relapses or reinfections of R. felis should be investigated fur-
ther with adult patients administered antibiotic treatment.
Additional studies reported that not all patients diagnosed
as PCR-positive for R. felis infection generated anti-
rickettsial antibodies, which researchers proposed supports
the notion of a recurrent infection [33, 64]; however, supple-
mentary data may marginalize diagnoses of R. felis infection
based on PCR-positive blood samples. For example, R. felis
DNAwas detected in skin swabs from healthy individuals in
a Senegal village where roughly 7 % of the villagers pos-
sess an R. felis infection [65, 66]. This study highlights the
potential for blood samples from afebrile patients to be-
come polluted by skin surface contaminants prior to mo-
lecular analyses [65]. Furthermore, the discovery of R. felis
in blood samples from asymptomatic persons challenges
existing paradigms about pathogenic rickettsiae. Such as,
the magnitude of rickettsial growth required for PCR de-
tection in the bloodstream of patients is typically fatal, yet
these afebrile individuals had no adverse symptoms [67].
Rickettsioses in febrile and afebrile persons should be con-
firmed by culture, but as stated previously R. felis has not
been isolated from a vertebrate host, even in severe human
cases. Thus, a human isolate must be obtained before con-
clusions are drawn on the role of people in R. felis
epidemiology.
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The genetic diversity within the R. felis genotype appears
to be vast, with different isolates shown to consist of unique
individual qualities. Whether RFLOs warrant species desig-
nation is unclear, but there are disparities among this
genogroup that may lead to a microbial-dependent influence
on R. felis prevalence. For example, interspecific competition
of rickettsiae in ticks is well documented, with a primary in-
fection responsible for the interference or blocking of a sec-
ondary infection [68–70]. Thus, the high prevalence of
RFLOs in areas where R. felis infections appear low or absent
may be due to an interference event followed by perpetuation
of the primary infection within a closed arthropod population.
The transmission biology as well as the pathogenicity of
RFLOs is unknown, but these organisms are detected in ar-
thropods known to bite humans. Future work with RFLOs
should identify, if any, phenotypic characteristics associated
with genotypic diversity and focus on acquisition, dissemina-
tion, and transmission of these organisms by their respective
arthropod hosts (Fig. 1B).

Conclusions

Every year, there are new reports of arthropod, animal, and
human cases ofR. felis from additional countries, and the influx
of RFLOs may result in a similar trend. Active surveillance of
R. felis infections among hospitalized febrile patients will de-
termine when an endemic state has been reached by this emerg-
ing pathogen, as well as indicate spread to populations outside
of endemic disease foci. Advance genetic analyses ofRickettsia
species should include criteria for ecological, genomic and phe-
notypic differences in addition to sequence homology. In order
to determine the specific roles of both the vertebrate and arthro-
pod host in the transmission cycle of R. felis, it is critical to
continue the development and implementation of molecular
tools and bioassays necessary for more accurate risk assess-
ment and efficacious control measures.
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