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Abstract. Invasive ductal breast carcinomas (IDBCs) are the most frequent and aggressive subtypes of breast
cancer, affecting a large number of Canadian women every year. Part of the diagnostic process includes grading
the cancerous tissue at the microscopic level according to the Nottingham modification of the Scarff-Bloom-
Richardson system. Although reliable, there exists a growing interest in automating the grading process,
which will provide consistent care for all patients. This paper presents a solution for automatically detecting
regions expressing IDBC in images of microscopic tissue, or whole digital slides. This represents the first
stage in a larger solution designed to automatically grade IDBC. The detector first tessellated whole digital slides,
and image features were extracted, such as color information, local binary patterns, and histograms of oriented
gradients. These were presented to a random forest classifier, which was trained and tested using a database of
66 cases diagnosed with IDBC. When properly tuned, the detector balanced accuracy, F1 score, and Dice’s
similarity coefficient were 88.7%, 79.5%, and 0.69, respectively. Overall, the results seemed strong enough
to integrate our detector into a larger solution equipped with components that analyze the cancerous tissue
at higher magnification, automatically producing the histopathological grade. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.2.027501]
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1 Introduction

1.1 Motivation

An estimated 25,000 Canadian women were diagnosed with
breast carcinoma in 2015,1 representing the highest incidence
of cancer in the female population. Breast carcinomas are
most commonly in the invasive ductal form (IDBC),2 which
yields an 85% survival rate after five years.3 An important
facet of the diagnostic process is evaluating the tumor aggres-
sivity based on the microscopic properties of the tissue, as per-
formed by a pathologist. To this end, cases expressing IDBC are
assessed using the Nottingham modification of the Scarff-
Bloom-Richardson (SBR) grading system, which has become
the standard for pathologists since 2002 after being recom-
mended by the International Union against Cancer4 and the
World Health Organization.5 It has had success due to its objec-
tive nature and strong correlation with patient prognoses.6

Despite its strict guidelines, inter-rater variability has been thor-
oughly investigated using the SBR grading system.7–10

However, a recent study that included 732 pathologists reported
that 8.3% of raters had an agreement rate of <95%;10 therefore,
the system can be improved upon.

Automating the process through software would reduce
inter-rater variability and ensure more consistent results to
the benefit of the patients. Recent technological advances
have made this possible, notably with the advent of digital path-
ology. Slide scanners have been the basis of this because they

produce very large images of microscopic tissue, commonly
referred to as whole digital slides (Fig. 1). This paper proposes
a solution for the first step in the automation process: detecting
IDBC in whole digital slides.

1.2 Background

Fully automated histopathological grading systems are not yet
clinically available; however, researchers have been working
toward this end. Some have departed from the prognostic factors
traditionally analyzed by pathologists and are leveraging
machine learning techniques to find new factors for tumor clas-
sification. For example, Beck et al.11 have found that certain fea-
tures relevant for their automated classifier were previously
assumed to be irrelevant by pathologists. Therefore, such tech-
niques may provide a deeper understanding of malignancy.

Conversely, methods that more faithfully replicate the work-
flow of a pathologist will undoubtedly encounter fewer barriers
to clinical use. The strategy would be to first automatically seg-
ment IDBC from whole digital slides and subsequently analyze
the cancerous tissue according to the SBR grading system
(Fig. 2). One research group, in particular, has produced a
peer-reviewed paper for every step required for accomplishing
this goal, from finding areas of interest12 to the tissue
analysis.13,14

Finding areas of interest can be challenging due to the over-
whelming size of whole digital slides. To overcome this,
researchers often tessellate the whole digital slide into a
rectangular grid of independent areas. Although simple, the
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tessellation arbitrarily splits the slide image, which may have the
effect of distorting important pathological features. To further
lower computational time, methods either sample a subset of
the rectangular areas12 or reduce the magnification level during
analysis.15,16 The former may be undesirable for clinical appli-
cations since the omitted areas may contain information that
would ultimately affect tumor classification. Similarly, the latter
technique may lead to a misinterpretation of the data due to the
reduced magnification. Despite the potential flaws, researchers
have developed IDBC detectors with very favorable results.

1.3 Our Solution

Our paper presents a method for achieving the first step of the
process as seen in Fig. 2, that is, automatically finding areas
expressing IDBC within whole digital slides. Our approach
most resembles a design recently proposed by Cruz-Roa
et al.16 while additionally addressing two of the common weak-
nesses described in Sec. 1.2. First, a grid with malleable borders
replaces the rectangular tessellation. This generates areas that
attempt to encapsulate consistent pathological features. Second,
our method is shown to be robust against a wide range of mag-
nification levels.

Our broad strategy was to find areas where cells proliferated
chaotically within the whole digital slide. Although disorgan-
ized cell growth is a strong indicator of IDBC, we acknowledge
that other types of cancer also fit this criterion. For example,
ductal carcinomas in situ (DCIS), which are often co-expressed
with IDBC, share similar cellular traits with IDBC. Although

detecting DCIS would not be strictly wrong, its grading process
does not follow the SBR system and should therefore be omitted
in the final segmentation.

Despite this limitation, our solution successfully detects
IDBC in whole digital slides. Briefly, the images are first tes-
sellated using the simple linear iterative clustering (SLIC) seg-
mentation technique,17 grouping homogeneous regions into a
single tile. As opposed to other segmentation methods in digital
pathology,12,15,16,18,19 the tessellation was not constrained to a
rectangular grid, but followed the borders of objects in the
image. Next, the resulting tiles were represented by image fea-
tures describing their color and textural information. Finally, the
image features were used to train and test a random forest (RF)
classifier, which determined if a given image tile expressed
IDBC (Fig. 3). The astounding size of digital slides imposed

Fig. 1 An example of a whole digital slide. At 40×magnification, this file contains 53;642 × 55;614 pixels
and three color channels, for a total size of 8.95 gigabytes uncompressed.

Fig. 2 Automating the SBR grading system would first require a segmentation of the cancerous areas
followed by an analysis of the cellular properties of the tissue.

Fig. 3 System overview.
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a heavy computational load on our design, which was overcome
by exploiting cloud computing, more specifically using Amazon
Web Services’m1.xlarge ec2 instances. (The term “instances” is
used by Amazon to describe the type of cloud computer.) This
heightened capability permitted cases to be resolved in less than
an hour.

Generally speaking, the detector performed reasonably well
compared to competing methods when trained on 50 cases and
tested on 16. Despite some errors, our design faithfully indicated
regions expressing IDBC as labeled by a pathologist. Therefore,
our approach could realistically be integrated into a larger sol-
ution designed to actually automatically grade IDBC according
to the SBR system.

2 Methods

2.1 Datasets

To the best of our knowledge, no freely available database of
IDBC slides exists; therefore, it was necessary to create our
own. First, glass slides from 66 cases of breast mastectomies
were retrieved from the McGill University Hospital Centre path-
ology registry (study 3229). There was a variable number of
slides per case, most often exceeding 20. Retaining all of the
slides would have been superfluous for the purpose of our
project; therefore, a pathologist selected one slide per case,
chosen to maximize the tumor expression in each slide. In
the third step, digital reproductions of the slides were created
using the Aperio Scanscope AT Turbo slide scanner at 40×mag-
nification with a resolution of 0.2485 microns per pixel. Finally,
a pathologist annotated tissues of interest on every slide using
the Imagescope software (Aperio Imagescope v11.1.2.760).

Our dataset can be considered small since the number of
instances (66 cases of IDBC) is overshadowed by the amount
of data per case (an average of 1.5 gigabytes per whole digital
slide when compressed). Additionally, the dataset is unbalanced
since different pathological entities covered irregularly large
areas of the image. Both of these attributes were considered dur-
ing the design process (Sec. 2.4).

2.2 Tiling Whole Digital Slides Using Simple Linear
Iterative Clustering Segmentation

The first step of our solution was to tessellate the whole digital
slides into more manageable subsets, allowing us to analyze
each one independently. To accomplish this, the image was
tiled nonuniformly. This computational process required that
the tiles have malleable borders, permitting them to follow
the tissue boundaries or other histopathological structures in
the images. This step essentially required a region segmentation
method applied to the entire digital slide. One such method is the
SLIC superpixel (SP) method.17 The SLIC algorithm groups
similar pixels in the image, forming larger region segments
with shapes that reflect the objects within the image.20–22

For our project, we employed the Images and Visual
Representation Group version of the SLIC software. From
our experience with this software, we have found that a super-
pixel size SPsize of 10,000 pixels and compactness factor SPm of
30 was ideal for our dataset. This was determined by optimizing
the boundary recall rates and the reconstruction error on our
data. (For the sake of brevity, we do not demonstrate this val-
idation step in the current paper. Interested readers are referred
to the original thesis.23)

2.3 Representing Image Tiles Using Chrominance
and Textural Features

Superpixels provided a coherent tiling of the whole digital slide.
Reaching the ultimate objective also required determining
which superpixels were positive for cancer. To accomplish
this, we transformed the image representation of each superpixel
into a feature space based on chrominance and texture. Since
both the shape and size of the superpixels vary, we focused
on features that could be represented by histograms. When prop-
erly normalized, two areas of different size (i.e., superpixels)
that express similar patterns should yield similar histograms.

More specifically, we sought a combination of image fea-
tures that could describe a variety of histopathological tissue pat-
terns. The data were represented by the two color spaces, the
RGB and CIELab,24 and one gray-scale color channel.
Within every color space, chrominance features are obtained
using color histograms.25,26 Next, textural features are computed
using rotation-invariant local binary patterns (LBPs)27–29 over a
wide range of radii. Finally, edge information is characterized by
histograms of oriented gradients (HOG).30–33 This combination
of descriptors provides 16,128 features per superpixel, as
described in Table 1.

2.4 Decision Making with Random Forests

So far we have presented methods for splitting digital slides into
meaningful tiles using SLIC segmentation and defining them
mathematically using features. The final step requires a classi-
fier to decide whether or not a given image tile indicates cancer.
We used an RF classifier34,35 for this purpose (Table 2).

There are several advantages to RFs, and many of them are of
great interest to the application discussed in this paper. First, the
overall performance of an RF is competitive with other state-of-
the-art methods. They can also process a large number of fea-
tures elegantly without explicitly reducing the dimension of the
space, which is vital when dealing with the uncommonly large
number of features required in our design. Another significant
advantage is that RFs report the most important features for clas-
sifying the data, thereby permitting a clear understanding of how
the classifier has reached its decision. Finally, the RF classifier
has proven to be effective when dealing with unbalanced data-
sets,35 which is also very important since our dataset does not
contain equal amounts of healthy and cancerous tissue, as dis-
cussed in Sec. 2.1.

2.5 Assessing the Classifier Performance Using
Cross-Validation

In Sec. 2.4, we have introduced a technique for automatically
classifying data based on a training set. It is also necessary
to measure the classifier performance for the purposes of vali-
dation and optimization. Our approach produces a binary clas-
sification, thereby distinguishing IDBC from all other
histopathological tissue types. Comparing the classification
results to the ground truth as provided by expert pathologists
introduces four possible outcomes (Table 3). In certain cases,
the superpixel boundaries did not always coincide with the
ground truth annotations and could therefore contain a mix
of negative and positive labels. To resolve this conflict,
the final label for a given superpixel was determined by majority
vote.
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To characterize the system behavior, we used several
measures of accuracy. First, the sensitivity [Eq. (1)], specificity
[Eq. (2)], balanced accuracy (BAC)36 [Eq. (3)], and F1 score37

[Eq. (4)] were useful for evaluating how the system performed
as a binary detector. Dice’s similarity coefficient (DSC)38,39

[Eq. (5)] was employed to measure how the system segmented
regions of interest. As described in Eq. (5), a perfect overlap of
two regions A and B will yield a coefficient of 1.

EQ-TARGET;temp:intralink-;e001;326;555Sensitivity ¼ TP

TPþ FN
; (1)

EQ-TARGET;temp:intralink-;e002;326;508Specificity ¼ TN

TNþ FP
; (2)

EQ-TARGET;temp:intralink-;e003;326;465BAC ¼ Sensitivityþ Specificity

2
; (3)

EQ-TARGET;temp:intralink-;e004;326;422F1 score ¼ 2 · TP
2 · TPþ FNþ FP

; (4)

EQ-TARGET;temp:intralink-;e005;326;379DSC ¼ 2 · jA ∩ Bj
jAj þ jBj : (5)

We note that measuring a detector’s performance may be
biased by the selection of test cases as well as the actual training
and testing cases available. To compensate for this, we
employed k-fold cross-validation40 and ensured that no case
was tested more than once.

2.6 Selection of Parameters

The proposed detector was substantiated through rigorous test-
ing on our dataset, which consisted of 66 cases diagnosed with
IDBC. However, before proceeding to this step, it was necessary
to select the seven input parameters associated with our method.
To recapitulate, the whole digital slide was first sampled at a
given magnification (M) and subsequently tessellated using
the SLIC algorithm, which required setting the superpixel
size (SPsize) and compactness factor (SPm). Although feature
extraction did not require parameter selection, the RF classifier
depended on the parameters RFNumTrees, RFDepth, RFNumTests, and
RFConfidence. In this paper, we will demonstrate the process only
for validating the image magnification (M), although this same
procedure was repeated for the other six parameters.23

Selecting the image magnification was important since it
directly affected the computation time. For this reason, it was
necessary to examine the effect of image magnification on
the classification result. To this end, classifiers were trained

Table 1 A given tile, or superpixel, was represented by (b) seven
color channels. Every channel contained (a) 2304 features, giving
(c) 16,128 features for all seven channels.

(a)

Feature Radius # of bins

LBP 1 256

LBP 2 256

LBP 3 256

LBP 4 256

LBP 5 256

LBP 10 256

LBP 20 256

HOG magnitude — 256

HOG orientation — 256

Color — 256

Total — 2304

(b)

Color space # of channels

RGB 3

Lab 3

Gray scale 1

Total 7

(c)

# of channels 7

# of bins per channel 2304

# of features per superpixel 16,128

Table 2 Description of the input parameters for RF classifiers.

Parameter Description

RFNumTrees The number of decision trees in the RF.

RFDepth The maximum depth of every decision tree.

RFNumTests The number of features tested at
every node during the training process.
The feature that best splits the data
will be retained for classification purposes.

RFConfidence Output probabilities above this threshold
will be considered positive for IDBC.

Table 3 The four possible outcomes of binary classification.

Ground truth
label: IDBC

Ground truth
label: Other

Detector result: IDBC True positive (TP) False positive (FP)

Detector result: Other False negative (FN) True negative (TN)
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and tested by sampling the whole digital slides at 2×, 4×, and
10× magnifications. Comparing the classifier performance at
different magnifications may be flawed due to the inherent ran-
domness associated with the SLIC tessellation process. To
overcome this issue, we designed an experiment where the
superpixels at all three magnifications covered identical tissue
areas and the data that were passed to the classifier differed
only in their image resolution. To achieve this, the tessellation
at 4× was projected onto the slide at 2× and 10×magnifications.
Four RFs per magnification, described in Table 4, were trained
on six randomly selected cases and subsequently tested on
another six.

2.7 Validation

Once the input parameters were selected (Table 5), the algorithm
was then tested using our entire dataset. We performed k-fold
cross-validation40 using 7, 28, and 50 training cases. Cross-val-
idation with 7 and 28 training cases required two folds each and
could be sensitive to the separation of the cases. Therefore, we
repeated the validation process five times to measure whether

the results varied with respect to the random assignment of
cases into both folds.

Additionally, we produced a receiver operating characteris-
tics (ROC) curve41 for the parameter RFConfidence. More specifi-
cally, the RFs computed the probability that a region was
positive for cancer, and any result above the confidence thresh-
old RFConfidence was considered positive (Fig. 4). Changing
RFConfidence directly affects the decisions made by the detector.
Therefore, the ROC curve permitted us to determine the optimal
value of RFConfidence, while the area under the ROC curve (AUC)
quantified the overall classifier performance.

Finally, we compared the effects of tessellating whole
digital slides into a square grid versus superpixels. Therefore,
we repeated the k-fold cross-validation with 50 training cases
where all whole digital slides were broken into 100 × 100 pixel
subimages.

3 Results

3.1 Effect of Image Magnification on the Classifier

As reported in Table 6, increasing the magnification from 2× to
10× produced no significant improvement in terms of BAC,
a 3% improvement for the F1 score, and a 0.06 improvement
in terms of DSC. Considering the amount of supplementary
data analyzed, increasing the magnification produced minor
improvements. We assume that this was a testament to the
large variety of features used to describe the tissue. For example,
the radii of the LBP codes ranged from 1 to 20 pixels; therefore,
it was capable of capturing the same phenomena at different
scales.

Table 4 The parameters used for testing the effect of image magni-
fication on the classifier performance.

Test name SPSize SPm RFNumTrees RFDepth RFNumTests

Test 1 10,000 30 500 50 200

Test 2 10,000 30 500 50 500

Test 3 10,000 30 500 75 200

Test 4 10,000 30 500 75 500

Table 5 The parameters used for the cross-validation of 66 cases of
IDBC.

M SPSize SPm RFNumTrees RFDepth RFNumTests

2× 10,000 30 200 50 400

Fig. 4 RFs output a probability map of IDBC. The cancer confidence threshold dictates at what prob-
ability level a given region is considered to be positive. (a) An example of a whole digital slide at low
magnification. (b) The output of the classifier is a probability map of IDBC expression. (c) The probability
map can be viewed as a series of peaks and valleys. The confidence threshold dictates the minimal peak
elevation considered for classifying an area as IDBC.

Table 6 The effect of magnification on the detector’s performance.

M 2× 4× 10×

Sensitivity 91.80%� 0.8 92.10%� 0.2 88.40%� 1.4

Specificity 79.60%� 0.4 80.50%� 0.8 83.80%� 0.3

BAC 85.70%� 0.4 86.20%� 0.4 86.10%� 0.7

F1 score 63.30%� 0.8 64.20%� 0.8 66.10%� 0.8

DSC 0.54� 0.005 0.55� 0.005 0.57� 0.004

Journal of Medical Imaging 027501-5 Apr–Jun 2016 • Vol. 3(2)

Balazsi et al.: Invasive ductal breast carcinoma detector that is robust to image magnification. . .



3.2 Testing the Design on a Large Database of
Cases

The cross-validation results are summarized in Table 7. The
classifier performed reasonably well and demonstrated similar
metrics as in Ref. 16, although both methods could not be
directly compared since they were tested on different data
and no publicly available dataset currently exists. Moreover, tes-
sellating the digital slides using superpixels as opposed to a
square grid improved all metrics. Interestingly, the gains
achieved through superpixel tessellation were slightly greater
than when increasing the magnification to 10× (Table 6).

Finally, as would be expected, increasing the number of
training cases seemed to improve all performance metrics
(Table 7), including the AUC values (Fig. 5). However, this

does not address the issue of whether failure modes exist that
could not be overcome by using additional training cases.
This required a careful visual inspection of the actual results.
To recapitulate, analysis of the image colors and textures was
essentially designed to find epithelial cells that proliferated in
a disorganized pattern. For the most part, this strategy effectively
recreated the ground truth annotations, as dictated by expert
pathologists (Fig. 6).

However, the cellular architecture in IDBC also bears a
resemblance to other histopathological entities, such as DCIS.
Differentiating these two would require more information
than what is currently analyzed by the detector. This produced
areas in the image that were actually seen to express DCIS but
were misclassified as IDBC (Fig. 7). This illustrates that an
analysis system of the type discussed in this paper would be

Table 7 Cross-validation results using 66 cases of IDBC. “Square” indicates experiments in which the superpixels were replaced by a square grid.

— — — Square Ref. 16

# of training cases 7 28 50 50 84

# of folds 2 2 5 5 —

RFConfidence 0.6 0.6 0.6 0.7 —

Sensitivity 80.72� 7.4% 79.52� 3.9% 84.03� 1.6% 77.94� 4.3% —

Specificity 90.92� 3.2% 93.30� 1.2% 93.31� 2.1% 95.20� 2.3% —

AUC 0.93 0.94 0.95 0.95 —

BAC 85.82� 2.6% 86.41� 1.5% 88.67� 1.3% 86.79� 1.5% 84.23%

F1 score 74.40� 3.8% 76.60� 1.4% 79.51� 6.3% 77.57� 2.8% 71.80%

DSC 0.64� 0.07 0.66� 0.01 0.69� 0.12 0.66� 0.02 —

Fig. 5 The ROC curve with respect to RFConfidence. The classifier performed slightly better as the number
of training cases increased, as demonstrated by the AUC values.
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suitable for selecting specific areas in the digital slide for a more
detailed examination. This second step would then permit analy-
sis for DCIS on a cellular basis. Indeed, this was the actual goal
of our research.

4 Conclusion

4.1 Summary

The solution proposed in this paper performed consistently over
different magnifications and tessellation resolutions. Therefore,
any future application using our framework could potentially
adjust these parameters to fit their own specific needs without
depreciating the performance. Furthermore, the overall solution
can be easily applied to other cancer types simply by changing
the training data. This is a testament to the image features used
for the analysis, which is able to successfully characterize and
detect the differences among different tissue types.

On the other hand, several design choices introduced limita-
tions. First, and perhaps foremost, the tessellation process,
which imparted many advantages, unfortunately required heavy
computational power, which was accessible only using cloud
computing. Therefore, our approach could not easily be

reproduced with conventional computers. Researchers who
do not have the necessary hardware can either modify the
SLIC SP algorithm or employ a rectangular tessellation.
Unfortunately, the latter would incur a performance hit to the
system. Second, analyzing the RGB color space is recom-
mended only in conjunction with highly controlled histopatho-
logical and imaging procedures, due to a lack of color
normalization in the space. Finally, the solution was verified
only on slides where IDBC was very prominent. The detector
was not tested to determine whether it was capable of finding
small foci of IDBC.

4.1.1 Summary of the results

The method proposed in this paper depends on an initial param-
eter selection, which we obtained by experimentation. Given
this initial procedure, we were able to successfully discover
the areas expressing IDBC with a BAC of 88.7%, an F1
score of 79.5%, and a DSC of 0.69. Performance was improved
by employing superpixel tessellation compared to a rectangular
grid. The superpixels had a tendency to group similar histopa-
thological patterns and followed the edges of the tumors.

Fig. 6 An example of the IDBC detector output, using 50 training cases: (a) the original whole digital slide, (b) tessellation using SLIC segmentation,
(c) the probability map of cancer, and (d) the final decision with an RFConfidence of 0.6%.
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Moreover, increasing the magnification produced a meager per-
formance gain considering the additional computation burden it
imposed. Therefore, researchers can leverage this robustness to
significantly reduce computation time.

A close inspection of the results indicates certain common
modes of failure, notably in terms of the false positive rate.
Generally, the classifier responded strongly to areas where epi-
thelial cells proliferated in a disorganized fashion. Although this
is a significant characteristic of IDBC, other histopathological
entities sometimes expressed similar traits. For example,
DCIS differs from IDBC only in the specific locations in
which the cells proliferate with respect to the breast ducts.
Otherwise, both manifest similar nuclear morphology and cel-
lular properties. Therefore, distinguishing the two would be dif-
ficult given only color and texture image features. Future
improvements should include a subsequent step that distin-
guishes IDBC from other unhealthy tissues in order to further
reduce the false positive rates.

4.2 Toward a Clinical Application

The results produced for this paper were more than satisfactory
for our ultimate objective. Automatically grading IDBC would
require additional components that measure nuclear pleomor-
phism, tubule formation, and mitosis (Fig. 2).

We believe that automated histopathological grading will
eventually benefit patients in several ways. It can alleviate
the workload in large pathological centers, or alternatively pro-
vide a solution for areas lacking trained pathologists, such as in
the developing world. All the while, it will produce results that

are consistent and unbiased, providing uniform care for all
patients.
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