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Abstract Recent studies show right hemisphere has a

unique contribution to emotion processing. The present

study investigated EEG using non-linear measures during

emotional processing in PD patients with respect to motor

symptom asymmetry (i.e., most affected body side). We

recorded 14-channel wireless EEGs from 20 PD patients

and 10 healthy age-matched controls (HC) by eliciting

emotions such as happiness, sadness, fear, anger, surprise

and disgust. PD patients were divided into two groups,

based on most affected body side and unilateral motor

symptom severity: left side-affected (LPD, n = 10) or right

side-affected PD patients (RPD, n = 10). Nonlinear anal-

ysis of these emotional EEGs were performed by using

approximate entropy, correlation dimension, detrended

fluctuation analysis, fractal dimension, higher order spec-

tra, hurst exponent (HE), largest Lyapunov exponent and

sample entropy. The extracted features were ranked using

analysis of variance based on F value. The ranked features

were then fed into classifiers namely fuzzy K-nearest

neighbor and support vector machine to obtain optimal

performance using minimum number of features. From the

experimental results, we found that (a) classification per-

formance across all frequency bands performed well in

recognizing emotional states of LPD, RPD, and HC; (b) the

emotion-specific features were mainly related to higher

frequency bands; and (c) predominantly LPD patients (in-

ferred right-hemisphere pathology) were more impaired in

emotion processing compared to RPD, as showed by a

poorer classification performance. The results suggest that

asymmetric neuronal degeneration in PD patients may

contribute to the impairment of emotional communication.

Keywords EEG � Emotion � Hemispheric lateralization �
Non-linear methods � Parkinson’s disease

Background

Parkinson’s disease (PD) is characterized by the progres-

sive loss of dopamine neurons in the substantia nigra of the

midbrain, and is associated with motor symptoms including

tremor, bradykinesia and rigidity (Han et al. 2013). Apart

from these motor symptoms, there has been increasing

attention to the role played by emotional processes in PD

patients. Indeed, a huge number of studies have been

conducted in the recent years with the goal to understand if

PD patients are still able to correctly identify, discriminate,

and rate the emotional content of the stimuli (e.g., pictures,

prerecorded speech samples, written sentences) (Gray and

Tickle-Degnen 2010; Péron et al. 2012). Unfortunately, the

experimental results so far are inconsistent and quite dif-

ficult to interpret. Some researchers reported that PD

patients perform worse than healthy control (HC) partici-

pants in a number of recognition tasks, there is also evi-

dence that the two groups do not differ in the same tasks

(Gray and Tickle-Degnen 2010; Péron et al. 2012).

More recently, lateralization (left versus right hemi-

sphere) of emotion processing with respect to most affected

body side in PD patients has been debated. For instance,

(Clark et al. 2008) reported no asymmetry effects on
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explicit emotion categorization while Ariatti et al. (2008)

and Yip et al. (2003) reported problems in categorizing

disgust prosody in patients with right-affected PD patients.

In addition, Ventura et al. (2012) reported that left-affected

PD patients (LPD) exhibit problems in the recognition of

sadness emotion. Lately Garrido-Vásquez et al. (2013)

reported altered emotional salience detection from prosody

in patients primarily suffering from right-affected PD

patients (RPD) using event related potential measures.

Some studies showed that patients with left- or right

affected motor symptoms side perform poorly in emotional

prosodic identification tasks compared to HC (Pell and

Baum 1997; VanLancker and Sidtis 1992). Thus, results

regarding the influence of hemispheric asymmetric PD

patients on emotion processing remain inconclusive.

However, most of the research in this area have dealt with

behavioral responses (i.e. participants were asked to match,

to identify or to rate emotional stimuli), which are known

to be impaired in PD (Wieser et al. 2006). It could be that

this overall behavioral impairment causes impaired per-

formances in evaluative emotion recognition and rating

tasks. Furthermore, only commonly used statistical tools

were employed to analyze the obtained behavioral

responses.

Machine learning algorithms are becoming increasingly

popular in psychology and psychophysiology research and

they indeed might be useful as an additional tool to tradi-

tional statistical methods. The expression of an emotion

occurs as a result of physiological changes in the central

nervous system (CNS) and/or autonomic nervous system

(ANS). For instance, the muscle tension in the face gives

rise to facial actions (Picard et al. 2001). Researchers have

showed significant differences between the emotional

states in HC participants using different biosignals such as

electroencephalogram (EEG), electrocardiogram (ECG),

electromyogram (EMG), skin conductance (SC), skin

temperature (ST), respiration rate (RR) and blood volume

pulse (BVP) (Valenza et al. 2012; Verma and Tiwary

2014). These biosignals, being an activity of the CNS and/

or ANS reflects the inherent state of the person which

makes the suppression of emotions or social masking

impossible. In particular, emotion research on EEG signals

for HC participants show promising results (since the EEG

signals are recorded from origin of emotion genesis) and

hence can be enhanced to understand the emotion pro-

cessing of PD patients.

Moreover, it is well known that underlying physiologi-

cal mechanisms of biological systems are non-linear pro-

cesses. As the human brain is composed of billions of

complicatedly interconnected neurons whose responses are

non-linear, it may be regarded as a complex, non-linear

dynamic system. To analyse the output of such a system,

non-linear signal processing techniques are applicable.

There has been growing evidence that non-linear research

studies have been devoted to analysis of EEG signals

recorded from participants with pathological conditions

such as Alzheimer’s, dementia, depression, disturbed cog-

nition, epilepsy, schizophrenia and sleep disorders as well

as the brain function related to emotional states (Bleton and

Sejdic 2015; Liu et al. 2015; Poppy and Speckens 2015;

Stam 2005). These studies shows that non-linear analyses

are more in tune with nature of EEG signals and systems,

thus, they are widely used in biological and medical

applications.

In this study, we set out to investigate nonlinear analysis

of EEG during emotion processing in PD patients with

respect to motor symptom asymmetry (i.e., most affected

body side). For this purpose, we extracted non-linear fea-

tures such as approximate entropy (AE), correlation

dimension (CD), detrended fluctuation analysis (DFA),

fractal dimension (FD), higher order spectrum (HOS), hurst

exponent (HE), largest Lyapunov exponent (LLE) and

sample entropy (SE). These extracted features were ranked

using analysis of variance (ANOVA) method. Two dif-

ferent classifiers namely fuzzy K-nearest neighbor (FKNN)

and support vector machine (SVM) were used to examine

the performance of extracted features based on ranking to

classify six basic emotional states (happiness, sadness, fear,

anger, surprise, and disgust) of LPD, RPD compared to HC

participants.

Materials used

Participants

Twenty right-handed individuals (10F, 10M) with Parkin-

son’s disease (including 10 LPD and 10 RPD motor

symptoms) and 20 healthy right-handed age (range of 45

and 65 years), gender, education level-matched controls

participated in this study (Table 1). Side of symptom onset

was obtained from self-report, and current affected side

was determined by the Unified Parkinson’s Disease Rating

Scale (UPDRS; Fahn et al. 1987) and self-reports. The

severity of Parkinsonian symptoms was I–III on the Hoehn

and Yahr stage scale (Han et al. 2013; Hoehn and Yahr

1967). All PD patients were on medication (dopamine

replacement therapy), and were recruited through the

Neurology Unit outpatient service at the Department of

Medicine of the Hospital University Kebangsaan Malaysia

(HUKM) medical center in Kuala Lumpur, Malaysia. The

HC participants were recruited through the hospital’s

medical unit community and/or from patient’s relatives.

All participants were native speakers of Malaysia and

handedness was determined by self-report and confirmed

by Edinburgh Handedness Inventory (EHS) (Oldfield
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1971). This test consisted of 10 questions asking for the

preferred hand for a series of activities (e.g., writing,

throwing, and using scissors).

Inclusion and exclusion criteria

Participants who had normal or corrected vision and nor-

mal hearing capabilities were included in the study. Par-

ticipants with history of neurological disease (e.g. stroke,

epilepsy, and significant head trauma), significant vision

impairment, depression severity (Beck Depression Inven-

tory [BDI] score C18; (Beck et al. 1961; Schröder et al.

2006), and global cognitive deterioration (Mini Mental

Sate Examination [MMSE] score B24; (Folstein et al.

1975; Wieser et al. 2006) were excluded from this study.

Ethical statement

Ethical approval of the study was granted by the HUKM

Faculty of Medicine Institutional Review Board (Ref.

number: UKM1.5.3.5/244/FF-354-2012), and informed

written consent was obtained from each participant/care-

taker prior to testing. Each participant was paid 50

Malaysian Ringgit (US $15) for their participation.

Experiment design

In the present study, the emotional stimuli were taken from

different sources, namely International Affective Pic-

ture System (IAPS) database, International Affective Dig-

itized Sounds (IADS) database and video clips collected

from the internet resources. The emotions namely sadness,

fear, and disgust are elicited using IAPS and IADS data-

bases. Whereas, the elicitation of happiness, surprise, and

anger emotion is attained by using video clips (through a

pilot study). The experiment protocol had two sessions of

three trials each with a break of 10–15 min in between the

sessions. The participants were allowed to relax during the

break since the continuous assessment may be too

exhausting. The multimodal stimuli relating to the six

emotional states (happiness, sadness, fear, anger, surprise

and disgust) are displayed in random order for various

trials. Each combination of picture and sound is presented

for 6 s. To maximize the participants’ emotional reactivity,

each clip block consisted of six combinations of the same

emotional category and lasted for 36 s. Moreover, each

video clips varied 36–45 s, depending on the length of the

clip. Neutral images, which can calm down the partici-

pants, are displayed for 10 s at the start of each trial. This

will help the participants return to the normal or neutral

state away from emotional excitation. Besides, a 15 s rat-

ing interval (Hamdi et al. 2012) was provided in between

the clips in which participants completed a 5-point self-

assessment questionnaire. Each session takes approxi-

mately 30 min. A more detailed description of the stimuli

materials selection and experimental procedure used in this

experiment can be found in (Yuvaraj et al. 2014a, b).

EEG recordings

Emotional EEG signals were recorded using the Emotive

EPOC 14-channel wireless (2.4 GHz band) neuroheadset

with a sampling rate of 128 Hz (Hadjidimitriou and Had-

jileontiadis 2012). The electrodes were arranged at the

scalp sites AF3, AF4, F7, F8, F3, F4, FC5, FC6, T7, T8,

P7, P8, O1 and O2, according to the 10–20 system, refer-

enced to the common mode sense (CMS-left mas-

toid)/driven right leg (DRL-right mastoid) ground.

Table 1 Summary of demographic and clinical characteristics of LPD, RPD, and HC participants

Characteristics LPD (n = 10) RPD (n = 10) HC (n = 20) Test’s value p value*

Age (45–65 years) 57.60 ± 5.32 59.10 ± 3.75 58.10 ± 2.95 F(2,37) = 0.365 0.697

Gender F = 5, M = 5 F = 5, M = 5 F = 11, M = 9 x2 = 0.066 0.796

Education (years) 11.30 ± 4.27 11.20 ± 3.49 11.05 ± 3.34 F(2,37) = 0.005 0.995

MMSE (25–30) 27.50 ± 1.35 26.40 ± 1.26 27.15 ± 1.63 F(2,37) = 2.181 0.127

H&Y (I/II/III) 2.30 ± 0.67 2.50 ± 0.53 NA F(1,18) = 0.545 0.470

Motor UPDRS 16.70 ± 1.70 18.30 ± 4.60 NA F(1,18) = 1.066 0.470

Disease severity (range 1–12 years) 6.25 ± 3.26 6.45 ± 3.95 NA F(1,18) = 0.015 0.903

BDI (0–18) 6.30 ± 3.13 6.60 ± 3.89 5.45 ± 2.18 F(2,37) = 0.016 0.984

EHS (1–10) 9.90 ± 0.32 9.60 ± 0.70 9.84 ± 0.72 F(2,37) = 0.429 0.655

Mean ± standard deviation scores are reported. One-way ANOVA was used to test the group effect

LPD left-affected PD patients, RPD right-affected PD patients, HC healthy controls, F female, M male, MMSE mini-mental state exam, H & Y

Hoehn & Yahr, UPDRS Unified Parkinson’s’ Disease Rating Scale, BDI Beck Depression Inventory, NA not applicable

* Group effect is significant at p\ 0.05 level
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Methodology

The emotional EEG data obtained from the experiments

were analysed through several procedures, including pre-

processing, feature extraction, feature ranking and emo-

tional state classification, as shown in Fig. 1.

Preprocessing

The time-series waveform of EEG data were pre-processed

using thresholding method to remove movement artifacts

(such as eye movement/blinking), in which data that are

found to have amplitudes of more than 80 lV are discarded

from the study (Gotlib et al. 1998; Poppy and Speckens

2015). Then, a 6th order bandpass IIR Butterworth filter

was used to extract signals in the frequency range of

1–49 Hz. The standard frequency bands of interest were

delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta

(13–30 Hz) and gamma (30–49). Each channel of the

artifact-free emotional EEG data was divided into 6 s

length of epochs without overlapping using time windows

(Yuvaraj et al. 2014b). Finally, the non-linear features were

computed on each epoch of the emotional EEG data of

LPD, RPD and HC participants and are subsequently

explained.

Feature extraction

The non-linear methods of AE, CD, DFA, FD, HOS, HE,

LLE and SE, described in this section, were used to extract

the features from the pre-processed EEG signals. A total of

11 non-linear features were extracted from LPD, RPD and

HC emotional EEG signals by using these methods.

Approximate entropy (AE)

This method is used in time series signal data analysis to

quantify the regularity. The AE values are inversely pro-

portional to the degree of regularity of a time series. In this

work, the formula proposed by (Pincus and Goldberger

1994) is used to detect the variations in the emotional EEG

signals that are not reflected in the amplitude or peaks. AE

is given by (Subha et al. 2010)

AE ¼ ðm; r;NÞ

¼ 1

N �mþ 1

XN�mþ1

i¼1

logCm
i ðrÞ �

1

N �M

XN�m

i¼1

logCmþ1
i ðrÞ

ð1Þ

where m specifies the embedding dimension, r is the radial

distance, N is the total number of data samples and C(r) is

the correlation integral. For this study, m is set to 2 and r is

set to 0.2 times of the standard deviation of the data. These

values are selected on the basis of previous studies indi-

cating good statistical validity for AE using these values

(Pincus and Goldberger 1994).

Correlation dimension (CD)

This method measures the dimensionality of signal in

relation to its geometrical reconstruction in phase space.

Herein, we have used the approach proposed by (Grass-

berger and Procassia 1983). Mathematically, CD can be

described by (Subha et al. 2010)

CD ¼ lim
r!0

log½cmðrÞ�
logðrÞ ð2Þ

where c(r) is the correlation integral, r is the radial distance

around each reference point and m is the embedding

dimension. In our analysis we have chosen an embedding

dimension of 10 and radial distance of 0.2.

Detrended fluctuation analysis (DFA)

This method was proposed by (Peng et al. 1995) as a

technique to quantify the fractal properties of the time

series non-stationary signals. In this work, a fractal scaling

component ‘‘a’’ was used to describe the nature of emo-

tional EEG signals. This exponent gives an indication of

the short and long term correlation behaviour of signals

(Yuvaraj et al. 2014b).

Fractal dimension (FD)

This method is used to measure the EEG signal complexity

and is a powerful tool for transient detection. Different

algorithms have been used by researchers to determine the

Emotional EEG Data 
set   Pre-processing Feature    

Extraction Feature Ranking

Emotional State 
Classification 

Fig. 1 Block diagram of

emotional state classification

from EEG signals
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value of FD (Higuchi 1988; Katz 1998). In this work,

Higuchi’s method was used.

Higher order spectrum (HOS)

HOS elicits both amplitude and phase information of a given

signal. It offers good noise immunity and yields good results,

even for weak and noisy signals. HOS consist of moment and

cumulant spectra and can be used for both deterministic sig-

nals and randomprocesses (Chua et al. 2010). In thiswork,we

derived the features from the third-order statistics of the sig-

nal, namely, the bispectrum and it is given by Eq. 3. The

bispectrum displays symmetry and is evaluated in the prin-

cipal domain region, denoted by X (Chandran and Elgar

1993). The bispectrum mean magnitude (BS_Mag), bispec-

trum phase entropy (BS_PhEnt), normalized bispectral

entropy (BS_Ent1) and normalized bispectral squared entropy

(BS_Ent2) were computed in this paper (Chua et al. 2010).

Bðf1; f2Þ ¼ E½Xðf1ÞXðf2ÞX�ðf1 þ f2Þ� ð3Þ

where Bðf1; f2Þ is the bispectrum in the bifrequency ðf1; f2Þ,
Xðf Þ is the discrete time Fourier transform of the given

signal, and * denotes complex conjugate. To calculate the

above bispectrum features, we used epochs of 768 samples

(6 s) with Hanning window of 50 % overlap at a sampling

rate of 128 Hz. Each epoch was taken from the record of

1024 NFFT points.

Hurst exponent (HE)

This method is used to measure the self-similarity and

predictability of the EEG time series signals. This method

also indicates whether a range of signal samples shows any

sign of asymptomatic behavior when observed for a par-

ticular time span. The HE is defined as (Subha et al. 2010)

HE ¼ logðM=NÞ
logðTÞ ð4Þ

where T is the duration of the sample of data, (M/N) is the

corresponding value of rescaled range, M is the difference

between the maximum deviation from the mean and min-

imum deviation from the mean and N is the standard

deviation.

Largest Lyapunov exponent (LLE)

The LLE estimates how sensitive a system is to initial

conditions and it estimates the predictability of a signal.

The LLE extraction algorithm detects a nearest neighbor

for each point and observes how the distance between them

changes over time. The LLE is calculated using least

squares fit to ‘average’ line defined by (Rosenstein et al.

1993)

yðnÞ ¼ 1

Dt
ln biðnÞh i ð5Þ

where bi nð Þ represents the distance between the ith phase-

space point and its nearest neighbour at nth time step and

h�i denotes the average overall phase-space points.

Sample entropy (SE)

This method is a modified version of AE used for the

assessment of time series signal complexity and regularity

measurement. The SE value will be low for repeating

signal patterns. It provides an improvised assessment of

time-series regularity and better tool to study the dynamics

of emotional EEG signals as compared to AE. SE is given

by the formula (Subha et al. 2010)

SEðk; r;NÞ ¼ ln
AðkÞ

Bðk � 1Þ

� �
ð6Þ

where B(0) = N, the length of the input series and k is the

embedding dimension. In our work, k value was found to

be 2.

Feature ranking

The feature extraction step generally results in a large

number of features, and many of these features might not

have significant information to effectively differentiate six

emotional states. Therefore, the common practice is to

apply feature ranking algorithms on the extracted features

to retain only those informative features useful for classi-

fication and also reduces the complexity for the classifier

without affecting its performance. In this work, ANOVA

was used for this purpose (Acharya et al. 2015; Kobayashi

et al. 2011). For each non-linear feature, the test generates

two parameters, namely the p value and F value. The

p value is used to identify the significance of the features:

the lower the p value, the higher the significance. The F

value is used to rank the features: the higher the F value,

the better is the rank and the feature.

Emotional state classification

Classifiers of FKNN and SVM were used to assess the

association between EEG and emotional states of LPD,

RPD and HC. The details are subsequently explained.

Fuzzy K-nearest neighbour (FKNN)

FKNN classifier assigns a class based on the predominant

class among the k nearest neighbors. Euclidean distance

was used as the metric in FKNN allocating fuzzy class

membership before making decisions. The fuzzy strength

Cogn Neurodyn (2016) 10:225–234 229
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parameter m is used to determine how heavily the distance

is weighted when calculating each neighbor’s contribution

to the membership value. Here, the m value is varied

between 1 and 2 with steps of 0.01, and the classification

performance is obtained using k-values between 1 and 10.

Support vector machine (SVM)

SVM classifier is a supervised learning method, which

performs the classification by constructing hyperplane in

an n-dimensional space where n is the number of input

features. The hyperplane constructed separates input data

classes. Using non-linear kernel function, the input data is

transformed to a high-dimensional feature space so that the

transformed data becomes more separable than the original

input data. In this work, Radial Basis Function (RBF)

kernel was used (Yuvaraj et al. 2014b). For RBF-SVM, we

used the different combinations of the cost parameter (C)

and kernel parameter (!): C 2 2�5; 2�4; . . .; 214; 215
� �

and

c 2 2�15; 2�14; . . .; 23; 24
� �

.

The tenfold cross validation method was used to eval-

uate the performance of classifiers. The original feature

vectors were divided into ten equal sets. The first nine sets

were used for training the classifier and the tenth set was

used for testing the classifier. This process was then repe-

ated ten times using different sets of test data. Classifica-

tion performance was evaluated through the classification

accuracy (CA) and is computed between six emotional

states of LPD, RPD and HC as,

%CAEmotion

¼ Number of correctly classified feature vectorsEmotion
Total number of tested feature vectorsEmotion

� 100 %

ð7Þ

where Emotion refers to the six emotional

states namely happiness, sadness, fear, anger, surprise

and disgust of PD patients and HC (i.e.,

LPD patients happiness vs sadness vs fear vs anger vs surprise vs disgustð Þ,

RPD patients happiness vs sadness vs fear vs anger vs surprise vs disgustð Þ
and HC happiness vs sadness vs fear vs anger vs surprise vs disgustð Þ), across

delta, theta, alpha, beta, gamma EEG frequency bands and

ALL (combination of five frequency bands). The overall

performance of the classifier is evaluated by taking the

average and standard deviation (SD) of the accuracies of the

tenfold classification. Herein, ten participants (10) per group

with six emotional states (6), six trials per emotion (6), and

six epochs per channel (6) for each band resulted in a total of

2160 9 14 (electrodes) feature vectors, which were

processed.

Results and discussion

Participants characteristics

ANOVA was conducted to ensure that the three participant

groups (LPD, RPD and HC participants) were comparable

with regard to demographic and clinical variables. As can

be seen in Table 1, three groups did not differ in demo-

graphic variables such as age, gender (the ratios of male to

female participants in each group [Chi square test]) and

years of education. There were no significant differences

between the groups for the MMSE, F (2, 37) = 2.181,

p = 0.127, the BDI, F (2, 37) = 0.016, p = 0.984 and EHI

scores, F (2, 37) = 0.429, p = 0.655. The scores on the

measures of H & Y, F (1, 18) = 0.545, p = 0.470, disease

severity, F (1, 18) = 0.015, p = 0.903 and motor perfor-

mance, F (1, 18) = 1.066, p = 0.316, did not show any

significant differences across PD groups. These results

indicate that recruited PD groups and HC participants were

matched in terms of demographic and clinical

characteristics.

Experimental results and discussion

Tables 2, 3 and 4 show the ANOVA results of various

features extracted by using the non-linear techniques

described in previous section from LPD, RPD and HC

across different emotion EEG frequency bands. The p val-

ues and F values indicate that all the extracted features

were significant (p\ 0.05) enough for classification. This

ensures the probability of achieving better classification

accuracy. In particular, emotional features of HC show

very low p value (p\ 0.00001) compared to LPD and RPD

(p\ 0.05) among the six emotional states. This may sug-

gest that the EEG does not reflect the emotion processing

accurately in PD patients, which could be interpreted as

impairment in the brain’s processing ability of emotions.

Furthermore, it is seen that the F value is low for the delta

and theta frequency bands, and it is high for features

computed from the alpha, beta, gamma and ALL frequency

bands indicating that there is more difference between the

six emotional states in those frequency bands for both HC

and PD groups.

The features were ranked using their F value and fed one

by one as input to FKNN and RBF-SVM classifiers for

emotional state classification. The classifiers were evalu-

ated for their performance by using tenfold cross validation

to determine the highest performance accuracy with min-

imum number of features. Table 5 shows the average

classification performance of LPD, RPD and HC across

delta, theta, alpha, beta, gamma, and ALL frequency bands

using RBF-SVM and FKNN classifier. It can be observed
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that the classification performance using ALL frequency

bands outperformed any individual frequency band in all

the groups. This demonstrates that the connection between

emotions and EEG patterns does not occur in only one

particular band, but it is evident in ALL frequency bands.

The maximum average accuracy with the combination of

ALL frequency band was 58.28 % ± 3.23 %, 70.86 % ±

1.82 % and 83.39 % ± 2.04 % for LPD, RPD and HC

participants, respectively using RBF-SVM classifier. We

obtained this performance using top 4 (AE, FD, LLE and

BS_PhEnt), 6 (AE, FD, LLE, BS_PhEnt, HE and Bs_Ent1)

and 3 (AE, FD and LLE) ranked features for LPD, RPD

and HC, respectively. The result suggests that EEG signals,

being an activity of central nervous system, can reflect the

underlying inherent emotional state changes of PD patients.

The main significance of the proposed emotional classifi-

cation system in the clinical environment is that it is

completely non-invasive and automated. This can be used

to identify emotion recognition impairments in PD patients

with respect to most affected side and also to direct the

patients for medical treatment, such as computerized cog-

nitive rehabilitation. As seen in Table 5, it can be found

that the classification performance of alpha, beta, and

gamma bands (i.e., high frequency bands) is better than

those of delta and theta bands (i.e., low frequency bands) in

LPD, RPD and HC. This finding is in line with our previous

emotion studies that high frequency bands play a more

important role in emotion activities than low frequency

Table 2 Results of feature ranking using ANOVA among the six emotional states in each frequency band of left-affected PD (LPD)

Non-

linear

feature

Delta (1–4 Hz) Theta (4–8 Hz) Alpha (8–13 Hz) Beta (13–30 Hz) Gamma (30–49 Hz) All

p value F value p value F

value

p value F value p value F

value

p value F

value

p value F

value

AE 0.007825 3.748 0.000883 4.632 5.93E-05 6.821 7.48E-07 7.174 5.46E-08 8.840 6.64E-08 9.948

FD 0.008913 3.771 0.000983 4.843 7.75E-04 6.218 3.69E-05 7.284 4.23E-04 8.294 2.96E-04 8.425

LLE 0.002819 3.038 0.000641 3.258 5.82E-04 6.413 1.68E-04 6.184 1.49E-04 7.163 1.53E-04 7.274

BS_PhEnt 0.001421 3.742 0.000801 3.854 0.000613 5.294 0.000345 5.294 0.000458 7.714 1.00E-04 7.519

HE 0.042179 3.489 0.000154 3.731 0.000927 5.618 0.000783 5.845 0.000936 6.843 0.000684 7.492

BS_Ent1 0.024712 2.992 0.047832 3.945 0.042912 4.8374 0.000115 5.194 0.000891 5.942 0.000783 7.194

BS_Ent2 0.018821 2.822 0.037081 3.620 0.005491 4.524 0.006929 4.713 0.000864 5.849 0.000241 6.130

SE 0.020032 2.643 0.036422 2.883 0.039481 4.741 0.005554 4.734 0.004726 5.524 0.006737 6.913

BS_Mag 0.018993 2.729 0.040567 2.472 0.006812 3.571 0.044824 4.004 0.006843 4.882 0.008423 5.825

CD 0.029961 2.783 0.027629 2.142 0.042184 3.732 0.016832 3.801 0.045573 4.852 0.007831 5.819

DFA 0.048002 2.732 0.014452 2.791 0.024891 3.117 0.047836 3.663 0.014842 4.743 0.006725 4.894

Table 3 Results of feature ranking using ANOVA among the six emotional states in each frequency band of right-affected PD patients (RPD)

Non-

linear

feature

Delta (1–4 Hz) Theta (4–8 Hz) Alpha (8–13 Hz) Beta (13–30 Hz) Gamma

(30–49 Hz)

All

p value F

value

p value F

value

p value F

value

p value F

value

p value F

value

p value F

value

AE 0.000456 4.391 2.38E-04 5.341 4.28E-07 8.803 4.73E-06 8.705 8.29E-05 9.218 6.78E-07 10.829

FD 0.000864 4.221 1.51E-04 5.820 3.27E-04 7.554 4.81E-04 8.032 2.88E-04 8.362 3.81E-05 10.524

LLE 0.000462 3.104 0.000741 4.706 2.47E-04 6.521 3.90E-04 7.336 0.000571 8.421 5.78E-04 9.402

BS_PhEnt 0.007831 3.030 0.000948 4.225 0.000134 6.731 0.000782 7.628 0.000285 7.952 0.000371 9.331

HE 0.003217 3.421 0.000164 3.752 0.000728 5.628 0.000903 6.732 0.000119 7.463 0.000993 8.373

BS_Ent1 0.008537 3.582 0.006386 2.831 0.007821 4.445 0.000554 6.925 0.000792 6.832 0.000781 7.442

BS_Ent2 0.029850 3.827 0.028463 2.510 0.005284 4.382 0.000382 5.394 0.003819 4.573 0.000718 7.926

SE 0.017276 3.237 0.037821 2.842 0.007743 3.872 0.005929 4.783 0.028493 4.062 0.000583 5.937

BS_Mag 0.035174 2.993 0.018934 2.392 0.047569 3.929 0.002894 4.378 0.018472 3.002 0.000886 4.792

CD 0.038296 2.917 0.041094 2.297 0.016837 3.638 0.048953 4.834 0.038194 3.572 0.037143 4.728

DFA 0.048632 2.932 0.037821 2.106 0.036380 3.037 0.016824 3.834 0.027481 2.691 0.048184 4.701
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bands (Yuvaraj et al. 2014b). Neuroanatomically, high

frequency bands play a crucial role in integrating dis-

tributed neural processes into highly ordered cognitive

functions and are important in a wide range of cognitive,

perceptual, attention and emotion processes (Luo et al.

2007; Sammler et al. 2007). In addition, high frequency

bands have been associated with emotional processing in

the amygdala (one of the most important brain region for

emotion) (Oya et al. 2002). Hence the distribution of high

frequency band activation recorded from the scalp surface

may be significant in the results for discovering links

between emotional experiences and EEG recordings.

From Table 5, it can also be noted that the average

classification performance of LPD and RPD patients is less

compared to HC participants in all the frequency bands.

This lower accuracy indicates that EEG features of PD

patients may not reflect the emotional states effectively,

which may due to the impairment in their brain’s pro-

cessing ability of emotions. These results are in line with

studies done by other researchers indicating that there is a

decrease in brain’s complexity during emotion processing

due to the dysfunction in the neural circuits of PD patients

(Adolphs et al. 1996; Lawrence et al. 2007). Furthermore,

the results are also compatible with the more general

hypothesis that a loss of complexity appears when the

biological systems become functionality impaired (Jeong

et al. 1998). Notably, PD patients with greater symptom

severity on the left side of the body (inferred right–hemi-

sphere pathology) were specifically impaired in emotion

recognition, as showed by decreased classification accu-

racy compared to RPD. This finding indicate that stronger

right than left-hemispheric degeneration in PD may lead to

impairments in emotion recognition. This results are in line

with Garrido-Vasquez (Garrido-Vásquez et al. 2013;

Ventura et al. 2012), who reported that LPD had more

difficulty with emotion processing since there is evidence

that the processing of emotional information is right-

hemisphere dominant (Yuvaraj et al. 2013). Furthermore,

the right hemisphere is thought to be involved in social

awareness and the in the recognition of salient social cues

(Ventura et al. 2012). Finally, considering the different

classifiers, the average classification performance of SVM

with RBF kernel outperforms FKNN classifier. Since the

SVM classifier projects input data onto a higher

Table 4 Results of feature ranking using ANOVA among the six emotional states in each frequency band of HC participants

Non-

linear

feature

Delta (1–4 Hz) Theta (4–8 Hz) Alpha (8–13 Hz) Beta (13–30 Hz) Gamma

(30–49 Hz)

All

p value F

value

p value F

value

p value F

value

p value F

value

p value F

value

p value F

value

AE 2.05E-07 7.483 2.02E-08 7.473 3.36E-11 10.280 4.21E-13 10.837 6.37E-10 16.293 3.04E-09 17.589

FD 1.78E-06 7.350 7.16E-08 7.485 6.28E-06 10.321 4.88E-10 10.481 4.17E-06 12.382 1.51E-06 13.284

LLE 1.35E-04 7.849 6.04E-04 7.294 4.77E-05 9.203 2.84E-08 9.014 2.94E-05 12.003 1.00E-05 11.805

BS_PhEnt 0.000852 6.390 0.000369 6.892 4.13E-04 8.382 0.000434 9.495 0.000142 10.285 0.000175 10.294

HE 0.000575 6.257 0.000615 6.348 0.000242 7.794 0.000580 9.155 0.000126 9.927 0.000155 9.273

BS_Ent1 0.000628 5.392 0.001439 5.339 0.000742 7.063 0.000692 8.105 0.006906 8.923 0.000990 9.775

BS_Ent2 0.000223 4.298 0.001503 5.321 0.002758 6.937 0.002687 7.025 0.003084 8.781 0.009346 8.724

SE 0.001693 3.284 0.001396 4.217 0.009676 6.786 0.026289 7.291 0.016095 7.581 0.00388 8.396

BS_Mag 0.001524 2.927 0.001504 2.284 0.003145 6.754 0.026515 6.801 0.031581 6.482 0.004893 7.682

CD 0.001861 2.721 0.021341 2.114 0.025202 6.385 0.017712 4.826 0.045938 5.361 0.041714 6.482

DFA 0.045203 2.933 0.020495 2.284 0.043371 4.932 0.030188 3.482 0.015526 4.381 0.036498 6.391

Table 5 Average classification accuracy ± SD across different EEG frequency bands (features ranked using ANOVA)

Classifier Group No. of features EEG frequency band (%)

Delta Theta Alpha Beta Gamma ALL

FKNN

m = 1.12, k = 5

LPD 5 36.19 ± 3.46 42.76 ± 2.88 48.59 ± 1.39 50.83 ± 2.63 51.65 ± 1.39 54.28 ± 1.60

RPD 7 44.82 ± 2.77 54.29 ± 1.62 55.52 ± 2.97 60.35 ± 1.68 60.35 ± 2.00 63.19 ± 1.57

HC 5 55.42 ± 1.75 58.39 ± 2.33 60.54 ± 1.24 64.28 ± 2.82 65.24 ± 1.75 71.42 – 2.58

RBF-SVM LPD 4 40.49 ± 1.65 50.39 ± 3.05 52.30 ± 2.61 54.85 ± 1.95 55.20 ± 1.05 58.28 ± 3.23

RPD 6 52.29 ± 1.83 55.49 ± 2.91 64.99 ± 1.53 61.63 ± 2.28 61.28 ± 1.99 70.86 ± 1.82

HC 3 60.49 ± 2.75 66.29 ± 1.73 67.38 ± 2.81 72.38 ± 1.73 74.84 ± 2.83 83.39 – 2.04
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dimensional feature space via a RBF kernel function, in

which classification can be made more easily than in the

original feature space.

Figure 2 shows the plot of accuracy of individual

emotion. It can be observed that the difficulties in PD

patients appear to be more severe in recognizing negative

emotions (anger, disgust, fear, and sadness) as compared to

that of positive emotions (happiness and surprise), as

revealed by lower classification accuracy. This evidence

points to neuropathological changes in PD patients in many

brain areas which are assumed to play key roles in negative

emotion processing (Kober et al. 2008). These include

limbic structures such as the amygdala, and the ventral

striatum, which is centrally located within the basal gan-

glia’s limbic loop. Figure 3 shows the plot of average

accuracy versus number of features for RBF-SVM classi-

fier. It shows that beyond certain ranked features, there is a

drop in the accuracy level.

On the limitation side, the use of small number of PD

samples affects the reliability of the system. In order to

generalize the proposed algorithm, further studies should

use larger number of samples to examine the relationship

between brain activity and emotions with respect to

affected body side in PD. Furthermore, all PD patients

were under different regimens of medication, and the two

patient groups differed with respect to the distribution of

motor subtypes. Therefore, the interpretation of our find-

ings should be rather cautious and warrants further

investigation.

Conclusion

This study demonstrates the utility of EEG signal in

identifying true inherent emotional state of PD patients

with respect to motor symptom asymmetry. Different

nonlinear features were extracted across each EEG fre-

quency band of LPD, RPD, and HC participants. After

using feature ranking technique to select only the signifi-

cant features, two classifiers namely FKNN and SVM were

built and validated using the selected features. PD patients

primarily suffering from right-hemisphere dysfunction

(LPD) were more impaired in emotional communication

compared to RPD. Our results may be useful for to develop

a device that can automatically detect the emotional states

would be helpful to medical practitioners to regulate the

emotions for better clinical outcomes in PD patients.
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Péron J, Dondaine T, Jeune FL, Grandjean D, Vérin M (2012)
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