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SUMMARY

Posttranscriptional regulation in eukaryotes requires cis- and trans-acting features and factors 

including RNA secondary structure and RNA-binding proteins (RBPs). However, a comprehensive 

view of the structural and RBP interaction landscape of nuclear RNAs has yet to be compiled for 

any organism. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping 

approaches to globally profile these features in Arabidopsis seedling nuclei in vivo. We reveal 

anticorrelated patterns of secondary structure and RBP binding throughout nuclear mRNAs that 

demarcate sites of alternative splicing and polyadenylation. We also uncover a collection of 

protein-bound sequence motifs, and identify their structural contexts, co-occurrences in transcripts 

encoding functionally related proteins, and interactions with putative RBPs. Finally, using these 

motifs, we find that the chloroplast RBP CP29A also interacts with nuclear mRNAs. In total, we 

provide a simultaneous view of the RNA secondary structure and RBP interaction landscapes in a 

eukaryotic nucleus.
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INTRODUCTION

RNA molecules are bound throughout their life cycle by dynamic complexes of proteins that 

regulate their splicing, polyadenylation, nuclear export, localization, translation, and 

degradation (Bailey et al., 2009). These RNA-binding proteins (RBPs) interact with their 

targets in a sequence- and secondary structure-specific manner (Cruz and Westhof, 2009). 

Therefore, both the bound RBPs and secondary structure are key regulatory features of these 

molecules (Ding et al., 2014; Li et al., 2012a, 2012b). For instance, recent studies have 

linked secondary structure of mRNA to translation efficiency, stability, splicing regulation, 

and polyadenylation (Ding et al., 2014; Li et al., 2012a, 2012b; Zheng et al., 2010).

Due to the importance of RNA secondary structure in eukaryotic posttranscriptional 

processing and regulation, several high-throughput approaches have been developed to 

globally profile single- and double-stranded RNAs (ssRNAs and dsRNAs, respectively) 

(Rouskin et al., 2014; Zheng et al., 2010). For example, ss- and dsRNA-seq employ single- 

and double-stranded RNases (ssRNases and dsRNases, respectively) to provide direct 

evidence for both single- and double-stranded regions of the transcriptome (Li et al., 2012a, 

2012b; Zheng et al., 2010). Alternatively, dimethylsulfate sequencing (DMS-seq) is a 

technique where samples are treated with DMS, which specifically modifies unpaired 

adenines (As) and cytosines (Cs) resulting in the termination of reverse transcriptase 

products, providing evidence for unpaired As and Cs in RNAs (Ding et al., 2014; Rouskin et 

al., 2014). However, recent studies have demonstrated that DMS modification is obstructed 

at RBP-binding sites (Talkish et al., 2014), making protein-bound regions indistinguishable 

from truly structured regions of RNAs.

Most studies of RBP-RNA interactions identify the binding partners of a single protein of 

interest. This is often accomplished by crosslinking and immunoprecipitation (CLIP) (Ule et 

al., 2003), in which RNA-protein interactions are crosslinked via UV irradiation followed by 

immunoprecipitation of a protein of interest. Recently, two methods have reported 
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development of unbiased approaches to study RNA-RBP binding (Baltz et al., 2012; 

Silverman et al., 2014). Protein interaction profile sequencing (PIP-seq) crosslinks RNA-

protein interactions via formaldehyde and subsequently digests ssRNA and dsRNA using 

structure-specific RNases before high-throughput sequencing, providing a global view of 

both RNA secondary structure and RBP-bound RNA sequences across the transcriptome 

(Silverman et al., 2014). Additionally, global photoactivatable ribonucleoside CLIP (gPAR-

CLIP) utilizes the incorporation of a synthetic nucleotide into RNAs to identify RNA-

protein crosslinking events after exposure to long-wave UV radiation (Baltz et al., 2012). To 

date, there have been no global studies of either RBP binding or RNA secondary structure 

performed in the nucleus of any organism.

All aspects of posttranscriptional mRNA maturation are tightly controlled by RNA-protein 

interactions acting to positively or negatively regulate recruitment of catalytic molecular 

machines. For instance, splicing is performed by one of two large complexes, the U2- or 

U12-type spliceosomes, which identify and excise ~170,000 or ~1,800 introns in 

Arabidopsis, respectively (Marquez et al., 2012). In addition to being regulated by multiple 

spliceosomes, pre-mRNA transcripts can undergo alternative splicing (AS), resulting in 

mature mRNAs of different sequences (Wahl et al., 2009). In Arabidopsis, over 60% of 

introns are alternatively spliced, with failure to excise an intron (intron retention [IR]) or 

exclusion of an exon (exon skipping/cassette exon [CE]) in specific isoforms comprising > 

64% of these events (Marquez et al., 2012). Additionally, more than 70% of Arabidopsis 
pre-mRNAs can undergo alternative polyadenylation (APA), resulting in transcript isoforms 

that differ in their 3′ termini (Hunt et al., 2012; Wu et al., 2011). Previous studies have 

shown that perturbing RNA secondary structure at alternatively spliced exons can result in 

decreased RBP recruitment and a shift in spliceoform abundance (Raker et al., 2009). Thus, 

both AS and APA are important regulatory processes driven by large collections of RBPs 

and their interactions with specific RNA sequences and structures.

The interplay between RBPs that bind functionally related genes has become a topic of great 

interest. Recent studies have attempted to identify posttranscriptional operons (Tenenbaum 

et al., 2011), transcripts with the same gene ontology that are bound by similar populations 

of RBPs. Thus, the binding of these RBPs would allow coregulation of genes encoding 

functionally related proteins. Evidence for posttranscriptional operons has been seen in 

human cells (Silverman et al., 2014); however, this analysis has yet to be performed in 

Arabidopsis.

Here, we simultaneously profile the global landscapes of RBP binding and RNA secondary 

structure in nuclei of 10-day-old Arabidopsis seedlings using our PIP-seq and structure-

mapping approaches. In total, this study produces an unbiased view of RBP binding and 

RNA secondary structure for a nuclear transcriptome, providing a rich resource for future 

hypothesis generation and testing.
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RESULTS AND DISCUSSION

PIP-seq on Purified Arabidopsis Seedling Nuclei

To probe the RNA-RBP interaction site and RNA secondary structure landscapes of the 

Arabidopsis nucleus, we performed PIP-seq (Silverman et al., 2014) on total nuclei from 10-

day-old seedlings. The nuclei were crosslinked with formaldehyde prior to purification via 

the isolation of nuclei in tagged cell types (INTACT) approach (Deal and Henikoff, 2010). 

We confirmed nuclei purity by direct imaging (Figure S1A available online), revealing only 

DAPI-stained nuclei bound to the streptavidin-coated beads. Additionally, we found an 

enrichment of the nuclear histone H3 protein and undetectable levels of the mostly 

cytoplasmic ACT8 (Kandasamy et al., 1999), the ER-localized BIP1 and CNX1, and 

chloroplastic RUBISCO and PEPC proteins in our INTACT-purified nuclei preparations 

(Figure S1B), confirming that there is no chloroplastic, ER, or cytoplasmic contamination. 

We used ~2 million of these highly pure nuclei for each of two PIP-seq replicates, which 

were split into footprinting and structure-only samples (four total libraries per replicate) 

(Figure 1A). Our structure-only samples provide in vivo structure data, and additionally 

serve as a background to our footprinting samples accounting for regions that are insensitive 

to the structure-specific RNases.

Footprint samples were directly treated with either an ss- or dsRNase (see Experimental 

Procedures). In contrast, the structure-only samples first had proteins denatured in SDS and 

degraded with Proteinase K prior to RNase digestion. Denaturation of RBPs before RNase 

treatment will make protein-bound sequences in the footprinting sample accessible to 

RNases in these reactions. Thus, RBP-bound sequences were enriched in footprinting 

relative to structure-only samples (Figure 1B). Additionally, analysis of the structure-only 

samples as previously described (Li et al., 2012a) allowed us to determine the native 

(protein-bound) RNA base-pairing probabilities for the Arabidopsis nuclear transcriptome 

(example shown in Figures 1C–1E).

The resulting high-quality PIP-seq libraries (Figures S2A and S2B) were sequenced and 

provided ~24–38 million raw reads per library. To determine reproducibility, we used a 50 

nucleotide (nt) sliding window to define the correlation of nonredundant sequence read 

abundance between biological replicates of footprinting and structure-only libraries. We 

observed a high correlation in read counts between all footprinting and structure-only 

libraries (Pearson correlation > 0.81) (Figures S3A–S3D). Similarly, principle component 

analysis of read coverage in 500 nt bins revealed that replicates of each library type clustered 

together (Figure S3E), further indicating the high quality and reproducibility of our PIP-seq 

libraries.

The RNA-Protein Interaction Landscape of the Arabidopsis Nucleus

To identify protein-protected sites (PPSs), we used a Poisson distribution model to identify 

enriched regions in the footprinting compared to the structure-only libraries at a false-

discovery rate of 5% as previously described (Silverman et al., 2014) (Figure 1B). We 

identified 61,632 total PPSs in our experiments, 64.7% of which overlap between the two 

replicates (Figure 2A). Consolidation of all PPSs yields 40,131 distinct sites (Table S1) with 
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an average size of 68 nt (Figure S4A). This reproducibility is much higher than many CLIP-

seq experiments, which often produce < 35% overlap between replicates (Lebedeva et al., 

2011). The majority of PPSs were identified by the dsRNase (~30,000 PPSs) as compared to 

the ssRNase (~10,000 PPSs) (Figures S4B and S4C) treatment, with ~50% of the sites 

uncovered by the ssRNase overlapping those from the dsRNase libraries (Figures S4D and 

S4E).

Given the high reproducibility between our PIP-seq replicates (Figures 2A, S3, and S4), we 

focused on the complete set of 40,131 distinct PPSs for all subsequent analyses. To estimate 

the functional relevance of these nuclear PPSs, we compared flowering plant PhastCons 

conservation scores (Li et al., 2012b) for PPSs versus same-sized flanking regions. We found 

that PPS sequences were significantly (p values < 1×10−200, Kolmogorov-Smirnov test) 

more evolutionarily conserved than flanking regions (Figures 2B and S4F). Importantly, this 

was true for PPS sequences in both exonic and intronic portions of the nuclear collection of 

mature and pre-mRNA transcripts (nuclear mRNAs), but not for ncRNAs (Figure 2B). These 

results support the notion that nuclear mRNA sequences are constrained by their ability to 

interact with RBPs, while decreased PPS conservation within ncRNAs is consistent with 

their low conservation rates across plant species (Liu et al., 2012).

We also reasoned that functional RBP-interacting sequences would contain less nucleotide 

diversity across closely related strains when compared to an equal number of same-sized 

regions randomly selected from detected transcripts. To address this, we used data from the 

1001 Genomes Project, which has cataloged naturally occurring single-nucleotide 

polymorphisms (SNPs) between 80 strains of Arabidopsis thaliana (Cao et al., 2011). We 

found a significant (p value < 2.2×10−16, χ2 test) decrease in nucleotide diversity within 

PPSs compared to shuffled regions (Figure 2C). Therefore, Arabidopsis PPSs resist the 

effects of random genetic drift occurring in the numerous populations across the globe, 

indicating their functional significance.

A classification of all distinct PPSs revealed the majority of these sites were located in 

nuclear mRNAs, with the largest fractions occupying the coding sequence (CDS) (57.3%) 

and introns (26.1%) (Figure 2D). Closer examination of PPSs broken down by genic features 

(e.g., 5′ and 3′ UTR, CDS, and intron) revealed that detected Arabidopsis nuclear mRNAs 

contained multiple binding events in both the CDS (~5 total/gene) and introns (~4 total/

gene), while the 5′ and 3′ UTRs averaged only a single interaction per expressed transcript 

(Figure 2E).

We then tested the enrichment of PPSs in specific nuclear mRNA regions (e.g., 3′ and 5′ 

UTRs) normalized to the number of bases annotated as these features in the TAIR10 

Arabidopsis genome. We found that PPSs identified by both RNases were enriched in CDSs, 

while being underrepresented in 5′ UTRs (Figure 2F). Interestingly, both introns and 3′ 

UTRs show opposite enrichment trends for ds- and ssRNases, suggesting that PPSs 

preferentially occur in more highly or lowly structured regions, respectively. When 

interrogating the enrichment of PPSs in the CDSs of nuclear mRNAs we found that the 

intron flanking ends of exons tend to be more protein bound than their middle segments 

(Figure S5A). This binding suggests that we can detect a high level of splicing factor/
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machinery binding through nuclear PIP-seq as described below. In total, our results reveal 

that the CDSs of mRNAs are enriched for RBP binding in the Arabidopsis nucleus.

Although PPSs in ncRNAs were not conserved, this category consists of many RNA 

subgroups, thus conserved classes might be obscured. Long intergenic noncoding RNAs 

(lincRNAs) are a recently discovered class of ncRNAs that are necessary for vertebrate 

development (Cech and Steitz, 2014; Sauvageau et al., 2013), but are not well characterized 

in plants (Hacisuleyman et al., 2014; Liu et al., 2012). We examined the relationship 

between our PIP-seq data and a set of ~2,700 curated lincRNAs in Arabidopsis (Liu et al., 

2012) to identify nuclear protein-bound RNAs. We detected 236 lincRNAs in our nuclear 

sequencing data, 38 of which contained one to four PPSs (Figure 2G). We found that these 

protein-bound lincRNAs were significantly (p value < 4.5×10−30, χ2 test) more conserved 

within the related crop species Brassica rapa (37%, 14 total) as compared to unbound 

nuclear lincRNAs (8.5%, 17 total) (Figure 2G). The combination of nuclear protein binding 

and conservation in B. rapa suggests that RBP-bound nuclear lincRNAs have important 

functions in plant systems.

Patterns of RNA Secondary Structure and RBP Binding Are Anticorrelated

To interrogate the landscape of RBP binding and RNA secondary structure in specific 

regions of nuclear mRNAs, we calculated the structure scores and PPS densities and 

examined the average profiles for all detectable transcripts. The structure score is a 

generalized log ratio of dsRNA-seq to ssRNA-seq reads at each nucleotide position, with 

positive and negative scores indicating ds- and ssRNA, respectively (see Supplemental 

Experimental Procedures). To examine the relationship between PPS density and structure 

score, we focused on the boundaries between the UTRs and CDS of nuclear mRNAs. We 

observed the highest PPS density in the CDS with decreased occupancy within the 5′ and 3′ 

UTRs (Figures 3A and 3B), consistent with the gross PPS localization and enrichment 

analysis (Figures 2D–2F). Interestingly, we observed significantly (p value < 8.2×10−32, 

Wilcoxon test) higher levels of protein binding directly over the start codon (Figure 3A) 

relative to flanking regions. Similarly, we examined the start codons at high-confidence 

upstream open reading frames (uORFs) (von Arnim et al., 2014) and found a significant (p 

value < 0.01, Wilcoxon test) increase in PPS density over uORF start codons relative to the 

upstream flanking region (Figure S5B). Similar increases in PPS density over the start and 

stop codon were speculated to be due to ribosome binding (Baltz et al., 2012; Silverman et 

al., 2014). However, the nuclear preparations used in this study are free of the cellular 

compartments containing functional ribosomes (cytoplasm and ER) (Figure S1B), and RBP-

binding profiles for transcripts that are not translated in the rough ER (Figure S5C) or are 

unspliced and likely localized in the nucleus (Figure S5D) demonstrate very similar protein-

binding profiles. Taken together, these results suggest that one or more nuclear RBPs occupy 

this region.

In contrast to RBP occupancy, we found that secondary structure was higher in both UTRs 

compared to the CDS at the regions analyzed, with a significant (p values < 0.05, Wilcoxon 

test) dip directly over uORF and canonical start codons, as well as upstream of the stop 

codon, as observed previously (Ding et al., 2014; Li et al., 2012b) (Figures 3A, 3B, and 
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S5B). Thus, these structural characteristics at the start and stop codons seem to be a 

consistent feature of both Arabidopsis nuclear and mature mRNAs. Interestingly, our 

analyses revealed that secondary structure and PPS density are anticorrelated to one another. 

Specifically, we looked at both PPS density and structure score simultaneously, and found a 

significant (p value < 2.2×10−16, asymptotic t approximation) anticorrelation (Spearman’s 

rho < −0.82) between these metrics at both canonical start and stop codons. Although the 

correlation is milder (likely due to fewer instances), there is a significant (p value < 

3.6×10−9, asymptotic t approximation) negative correlation (Spearman’s rho < −0.55) for 

uORF start codons as well.

It is worth noting that although the majority of PPSs were identified in the dsRNase-treated 

samples, this does not necessitate that the interacting RBPs are binding dsRNA. In support 

of this hypothesis, we found that more highly structured regions generally surrounded PPSs, 

with a lower average structure score directly over the RBP-bound sequence (Figure S6A). 

Although the dsRNase-identified PPSs have a significantly (p value < 2.2×10−16, Wilcoxon 

test) higher average structure score than those uncovered by the ssRNase (Figure S6A), the 

dip in structure score directly over these regions suggests that they can be ds- and/or 

ssRNAs. Taken together, these results suggest that many Arabidopsis RBPs bind ssRNA 

flanked by structured regions.

It should also be noted that the higher overall structure of the UTRs compared to the CDS is 

opposite to what has been observed previously both in vivo and in vitro when profiling total 

(mostly mature cytoplasmic) RNA in Arabidopsis (Ding et al., 2014; Li et al., 2012b). 

Together, these results suggest that the structural landscape of the nucleus is distinct from 

that of the cytoplasm. These differences in secondary structure in specific cellular locales 

will need to be further investigated.

As we were probing the nuclear transcriptome, we next examined the PPS density and 

structure scores across all TAIR10 annotated splice donor and acceptor sites (Figure 3C). We 

first determined that the RNA population consisted of a high percentage of unspliced pre-

mRNA. Specifically, we found that ~40% of reads mapping to the first and last constitutively 

spliced intron junctions cross the exon-intron boundary in total RNA sequencing data sets 

from congruently purified nuclei (see Supplemental Experimental Procedures), suggesting 

comparable levels of spliced and unspliced transcripts in our data sets (Figure S6B). Despite 

the large percentage of detectable unspliced transcripts (pre-mRNAs), exonic and intronic 

regions cannot be directly compared due to slightly lower read coverage in introns. 

Therefore, we first compared 30 nt regions up- or downstream of acceptor and donor intron 

sites, respectively, and found that the 3′ end of introns had significantly (p value < 1×10−30, 

Wilcoxon test) higher protein binding relative to the 5′ end. These results are consistent with 

the U2 auxiliary factors (U2AFs) occupying the acceptor splice site (Wahl et al., 2009). 

Intriguingly, there were distinct patterns of secondary structure at both the splice donor and 

acceptor sites (Figure 3C). Upstream of the donor site, we observed a dramatic decrease in 

secondary structure from nt −3 to −1, corresponding to the U1 snRNA binding site (−3 to 

+8) (Chiou et al., 2013). This dip in secondary structure mirrors what we have seen over the 

translation start codon (Figure 3A), revealing that this region is more accessible to 

intermolecular RNA pairing than flanking sequences, perhaps facilitating binding of the U1 
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snRNA. Additionally, we found a drop in secondary structure immediately upstream of the 

splice acceptor site, suggesting an increased accessibility to U2AFs and other splicing 

factors in this region (Wahl et al., 2009) (Figure 3D).

We again observed opposing patterns of secondary structure and PPS density at all regions 

examined in these analyses (Figure 3C). Specifically, we found that this anticorrelation 

(Spearman’s rho < −0.93) between PPS density and RNA secondary structure was 

significant (p value < 2.2×10−16, asymptotic t approximation) at regions flanking the 

acceptor sites, as well as the upstream exonic sequence at donor sites. The proximal intronic 

region at donor sites had a milder (Spearman’s rho < −0.38), but still significant (p value < 

0.05, asymptotic t approximation) anticorrelation between structure score and PPS density, 

which may be due to the intermolecular base pairing between the U1 snRNA and the intron 

(Figure 3D) that occurs at 8 of the 30 nt probed. In total, our findings reveal that RBP 

binding and RNA secondary structure are anticorrelated features in the Arabidopsis nuclear 

transcriptome.

Distinct RNA Secondary Structure and RBP-Binding Profiles Demarcate AS and 
Polyadenylation Sites

The specific patterns of RBP binding and RNA secondary structure at exon/intron 

boundaries suggest that these features may also have distinct distributions at sites of AS. 

Therefore, we compared the profiles for these two features at several types of alternatively 

spliced exons. To do this, we used ASTALAVISTA (Foissac and Sammeth, 2007) to 

annotate AS events in the TAIR10 transcript assembly, and isolated all examples of CE and 

IR. We also focused on TAIR10 introns that have been previously described as U12-type 

splice sites (Marquez et al., 2012). We compared average PPS density and structure score for 

50 nt in the exonic region and 30 nt in the intronic sequence at both the splice donor and 

acceptor sites for these splicing events (Figure 4A). We found that IR events have 

significantly (p values < 4.3×10−7, Wilcoxon test) higher PPS density in the 40 nt upstream 

(−40 to −1) of the splice donor, while CE and U12-type introns do not significantly (p value 

> 0.05, Wilcoxon test) differ from constitutive introns. This trend for increased PPS density 

continues in IR events 30 nt into the intron at splice donor sites, with these events showing 

~4.5-fold higher protein binding than constitutive introns (p value < 1.9×10−44, Wilcoxon 

test) (Figure 4B). The increased binding within these introns is consistent with the presence 

of intronic splicing silencers, cis elements that recruit proteins to inhibit spliceosome 

assembly (Chen and Manley, 2009). We observed increased PPS density at the splicing 

acceptor for both CE and IR sites in the downstream exon (p values < 6.7×10−6, Wilcoxon 

test) and in the 30 nt of intron directly upstream of this splice site (p values < 0.001, 

Wilcoxon test) (Figure 4B). This can likely be explained by recruitment of RBPs through a 

combination of both positive and negative cis regulatory elements, such as exonic splicing 

silencers to induce exon skipping, and intronic splicing enhancers to increase inclusion, 

working additively to regulate each exon in a cell type-specific manner (Chen and Manley, 

2009). These same trends are observed when specifically examining CE and IR events with 

adjacent constitutive exons (Figures S6C and S6D). In total, these results reveal that IR and 

CE events can be differentiated from one another based on the patterns of protein binding 

density just up- and downstream of both splice sites.
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We next probed the structural profiles for each of these subsets of introns across splice sites 

(Figure 4C). The most striking feature we observed was the dramatic difference in overall 

profile shape between U12-type introns and constitutive introns upstream of the donor splice 

site (−16 to −1). We found a significantly (p value < 0.01, Wilcoxon test) higher structure 

score for these introns in this region, which have a PPS profile that is indistinguishable from 

constitutive introns. This structural profile likely influences the identity of the proteins 

binding this region (Cech and Steitz, 2014), resulting in distinct RBP populations at each 

type of intron. Additionally, IR events are also significantly (p value < 4.5×10−3, Wilcoxon 

test) more structured 40 nt upstream of the donor splice site (−40 to −1). Specifically, these 

profiles reveal highly structured regions that are associated with increased binding levels of 

regulatory proteins. Thus, in both U12-type and IR events, the increased structure in specific 

regions likely limits the accessibility of binding sites to specific RBPs allowing for a tighter 

control over the splicing machinery. Interestingly, CEs are the only subset of events that are 

consistently less structured than constitutive introns. This trend is only statistically 

significant (p value < 0.05, Wilcoxon test) upstream of the acceptor site (−30 to −1), but the 

analysis is limited by a low number of annotated events (< 700) (Figure 4C). Constitutive 

exon-flanked CE and IR events exhibit similar patterns (Figure S6E). In total, these results 

reveal that each of these three subtypes of AS has a distinct combination of PPS and 

structural profiles, supporting the idea that both structure and protein occupancy are required 

for their proper regulation.

Addition of the poly(A) tail (polyadenylation) during eukaryotic mRNA maturation is also 

highly regulated. Therefore, we calculated average PPS density and structure score 30 nt up- 

and downstream of expressed transcripts with constitutive or APA sites (Sherstnev et al., 

2012). We found that APA events were on average 3.7-fold (p value < 4.8×10−16, Wilcoxon 

test) more protein bound up- and downstream of the cleavage site as compared to 

constitutive events (Figure 4D). Interestingly, there is no significant (p value > 0.05, 

Wilcoxon test) difference in structure scores between the alternative and constitutive sites 

(Figure 4E), revealing that this differential protein binding is independent of secondary 

structure. These results indicate that APA sites do not exhibit altered secondary structure 

compared to constitutive sites; however, the increased protein binding could be used to 

differentiate these two types of events from one another.

The Structural Landscape of Protein-Bound RNA Motifs

To identify RBP-bound motifs, we employed the motif finding algorithms MEME (Bailey et 

al., 2009) and HOMER (Heinz et al., 2010) on PPSs partitioned by specific region (e.g., 

CDS) or on the entire collection, respectively. We identified one GAN repeat motif by 

MEME that was common to both the CDS and 5′ UTR (Figure 5A), while HOMER 

identified 40 octamers that were significantly (p values < 10−7) enriched in our PPSs (Table 

S2), of which we further characterized four of the most significantly enriched (p values < 

1.0×10−67) (Figures 5B–5E).

We identified the percentage of PPS-bound and -unbound motif occurrences in specific 

regions of nuclear mRNAs normalized by their overall length in the genome (Figures 5F–

5J). Comparing the localization of bound and unbound motif instances revealed stark 
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differences. We saw an overall enrichment of bound sites within the CDS and 5′ UTR. 

Conversely, the unbound HOMER motif instances were generally more prevalent in introns 

(Figures 5G–5J), while the 5′ UTR is overrepresented in the unbound GAN repeat 

occurrences (Figure 5F). In total, these results indicate that within the nucleus RBP binding 

is enriched within 5′ UTR and CDS instances of specific sequence motifs.

To define the structural context at these five sequence motifs, we calculated average 

structure scores at the core motif and 50 nt flanking regions for bound and unbound 

instances. We observed that the five motifs have low structure scores, but are flanked by 

more structured regions (Figures 5K–5O). As mentioned above, the high levels of this 

conformation within the nuclear transcriptome may explain increased PPS identification by 

the dsRNase (Figures S4B, S4C, and S6A). Interestingly, protein-bound instances of all five 

motifs and their flanking sequences are significantly (p values < 7.3×10−12, Wilcoxon test) 

less structured relative to unbound instances of these sequences (Figures 5K–5O). In total, 

these findings support the observations that PPSs occur preferentially at less-structured 

regions of transcripts. Whether this is a cause or consequence of protein binding to these 

sequence elements will need to be further investigated.

Evidence of Posttranscriptional Operons in the Arabidopsis Nuclear Transcriptome

RBP-interacting motifs often co-occur in functionally related genes in human cells 

(Silverman et al., 2014), but it is not known if this happens in the Arabidopsis nuclear 

transcriptome. To address this, we interrogated the interactions between protein-bound 

motifs discovered by our PIP-seq approach. Thus, we identified all bound instances of each 

identified motif (Table S2) in target RNAs using the HOMER suite (Bailey et al., 2009) on 

the total set of nuclear PPSs. We then quantified co-occurrences of each pair of these 

protein-bound motifs within all nuclear mRNAs. We used k-means clustering of the resultant 

weighted adjacency matrix and identified three clusters of motifs that co-occur on highly 

similar sets of target transcripts (Figure 6A). Interestingly, Clusters 1 and 2 have only five 

and four motifs, respectively, while Cluster 3 consisted of the remaining 32 motifs, although 

no transcripts contained more than four of these co-occurring PPS-bound motifs. The 

number of transcripts containing at least three bound motifs within each cluster varied 

greatly, with Clusters 2 and 3 having 188 and 204 transcripts, respectively, while Cluster 1 

had the most co-occurring bound motifs with 5,887. These findings indicate that many 

Arabidopsis transcripts contain numerous RBP-interacting motifs.

We used agriGO (Du et al., 2010) to interrogate overrepresented biological processes for 

these collections of RNAs with co-occurring RBP-bound motifs (Figure 6A). We found that 

the most highly overrepresented functional terms were related to distinct processes, 

including cell death/apoptosis and postembryonic and organ development (Cluster 1); 

response to desiccation, abscisic acid, and cold (Cluster 2); as well as stress response, 

posttranslational modification, and mRNA processing (Cluster 3) (Figure 6B). The 

identification of groups of functionally related transcripts bound by the same collection of 

RBPs during their nuclear life cycle supports the idea of posttranscriptional operons (Keene 

and Tenenbaum, 2002; Tenenbaum et al., 2011) functioning in the Arabidopsis nucleus.
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CP29A Localizes to the Arabidopsis Nucleus

After identifying enriched motifs within our PPS list we used these motifs to identify 

putative Arabidopsis RBPs. To begin, we confirmed that these sequences interact in vitro 

with specific RBPs using a UV crosslinking assay with radiolabeled RNA probes (from 

Figures 5A–5E; Table S3) or a scrambled control sequence. We found that each sequence 

motif interacted with one or more distinct RBPs (Figure S7A). We then used these same 

probes in RNA-affinity chromatography followed by mass spectrometry analysis. Using this 

approach with four significant HOMER motifs (Figures 5B–5E), we identified 25 proteins 

with peptides that were enriched over our negative controls, with four proteins that passed a 

threshold of > 6-fold enrichment for interaction with at least one sequence (Figures S7B and 

7A; Table S4). Interestingly, CVP2 as well as the LRR family and DUF544-containing 

proteins do not have canonical RNA-binding domains (RBDs). This is similar to recent 

findings in human RBP identification (Baltz et al., 2012; Castello et al., 2012), suggesting 

that these proteins interact with their target motifs via noncanonical RBDs or an RBP 

partner.

The GAN repeat motif is of particular interest because it has been linked to splicing 

regulation in Physcomitrella patens (Wu et al., 2014). The UV crosslinking assay indicated 

that numerous proteins were capable of binding this motif, with several 25–40 kDa proteins 

significantly (p value < 0.05, Fisher’s t test) enriched over the negative control (Figure S7A). 

However, from mass spectrometry analysis of interacting proteins only four passed a 

threshold of 6-fold enrichment over negative controls, with the strongest candidate RBPs 

being CP29A (> 18-fold enrichment) (Figure 7B). This protein has previously been 

identified as an RBP that functions in the chloroplast (Ye et al., 1991), but nuclear 

localization had not been demonstrated. We used an Arabidopsis CP29A monoclonal 

antibody (Kupsch et al., 2012) to perform western blots on lysates from INTACT-purified 

nuclei and 10-day-old seedlings. Although at low levels, we could reproducibly detect 

CP29A in the Arabidopsis nucleus (Figure 7C), in contrast to other chloroplastic proteins 

(Figure S1B), showing that a subset of CP29A is localized in the nucleus.

To confirm that CP29A could interact with both nuclear and chloroplast transcripts 

containing the predicted GAN repeat motif in vivo we performed RNA immunoprecipitation 

(RIP). We took lysates from formaldehyde-treated leaves and incubated them with either a 

monoclonal α-CP29A or α-His antibody (negative control) (Figure S7C) followed by RT-

qPCR for three nuclear transcripts and two chloroplast RNAs as positive controls. All three 

nuclear and one chloroplast (ATCG00490) transcript contain the GAN repeat motif. We 

found that all five transcripts were significantly (all p values < 0.05) enriched > 1.5-fold in 

the α-CP29A compared to the α-His control RIP samples, as opposed to the ACTIN 
negative control (Figure 7D). Taken together, these results indicate that CP29A localizes to 

both the chloroplast and nucleus, and interacts with a subset of GAN repeat motif-containing 

transcripts in Arabidopsis, suggesting a new functionality for this plant RBP.

Conclusion

Here, we characterized the global landscapes of RNA secondary structure and RBP 

occupancy of the Arabidopsis nuclear transcriptome (Figure 1). We demonstrated that these 
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data are highly reproducible, and that the identified protein-binding sites are significantly 

more conserved than their flanking sequences (Figure 2). Additionally, we calculated the 

structure score for nuclear RNAs that passed filtering criteria (see Supplemental 

Experimental Procedures), creating a comprehensive database of in vivo RNA secondary 

structure for the Arabidopsis nucleus (Figures 1C–1E). Together, these data sets provide a 

vast resource of RBP binding and secondary structure information for the Arabidopsis 
nuclear transcriptome that can inform future experiments focused on understanding 

posttranscriptional regulation.

Using the data generated here, we searched for patterns of global RBP binding and RNA 

secondary structure. The most striking association that we identified was a distinct 

anticorrelation between RNA secondary structure and RBP occupancy within the RNA 

regions that were examined (Figures 3, S5B, 4, and 5). This pattern was present when 

focusing on uORF and canonical translation start codons (Figures 3A and S5B), stop codons 

(Figure 3B), exon/intron junctions (Figure 3C), and specific RBP-binding motifs (Figures 

5K–5O). Furthermore, we found that the RBP-interacting motifs identified by our study tend 

to be less structured when protein bound (Figures 5K–5O). Although we cannot discern 

causality, our findings reveal that in general RBPs bind to unstructured sequence elements in 

target transcripts resulting in the overall opposing patterns of these features in the 

Arabidopsis nucleus.

When initially examining these data we questioned whether the structure score was 

artificially lowered in regions of high PPS density by occlusion of the RNase through the 

incomplete digestion of bound RBPs. However, if this were true these regions would not be 

called PPSs in our initial analyses because their read levels would be artificially raised in the 

structure-only libraries. Furthermore, we find that the presence of PPSs is actually associated 

with more negative structure scores (Figures 5K and S6A). Thus, our results are likely true 

biological observations of decreased structure at RBP-binding sites, not an artifact of the 

PIP-seq methodology.

We also examined subsets of annotated alternative exons and identified unique profiles of 

PPS density and secondary structure in constitutive, CE, IR, and U12-type introns (Figures 

4B and 4C). These profiles suggest that gross protein binding can regulate AS, while 

secondary structure can influence the population of proteins that occupies each region. 

Although it is known that RBP binding in the exon or intron can regulate AS (Chen and 

Manley, 2009; Simpson et al., 2010), our observations demonstrate that protein occupancy 

levels in regions near the splice site can differentiate subsets of alternative exons. Our 

observations have provided the resources for identifying these populations of proteins and 

specific structural features in these alternative events.

Finally, we uncovered motifs that were enriched within our PPSs and identified co-

occurrences of RBP-bound instances of these sequences in functionally related transcripts 

(Figure 6). These findings are similar to previous observations in human cells (Silverman et 

al., 2014), and support a model in which RNA transcripts encoding proteins with related 

functions also share a set of interacting RBPs through underlying sequence motifs allowing 

their coregulation. Taken together, our findings suggest that both plants and humans use 
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different groups of RBPs to allow specific sets of proteins, especially those functioning in 

development, stress responses, and apoptosis, to be precisely coregulated in an operon-like 

fashion.

EXPERIMENTAL PROCEDURES

Supplemental Experimental Procedures

Further details on the experimental procedures, high-throughput sequencing, and processing, 

mapping, and analysis of PIP-seq data are provided in the Supplemental Experimental 

Procedures.

INTACT-Purified Nuclei

Seedlings of UBQ10:NTF/ACT2p:BirA Arabidopsis thaliana ecotype Col-0 were grown for 

10 days (20°C, 16 hr light/8 hr dark) before RNA-protein interactions were crosslinked in a 

1% formaldehyde solution under a vacuum and subsequently quenched with 125 mM 

glycine. INTACT purification was then performed as previously described (Deal and 

Henikoff, 2010). This same ecotype of Arabidopsis was used for all analyses in this study.

PIP-seq and PPS Analysis

We used 2 million purified nuclei for each PIP-seq replicate, which was performed as 

previously described (Silverman et al., 2014). Read processing and alignment, PPS 

identification, and all other PPS analyses were done as previously described (Silverman et 

al., 2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Patterns of RNA secondary structure and RBP binding are anticorrelated

• Alternative splice sites have distinct RBP binding and secondary structure 

profiles

• Groups of Arabidopsis RBP-bound motifs co-occur on functionally related 

mRNAs

• The chloroplast RBP CP29A also interacts with nuclear mRNAs
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Figure 1. Overview of PIP-seq in Arabidopsis Nuclei
(A) The PIP-seq approach in the Arabidopsis nucleus. Nuclei were purified from 10-day-old 

Arabidopsis seedlings that were crosslinked using a 1% formaldehyde solution. Nuclei were 

lysed and separated into footprinting and structure-only samples. Four total sequencing 

libraries were then prepared for each replicate experiment as previously described 

(Silverman et al., 2014).

(B) An example of PPS identification (dsRNase #28) in exon 13 of DCL1.

(C) Read coverage across the DCL1 transcript for the ds- (top, green line) and ssRNA-seq 

(bottom, purple line) structure-only samples.

(D) Structure scores for the DCL1 transcript based on read coverage seen in (C).

(E) mRNA secondary structure model for DCL1 determined using our methodology. See 

also Figures S1–S3.
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Figure 2. Characterization of Arabidopsis Nuclear PPSs
(A) Overlap between PPSs identified from two replicate nuclear PIP-seq experiments.

(B) Comparison of average PhastCons scores between PPSs (green bars) and equal-sized 

flanking regions (orange bars) for various genomic regions. *** denotes p value < 1×10−10, 

Kolmogorov-Smirnov test. Error bars, ± SEM.

(C) Analysis of the total number of SNPs identified by the 1001 Genomes Project (Cao et 

al., 2011) in PPSs compared to a shuffled background control. *** denotes p value < 

1×10−10, χ2 test. Error bars, ± SD.

(D) Absolute distribution of PPSs throughout various RNA species and transcript regions.

(E) Average PPS count per pre-mRNA transcript region. Percentages indicate the fraction of 

annotated RNAs that contain sequencing information for that region.

(F) Genomic enrichment of PPS density, measured as log2 enrichment of the fraction of PPS 

base coverage normalized to the fraction of genomic bases covered by indicated nuclear 

mRNA regions for the dsRNase (yellow bars) and ssRNase (red bars) libraries.

(G) Breakdown of bound compared to unbound nuclear lincRNAs that are conserved 

between Arabidopsis thaliana and Brassica rapa. See also Figure S4 and Table S1.

Gosai et al. Page 18

Mol Cell. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Patterns of Protein Occupancy and Secondary Structure in Specific Nuclear mRNA 
Regions
(A and B) PPS density and structure score profiles for nuclear mRNAs based on our PIP-seq 

experiments. Average PPS density (blue lines) and structure scores (red lines) at each 

position ± 100 nt from canonical (A) start and (B) stop codons for Arabidopsis nuclear 

mRNAs.

(C) PPS density and structure score profiles for exon/intron boundaries of nuclear mRNAs. 

Average PPS density (blue lines) and structure scores (red lines) at each position ± 30 nt 

from splice donor and acceptor sites.

(D) Model depicting the canonical protein and RNA interactions of the U2-type spliceosome 

at the splice donor and acceptor sites depicted in (C). See also Figure S5.
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Figure 4. Protein Occupancy and Secondary Structure Landscapes at Alternative Splicing and 
Polyadenylation Sites
(A) Diagram of constitutive introns (blue), cassette exons (turquoise), intron retention events 

(green), and U12-type introns (red). Large boxes represent exons, lines represent constitutive 

introns, and small boxes represent alternatively spliced sequences, with the black brackets 

indicating the regions graphed in (B) and (C) for reference.

(B) PPS density profiles for constitutive and alternative splicing events in Arabidopsis. 

Average PPS density at each position −50 to +30 nt at the donor splice site, and −30 to +50 

nt at the acceptor splice site. Line colors correspond to examples shown in (A).

(C) Structure score profiles for constitutive and alternative splicing events in Arabidopsis 
covering the same regions as (B). Line colors correspond to examples shown in (A).

(D) PPS density profiles for constitutive and alternative poly(A) sites of nuclear mRNAs. 

Average PPS density at each position ± 30 nt from constitutive (light-green line) and 

alternative (dark-green line) cleavage and polyadenylation sites.

(E) Average structure score profiles for constitutive and APA sites covering the same regions 

as (D). See also Figure S6.
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Figure 5. The Landscape of Protein-Bound RNA Motifs
(A–E) Overrepresented sequence motifs identified by MEME (A) or HOMER (B–E) 

analysis of PPS sequences.

(F–J) The relative distribution of protein-bound and unbound motifs from (A) to (E) 

throughout specific pre-mRNA regions, including the CDS (blue), 5′ UTR (purple), 3′ UTR 

(green), and intron (orange).
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(K–O) Structure score profiles at RBP-binding motifs from (A) to (E). Average structure 

score at each position ± 50 nt up- and downstream of bound (red lines) and unbound (orange 

lines) motif occurrences from (A) to (E).
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Figure 6. Clusters of Motifs Are Present in Functionally Related Genes
(A) Multidimensional scaling analysis of RBP-bound motif co-occurrence in Arabidopsis 
transcripts. The motifs used for this analysis were identified by HOMER- and MEME-based 

analyses of PPS sequences. Sequences for all of the motifs used in this analysis can be seen 

in the figure and found in Table S2. Colored dots indicate cluster membership as defined by 

k-means clustering (k = 3).

(B) The most significantly enriched biological processes (and corresponding p value) for 

target transcripts of the specified clusters of motifs identified in (A) where three or more of 

the motifs are protein-bound and co-occurring. See also Table S2.
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Figure 7. Identification of Arabidopsis RNA-Interacting Proteins
(A and B) Identification of proteins that interact with specific overrepresented sequence 

motifs.

(A) The fold enrichment over negative control of peptides from each designated protein 

identified by mass spectrometry analysis of eluates after RNA-affinity chromatography with 

each specified motif.

(B) The fold enrichment of peptides from proteins identified by mass spectrometry analysis 

after RNA-affinity chromatography with the GAN repeat motif (Figure 5A). The top 

candidate identified by this analysis, CP29A, is annotated and denoted with a red circle. 

Dotted line indicates cutoff of 6-fold enrichment.

(C) Western blot analysis of INTACT-purified nuclei and Arabidopsis 10-day-old seedling 

lysates using an antibody to CP29A.

(D) RT-qPCR analysis of three nuclear GAN motif-containing genes (AT1G70290, 

AT1G29690, and AT2G26300), two positive control chloroplast transcripts (ATCG00680 
and ATCG00490 [also with motif]), and an ACTIN negative control following RIP with an 

α-CP29A or α-His antibody. The data is presented as the fold change in the α-CP29A 

relative to α-His RIP samples. Error bars, ± SD. *, **, and *** indicate p value < 0.05, < 

0.001, and < 1×10−10, respectively, Fisher’s t test. See also Figure S7 and Table S4.
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