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Abstract

Twenty-five years ago a ‘new’ protein was identified from cancers that caused hypercalcemia. It 

was credited for its ability to mimic parathyroid hormone, and hence was termed parathyroid 

hormone-related protein (PTHrP). Today it is recognized for its widespread distribution, its 

endocrine, paracrine, and intracrine modes of action driving numerous physiologic and pathologic 

conditions with a central role in organogenesis. The multiple biological activities within a complex 

molecule with paracrine modulation of adjacent target cells present boundless possibilities. The 

protein structure of PTHrP has been traced, dissected and deleted comprehensively and 

conditionally, yet numerous questions lurk in its past that will carry into the future. Issues of the 

variable segments of the protein including the enigmatic nuclear localization sequence are only 

recently being clarified. Aspects of PTHrP production and action in the menacing condition of 

cancer are emerging as dichotomies that may represent intended temporal actions of PTHrP. 

Relative to PTH, the hormone regulating calcium homeostasis, PTHrP ‘controls the show’ locally 

at the PTH/PTHrP receptor throughout the body. Great strides have been made in our 

understanding of PTHrP actions, yet years of exciting investigation and discovery are imminent.
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Historical Perspective

Parathyroid hormone-related protein (PTHrP) seemed almost to come out of nowhere, 

produced by certain cancers, mimicking PTH action and causing the complication of 

hypercalcemia. Fuller Albright in 1941 (1), when discussing a patient with renal carcinoma, 
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a solitary metastasis and hypercalcemia, suggested that some tumors might cause 

hypercalcemia by secreting PTH or something very like it. As with many of his predictions 

he was ultimately proved correct, but not before the passing of a few decades during which 

the concept of “ectopic PTH production” by cancers was promulgated as the cause of non-

metastatic hypercalcemia (2;3). Doubts began to appear in the 1970’s, when improved 

radioimmunoassays for PTH indicated that the immunoreactivity in tumor or plasma of 

patients with cancer differed from authentic PTH (4–7), and with some assays PTH 

immunoreactivity could not be detected at all (8). From this background three excellent 

clinical studies put beyond reasonable doubt the biochemical similarity between primary 

hyperparathyroidism and this syndrome of humoral hypercalcemia of malignancy (9–11). 

By that time, rapid, sensitive, robust biological assays of PTH had developed and extracts 

and culture supernatants of hypercalcemic animal and human tumors were found to contain 

PTH-like adenylate cyclase responses in osteoblast and kidney targets (12–14). This paved 

the way for purification of PTHrP from a human lung cancer cell line (15), a breast cancer 

(16) and a renal cancer cell line (17). The cloning of its cDNA (18;19) showed 8 of the first 

13 residues of PTHrP identical to those in PTH, any remaining identities no more than 

expected by chance, and the structural requirements for full biological activity of PTHrP 

contained within the first 34 amino acids, as was known to be the case with PTH (20). These 

findings explained the biochemical similarities between syndromes of PTH excess and non-

metastatic hypercalcemia in cancer, signaling the discovery of an evolutionary relationship 

between these two molecules, most likely derived from a common ancestor and evolving 

from a gene duplication event. The PTHrP gene had a more complex structure than that of 

PTH, but with similar intron-exon boundaries, and the marked conservation of the PTHrP 

amino acid sequence in human, rat, mouse, chicken and canine up to position 111 indicated 

that important functions are likely to reside in this region. This was the beginning of the rise 

of PTHrP to a position of great interest; yet in many circles it still plays a secondary role in 

the family of parathyroid hormones.

Soon after its discovery, it became apparent, that far from being simply an evolutionary relic 

that mimics PTH action in non – metastatic cancer, PTHrP has major roles in other aspects 

of cancer, in development, and in normal physiological functions in post-natal life. At the 

time the receptor was discovered, it was evident that this receptor functioned to relay both 

PTH and PTHrP biological activity (21), yet knock out of this PTH/PTHrP receptor (PPR) 

highlighted the importance of PTHrP (22;23). Indeed, PTHrP is the master regulator with 

widespread paracrine actions (Figure 1), and as illustrated for example by the 

pharmacological use of PTH as an anabolic agent in the treatment of osteoporosis where 

PTH administration actually mimics PTHrP actions locally in the bone microenvironment 

(24). Still, many questions remain unanswered. This perspective piece will briefly consider 

aspects of PTHrP function in development and disease and pose outstanding questions that 

despite 25 years of inquiry still linger.

PTHrP – evolutionary insights

It has long been accepted that PTH and PTHrP arose from gene duplication, PTH located on 

human chromosome 11 and PTHrP on chromosome 12. If conservation across species is 

evidence of gene importance, PTHrP prevails – fugu fish PTH has 44% identity with human 
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PTH whereas fugu fish PTHrP bears 53% similarity with human PTHrP (25). At the amino 

acid level, chicken PTH shares 88% similarity with human, and chicken PTHrP shares 91% 

similarity with human (26). The first 111 amino acids of PTHrP are extraordinarily 

conserved among many species. Interestingly, PTH appears to play a paracrine role in lower 

vertebrates but evolved in higher vertebrates with a more restricted yet vital endocrine role. 

In fish, PTH produced in the gills is responsible for local calcium regulation; whereas via 

evolution to tetrapods the parathyroid gland assumed an endocrine role as calcium 

requirements shifted from an aquatic to a terrestrial environment (27). PTHrP, having a fairly 

simple gene structure in lower vertebrates acquired a more complex structure with added 

exons and alternative promoters with progression to humans, and in parallel picked up a 

stronger paracrine emphasis (26;28).

PTHrP – more than an endocrine factor

A great surge of interest and research activity came with the finding that PTHrP is normally 

produced in many tissues and acts in those sites in a paracrine manner. There are only three 

identified circumstances in which PTHrP species are present in the circulation and act in an 

endocrine manner: 1) the humoral hypercalcemic syndrome, in which PTHrP is produced by 

tumors and circulates to the bone to stimulate bone resorption (29;30), 2) lactation, in which 

PTHrP is made in the breast and reaches the circulation (31), and 3) fetal life, where PTHrP 

regulates maternal-to-fetal placental calcium transport (32;33). There remains to the present 

time no convincing evidence of biologically relevant circulating PTHrP levels otherwise in 

normal humans. Hence, the vast majority of PTHrP actions, unlike PTH are paracrine in 

nature.

There are three splice variant isoforms of PTHrP rendering PTHrP 1-139, 1-173, or 1-141 

with transcriptional regulation from three distinct promoters (34). The multiple products of 

post-translational processing including glycosylation, the short half-life of PTHrP mRNA, 

and the multiple biological activities contained within PTHrP, equip it ideally to function as 

a paracrine effector with a developmental focus (35–38). Together with the obvious 

susceptibility of PTHrP to post-translational modification through proteolysis (39), and the 

generation of several constituent peptides, this increased complexity highlights the leading 

role of PTHrP, yet leaves questions that remain unanswered to this day. Why are there 3 
PTHrP splice variants in humans but not in other mammals? What is the extent of 
biologically relevant PTHrP peptide fragments, and how do they function? Biologically 
active PTHrP peptide fragments functioning independent of the N-terminus raise the 
question – are there yet unidentified receptors ?

Skeletal actions

The physiological importance of PTHrP in the skeleton was evident with deletion of PTHrP 

resulting in death in mice immediately after birth from respiratory failure, attributed to 

defective rib cage formation (40). Here PTHrP stands out from PTH, whose later gene 

deletion resulted in a comparatively mild phenotype (41). Multiple defects in skeletal 

development confirmed the importance of PTHrP in fetal bone development (42). Whereas 

haploinsufficient PTHrP (+/−) mice are phenotypically normal at birth, by three months of 

McCauley and Martin Page 3

J Bone Miner Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



age they have low bone mass, with a marked decrease in trabecular thickness and 

connectivity and an abnormally high number of adipocytes in the bone marrow (43). PTHrP 

+/− mice have compromised recruitment of bone marrow precursors and increased 

osteoblast apoptosis compared to wild-type mice. Importantly, this phenotype was 

recapitulated in transgenic mice with osteoblast-specific knockout of PTHrP thereby 

confirming the role of osteoblast-derived PTHrP in the process of bone formation (24). 

These mice also demonstrated reduced osteoclast formation likely due to impaired ability of 

PTHrP null osteoblasts to support osteoclast formation. Confounding work in this area, is 

the nature of PTHrP, its low-abundance mRNA and protein products that have been difficult 

to identify by conventional immunohistochemical approaches. Coincident expression of 

PTHrP mRNA and protein was noted in both chondrocytes and osteoblasts in endochondral 

bone formation in the mouse, and both also in preosteoblasts and actively synthesizing 

osteoblasts in a regenerating bone model in the rabbit (44). On the other hand, using a 

PTHrP-lacZ knock-in mouse, Chen and colleagues were not able to demonstrate osteoblast 

derived PTHrP production suggesting osteoblast-derived PTHrP would not drive local bone 

formation (45).

In the growth plate, chondrocyte maturation is tightly regulated by a paracrine PTHrP/Indian 

hedgehog (Ihh) signaling loop. PTHrP produced by the distal perichondrium interacts with 

the PPR expressed in the proliferative and perhypertrophic zones of the growth plate. These 

findings support a key role of PTHrP in controlling the pace of growth plate development via 

preventing premature differentiation of chondrocytes into prehypertrophic and hypertrophic 

chondrocytes (46). More recently, findings have extended to articular joints where evidence 

suggests PTHrP is produced in response to loading and functions in a similar Ihh signaling 

loop to support articular cartilage maintenance (47).

The favored current concept is that PTH the hormone, regulates calcium homeostasis in 

development and maturity. PTHrP the local factor, on the other hand, directs growth plate 

development by controlling chondrocyte proliferation and differentiation, while of these two 

proteins postnatally, PTHrP is the main factor generated locally in bone and acting through 

the PPR in bone remodeling, without normally contributing to the maintenance of serum 

calcium levels. These studies also highlight emerging evidence and pose questions – Does 
anabolic PTH essentially co-opt PTHrP physiologic actions? Might we regard the use of 
PTH in skeletal anabolic therapy as an attempt to reproduce the local action of PTHrP?

Placental calcium transport

A role for PTHrP action in the placenta is highlighted by its ability to promote trans-

placental calcium transport in sheep (32), with PTHrP (67–86) and (38–94) the most active 

peptides (48;49), and no action of amino-terminal PTHrP. Studies in genetically manipulated 

mice confirm that PTHrP controls placental calcium transport to bring about mineralization 

of the fetal skeleton (50), with the main PTHrP source being the placenta.
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Smooth muscle relaxation

A particularly instructive example of the paracrine actions of PTHrP is found in the smooth 

muscle beds of the vasculature. It had been known since the 1920’s that injection of 

parathyroid extract in animals results in dose-dependent increases in blood flow through a 

range of vascular beds, and decreases in blood pressure (51–54). When PTHrP was 

discovered it became clear that this was not the normal function of PTH but instead, a local 

physiological role of PTHrP, produced in smooth muscle beds of the stomach and intestine, 

uterus, urinary bladder, and arterial vessels, acting in all those tissues as a muscle relaxant 

(36;55;56). PTHrP expressed in smooth muscle acts rapidly to relax the vasculature (57) 

through an endothelium – independent mechanism, and vasoconstrictors such as angiotensin 

II induced a rapid rise in PTHrP production (58). Thus increased PTHrP production 

following vasoconstriction could provide a mechanism to limit or reverse this effect through 

the relaxing action of PTHrP on smooth muscle. The paracrine production and action of 

PTHrP in local vascular beds comes into action as required physiologically. On the other 

hand, when PTH is administered systemically, with simultaneous activation in many sites, 

the response of general vasodilatation and decline in blood pressure is not surprising. Yet, 
where does PTHrP stand in the hierarchy of paracrine vasoactive peptides?

Mammary gland development

Although the neonatal lethality of PTHrP−/− mice initially presented difficulty in identifying 

tissue specificity, rescue of these mice was achieved by directing PTHrP production to 

cartilage with use of the collagen II promoter, allowing study of the effect of the PTHrP null 

phenotype on several other organs (59). In the case of the breast, “rescued” PTHrP null mice 

show failure of early breast ductal development, providing strong evidence of a further 

paracrine role for PTHrP in promoting branching morphogenesis (59). With such dramatic 

expressions of PTHrP involvement in early breast development, it is perhaps not surprising 

that PTHrP emerges as a factor important in breast cancer biology yet a recent study 

provides evidence against a PTHrP role in post-natal breast development (60). The discovery 

of RANKL production by primitive ductal cells, acting on RANK in mammary stem cells to 

promote their expansion (61) highlights the need for further investigation of the role of 

PTHrP and RANKL in the breast.

Teeth and skin

Further evidence supporting a prominent role for PTHrP in development came with the 

PTHrP type II collagen promoter rescue. These mice lack tooth eruption, a cardinal sign of 

defective osteoclastogenesis (62). PTHrP is produced by cells of the enamel organ during 

development (63) and receptors for PTHrP exist in the bone surrounding the developing 

tooth, and also in the dental follicle and in cementoblasts lining the tooth root surface (64–

66). Philbrick and colleagues used a cytokeratin, K14-PTHrP transgene, to show that 

replacement of PTHrP in the enamel epithelium restores tooth eruption (62). Since 

osteoclasts do not express PPR receptors, this supported the developmental role of PTHrP to 

drive osteoclasts necessary for clearing the path for the erupting tooth through a paracrine/
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juxtacrine interaction. Murine studies were validated with human analyses of loss of 

function of the PPR revealing ankylosed and distorted tooth development (67).

Yet another tissue/organ site of PTHrP paracrine actions was identified in the hair follicle 

with reciprocal expression of the PPR in the dermal components. Overexpression of PTHrP 

led to premature termination of anagen and entrance to catagen in the hair cycle (68). PTHrP 

expression was identified to be high in late anagen and thought to participate in the hair 

cycle but not necessarily be essential for hair cycle progression. Similarly, studies of PTHrP 

expression in keratinocytes found temporal dependent production of PTHrP with a reduction 

as keratinocytes differentiate (69;70) suggesting a regulatory loop similar to that found in 

cartilage development.

Pancreas

In the pancreas, islet cells were found to produce PTHrP as well as bear the PPR, and PTHrP 

provides a robust increase in intracellular calcium in beta cells (71). All four endocrine cell 

types, alpha, beta, delta, and pancreatic polypeptide cells produce PTHrP (72). 

Overexpression of PTHrP as well as PTHrP 1-36 administration increases beta cell 

proliferation via cell-cycle specific activation (73). PTHrP overexpression in beta cells 

results in islet hyperplasia and insulin-mediated hypoglycemia associated with reduced 

apoptosis (74). This effect was also shown via exogenous administration of PTHrP 1-36 

supporting a local mediated action at the PPR. PTHrP also increases beta cell production of 

insulin suggesting its consideration in therapeutic strategies to improve islet growth and 

function.

PTHrP in other locations

Beyond the organ - focused investigations discussed above, PTHrP has been detected in 

nearly every tissue/organ in the body. Early reports of PTHrP and PPR expression in the 

heart, brain, skeletal muscle, bladder, lungs, bile ducts, immune system, liver, uterus, testes, 

as well as most endocrine organs including the pituitary and thyroid gland C-cells (36;75) 

leave unanswered questions years later as to the tissue-specific significance of PTHrP in 

health and disease. However, many of the early studies in this area did not have PTHrP 

knockout mice available as negative controls, and did not use in situ hybridization to detect 

PTHrP mRNA. To this day, challenges surrounding the specificity of PTHrP 

immunohistochemistry still need to be overcome.

PTHrP – the intracrine factor

A most intriguing early finding was the discovery that PTHrP attains a nuclear/nucleolar 

location through a specific transport process, and is likely to exert some of its functions from 

that site. Nucleolar localization of PTHrP through a defined sequence in the mid-region is 

associated with enhanced chondrocyte survival following prolonged periods of serum 

starvation (76;77). Expression of PTHrP is cell cycle-specific in smooth muscle cells (78) 

and keratinocytes (78;79), and its mRNA highest at the G1 phase, when localized to the 

McCauley and Martin Page 6

J Bone Miner Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleolus (80), with cyclin-dependent kinase phosphorylation of T85 resulting in exclusion 

of PTHrP from the nucleus (81).

Within the PTHrP sequence there are nucleus (CcN) and nucleolus localization motifs, with 

the former being similar to that described for the archetypal CcN-containing protein, SV40 

T-antigen (82). The mechanism of nuclear import requires PTHrP interaction with importinβ 

and GTP-Ran expression (83–85), and cyclin-dependent kinase phosphorylation of T85 

results in exclusion of PTHrP from the nucleus (81). A nuclear targeting sequence that 

inhibits apoptosis exists at PTHrP (87–107) (76;86–88), and PTHrP (109–139) is involved in 

its nuclear export (89). Evidence supports direct binding of PTHrP to RNA through a 

distinct motif in the NTS (90) and further points to PTHrP as likely to exert important 

functions from its nuclear site. PTHrP appears so far to be the only protein classed at least in 

some circumstances as a hormone, which possesses a CcN motif and displays differential 

cellular localization (nuclear/nucleolar versus cytoplasmic). There must be some important 

purpose behind the evolutionary conservation of this property, and prompts the question, 

what is the significance of nuclear entry of PTHrP in the many tissues in which PTHrP is 
considered to play a local role?

The impact of other biological activities exerted by domains within PTHrP was exemplified 

in two studies in mice, in one of which knock-in of PTHrP (1–84), lacking both the nuclear 

localization sequence (NLS) and C-terminal region while retaining the bioactive amino-

terminal, resulted in multiple abnormalities and early lethality in mice (91). Homozygous 

mice exhibited skeletal growth retardation and osteopenia associated with reduced 

proliferation and increased apoptosis of osteoblasts as well as early senescence with altered 

expression patterns and subcellular distribution of proliferative- and senescence-related 

genes in multiple tissues. A further knock-in of PTHrP (1–66) excluding a significant part of 

the mid-region resulted in an even more severe phenotype and highlighted the role of PTHrP 

in stem cells as well as later lineage cell commitment (92). These genetic studies in mice 

show that many of the actions of PTHrP are not mediated by the amino-terminal region, and 

among the generalized abnormalities, absence of the mid-region, NLS and C-terminal region 

result in greatly impaired commitment and survival of osteogenic and hematopoietic 

precursors.

PTHrP and Cancer

The significance of PTHrP in cancer was not confined to the humoral hypercalcemic 

syndrome. Breast cancer was one of the original sources of PTHrP (16). Hypercalcemic 

breast cancer patients with metastatic bone disease have elevated plasma PTHrP levels (30), 

and 60% of primary breast cancers and 90% of bone metastases are positive for PTHrP by 

immunohistochemistry (93;94). From this arose the concept that PTHrP production in the 

bone marrow by breast cancer cells promotes bone resorption, thus favoring tumor 

establishment and expansion. Extensive experimental evidence was produced in support of 

this (95;96), including prevention and treatment of tumor growth by inhibiting bone 

resorption, using bisphosphonates or neutralizing monoclonal antibodies against PTHrP 

(95;97). All of this accorded with the “seed and soil” hypothesis developed by Stephen Paget 

(98), which depicted bone as the favorable soil for the “seed” of breast cancer. A major 

McCauley and Martin Page 7

J Bone Miner Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contributor to this co-operation is tumor production of PTHrP, together with the several 

other cancer-derived factors that influence bone metastasis establishment, including 

prostaglandins and cytokines (96) and of factors favoring the homing and/or adherence of 

cancer cells to bone (99). Although this emphasizes PTHrP involvement in breast cancer, 

increasing evidence implicates it in prostate, lung, renal, colon, lymphoid and other cancers 

(100–104).

The history and findings need to be considered when evaluating the place of PTHrP in the 

pathogenesis of bone metastasis formation and progression. What is the relative importance 
of PTHrP compared to other tumor derived factors and the type of cancer (e.g. breast vs. 
prostate and their different bone phenotypes)? When a PTHrP-producing tumor 
metastasizes to bone, how does this locally produced factor compare in its biologic impact 
with other tumor-derived factors? Is there a very early role for PTHrP as an endocrine/
tumor-derived circulating factor in conditioning the bone microenvironment, i.e. a pre-
metastatic niche? Does PTHrP influence tumor cell dormancy?

Does PTHrP indeed have an entirely independent function, perhaps early in cancer 
development, of contributing to a less invasive phenotype of the cancer? That suggestion 

comes from a long-term, prospective study of consecutive patients at a single center, that 

tumors positive for PTHrP at surgery were independently predictive of improved patient 

survival, with reduced metastases at all sites, including bone (105;106). Such a mechanism 

is distinct from the bone resorbing action later in disease, that can explain the association of 

PTHrP production with bone metastases (107–110). Highlighting the controversy, of two 

independent studies of genetically induced breast cancer in mice, one concluded that loss of 

PTHrP expression resulted in poorer outcomes in breast cancer (111), the other concluded 

the opposite, that PTHrP promotes the initiation and progression of primary tumors (112).

With PTHrP directing an important role in early mammary gland development (59;67;113), 

it might not be surprising if it were to play a part in early stages of cancer development – but 

is this concept of PTHrP a credible one - protective at one stage of cancer yet deleterious at 

another? Indeed PTHrP has been shown to have multiple and opposing roles in other 

circumstances such as in its ability to both protect and promote apoptosis in osteoblastic 

cells and pneumocytes (114–116). A similar example of a dual action is TGFβ, which acts 

early as a tumor suppressor by inhibiting proliferation of epithelial, endothelial and 

hematopoietic cells. Refractoriness to these effects develops later, and over expression of 

TGFβ leads to a microenvironment conducive to tumor growth (117–119). Confirmation of a 

dual role for PTHrP requires further clinical and basic study, with the critical question: What 
are the temporal implications of PTHrP in tumorigenesis; are there different and 
contrasting early and later actions?

Summary

After 25 years, what does PTHrP really do? Can we regard PTH use as a pharmacological 

agent that is simply a surrogate for what PTHrP does physiologically? We can only 

speculate about the nature of the PTHrP molecule that gains access through a paracrine 

mechanism to its adjacent target cells, and the likelihood of multiple biological activities 
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within the molecule presents complex possibilities. Assuming that full-length PTHrP is 

secreted, is that the predominant form that interacts with target cells locally, or does its 

susceptibility to proteolytic breakdown yield shorter products, even in that local 

environment? PTHrP was designated as ‘related’ to PTH, but it is certainly not a distant 

cousin. Although knowledge of PTH actions far preceded our knowledge of PTHrP, over the 

past 25 years PTHrP has emerged as the key regulator of normal physiology as well as 

pathophysiologic events. Whereas PTH actions center on its role in calcium metabolism, the 

multifactorial nature of PTHrP will continue to give years of exciting investigation.
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Figure one. PTHrP Paracrine actions
PTHrP has numerous paracrine actions in physiologic homeostasis including roles in 

keratinocytes/hair follicles, cartilage, vascular smooth muscle, bone, mammary gland 

development, tooth eruption, pancreas, and others not depicted. In comparison, PTH has 

relatively fewer direct physiologic targets via its endocrine mode of operation in bone and 

kidney.
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