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Abstract

Accumulating evidence indicates that microRNAs (miRs)—non-coding RNAs that can regulate 

gene expression via translational repression and/or post-transcriptional degradation—are 

becoming one of the most fascinating areas of physiology, given their fundamental roles in 

countless pathophysiological processes. The relative roles of different miRs in vascular biology as 

direct or indirect post-transcriptional regulators of fundamental genes implied in vascular 

remodeling designate miRs as potential biomarkers and/or promising drug targets. The 

mechanistic importance of miRs in modulating endothelial cell (EC) function in physiology and in 

disease is addressed here. Drawbacks of currently available therapeutic options are also discussed, 

pointing at the challenges and clinical opportunities provided by miR-based treatments.

Endothelial cells (EC) form the inner thin monolayer that acts as anatomic and functional 

interface between circulating fluid in the lumen and the rest of the vessel wall. The main 

functions of EC include regulation of vascular tone, fluid filtration, cell recruitment, 

hormone trafficking, and hemostasis (Santulli et al., 2009).

MicroRNAs (miRs) are small, generally non-coding RNAs, that regulate gene expression via 

post-transcriptional degradation or translational repression. Indisputably, miRs are 

fundamental regulators of numerous biological processes. More than 30,000 mature miR 

products have been identified (~200 in the human genome) and the number of published 

miR sequences continues to increase rapidly (Wronska et al., 2015). Importantly, several 

investigators determined that some transcripts previously identified as non-coding RNAs 

may actually encode micropeptides (Carninci et al., 2005; Andrews and Rothnagel, 2014; 

Anderson et al., 2015; Santulli, 2015a).

The key importance of miRs in endothelial physiology is clearly indicated by the phenotype 

obtained following the EC-specific inactivation of Dicer, an enzyme involved in miR 

biogenesis and processing which cleaves precursor-miRs to mature forms (Suarez et al., 

2008; Wronska et al., 2015). The lack of Dicer in the endothelium leads to altered 

expression of fundamental regulators of endothelial function, including endothelial nitric 

oxide synthase (eNOS), vascular endothelial growth factor (VEGF) receptor 2, interleukin-8, 

Tie-1 and Tie-2. As mentioned above, vascular endothelium plays a pivotal role in regulating 
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vessel biology and homeostasis. Alterations of its function partake in various cardiovascular 

disorders including hypertension, atherosclerosis, and impaired angiogenesis (Cimpean et 

al., 2013; Lampri and Elli, 2013; Santulli et al., 2012).

The Orchestrator of Endothelial Physiology: miR-126

Two independent research groups have established in 2008 that miR-126 is a master 

regulator of vascular integrity (Fish et al., 2008; Wang et al., 2008). It is encoded by intron 7 

of the vascular endothelial-statin (VE-statin) gene, also known as EGF-like domain 7 

(EGFL7), which is under the transcriptional control of the E-twenty-six family of 

transcription factors ETS1/2. In resting conditions ETS1 is expressed at a very low level 

while it is transiently highly expressed during angiogenesis or (re)-endothelialization. 

Therefore, during replicative senescence an augmented expression of ETS1 increases 

miR-126 levels. Intriguingly, one of the main targets of miR-126 is its own host gene 

EGFL7, which regulates the correct spatial organization of the endothelium. The 

cardiovascular phenotype of EGFL7 deficient mice is recapitulated by the ablation of 

miR-126, causing ruptured blood vessels, systemic edema, and multifocal hemorrhages 

(~40% of mir-126−/− mice die embryonically) (Wang et al., 2008).

miR-126 plays a crucial role in modulating vascular development and homeostasis, targeting 

specific mRNAs including the Sprouty-related protein 1 (SPRED-1), CXCL12, SDF-1, and 

phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) (Feng et al., 2015; Hu et al., 2015). 

Confirming its essential function in maintaining vascular integrity, among the numerous 

targets of miR-126 there is a key mediator of leukocyte adhesion and inflammation: vascular 

cell adhesion molecule 1 (VCAM-1). This miR has been also identified as an efficient 

marker in the detection and purification of EC (Miki et al., 2015), due to its abundance in 

these cells (Santulli et al., 2014).

Circulating miR-126 can be modulated by diverse stimuli inducing dissimilar cellular fates 

in different cell types. It acts as an intercellular messenger mainly released by EC and 

internalized by vascular smooth muscle cells (VSMC) and monocytes (Wang et al., 2008). A 

significant increase in circulating miR-126 has been detected in patients with acute 

myocardial infarction and angina whereas miR-126 down-regulation has been reported in 

plasma from patients with diabetes, heart failure, or cancer (Wronska et al., 2015). 

Circulating miR-126-3p has been shown to be a reliable biomarker of physiological 

endothelial senescence in normoglycemic elderly subjects and underlies a mechanism that 

may be disrupted in aged diabetic patients (Olivieri et al., 2014). Diabetes mellitus is known 

to lead to dysregulated activation of ETS, which in turn blocks the functional activity of 

progenitor cells and their commitment towards the endothelial cell lineage.

Remarkably, endothelial function can also be regulated by miRs not commonly expressed by 

EC. One of the best examples of this condition is given by miR-223, a critical regulator of 

cholesterol homeostasis. In particular, miR-223 is one of the most abundant miRs in HDL 

and is also present in LDL particles (Vickers et al., 2011). This miR is transferred within 

microvesicles and within HDL and LDL particles. The transfer of miR-223 from HDL to EC 

could be a potential mechanism underlying the anti-inflammatory properties of HDL (Novák 
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et al., 2015). Indeed, miR-223 targets NOD-like receptor pyrin domain containing 3 

(NLRP3) and intercellular adhesion molecule I (ICAM-1), thereby suppressing leukocyte 

infiltration and inflammation intimately linked with atherosclerosis. Likewise, macrophages 

and platelets have been shown to produce—and transfer to other cells—microvesicles/

exosomes containing miR-223, regulating post-transcriptionally gene expression. 

Specifically, the transfer of miR-223 to EC has been shown to increase the rate of apoptosis 

induced by advanced glycation products (Pan et al., 2014). Intriguingly, miR-223 is also 

involved in the development of insulin sensitivity and in the regulation of thrombosis and 

platelet function. Indeed, miR-223−/− mice receiving high-fat diet display profound insulin 

resistance, which has been attributed to an altered expression of the glucose transporter 4 

(GLUT4).

A recent study has identified miR-19a as a specific molecular player in the functional 

association linking endothelial dysfunction, hyperlipidemia, inflammation, and 

atherosclerosis unraveling a vicious circle comprising the activation of endothelial Hif-1a 

hyperlipidemia and the upregulation of miR-19a, promoting CXCR2-dependent adhesion of 

monocytes by increasing endothelial CXCL1 expression (Akhtar et al., 2015). Of note, miRs 

are also involved in the VSMC phenotypic switch between the quiescent (pro-contractile, 

differentiated) state and the proliferative (pro-synthetic, de-differentiated) state (Liu et al., 

2013), a determinant step in the pathophysiology of atherosclerosis.

Angiogenesis and miRs

Various events are involved in angiogenesis, including EC division, selective degradation of 

the basal membrane and the surrounding extracellular matrix, with the subsequent EC 

migration and the formation of neovessels (Berthod, 2013; Duscha et al., 2013; Santulli, 

2014). A proper endothelial maturation is finely guided by a variety of signals from other 

cell types including VSMC and pericytes: the communication between these cells eventually 

leads to the maturation and stabilization of the vessel (Santulli et al., 2011, 2013; Lampri 

and Elli, 2013). Numerous studies investigated the mechanistic role of miRs in regulating 

EC function during angiogenesis; they are summarized, alongside with their main target 

genes, in Table 1.

Mounting evidence indicates that miRs can be considered as a language that allows cells to 

communicate: indeed, as mentioned above, some cells can release miRs to specifically 

modulate physiological processes in recipient cells. Ergo, miRs have inter-cellular signal 

transduction capabilities. For instance, EC/VSMC contacts induce the activation of 

miR-143/145 transcription in VSMC, promoting the transfer of these miRs to the 

endothelium: VSMC can deliver miR-143/145 to EC via fine intercellular tubes, named 

membrane nanotubes or tunneling nanotubes (Climent et al., 2015). The level of 

miR-143/145, but not that of its precursor molecule (pri-miR-143/145), is significantly 

augmented in EC when these cells are co-cultured with VSMC. A molecular pathway has 

been proposed, in which secretion of transforming growth factor-β (TGF-β) by EC 

stimulates the transfer of miR-143/145 from VSMC to EC. Once in the EC, miR-143/145 

represses hexokinase II and integrin β8 and thereby the angiogenic potential of the recipient 

cell (Climent et al., 2015). The expression of miR-143/145 in EC could not be achieved by 
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the simple transfer of conditioned medium or VSMC-derived exosomes and was not 

sensitive to gap junction uncoupling agents—both exosomes and gap junctions had been 

reported as potential routes for intercellular transfer of miRs. Instead, the transfer of 

miR-143/145 was sensitive to lantrunculin A, an inhibitor of the formation of tiny membrane 

connections among cultured cells. High-resolution imaging allowed the direct visualization 

of tunneling nanotubes between EC and VSMC and the transport of miRs within them 

(Climent et al., 2015). Supporting these results, the intercellular transfer of miRs through 

tunneling nanotubes had been previously reported in ovarian cancer (Thayanithy et al., 

2014).

The actual role of miR-155 in angiogenesis deserves to be addressed in more detail. This so-

called “angiomiR” is expressed on the BIC locus on chromosome 21, and was recognized in 

2007 as a translational repressor of the type I angiotensin II receptor (Martin et al., 2007). A 

study in brain microvasculature reported an attenuating effect of miR-155 on EC 

morphogenesis (Roitbak et al., 2011). A significant downregulation of miR-155 has been 

identified during hindlimb ischemia. Correspondingly, inhibition of miR-155 in EC has a 

stimulatory effect on proliferation and angiogenic tube formation via derepression of its 

direct target gene type I angiotensin II receptor. Nevertheless, miR-155−/− mice exhibit an 

unexpected phenotype in vivo, with a strong reduction of blood flow recovery after femoral 

artery ligation (arteriogenesis) dependent on the attenuation of leukocyte-endothelial 

interaction and a reduction of proarteriogenic cytokine expression. Consistently, miR-155-

deficient macrophages exhibit a specific alteration of the proarteriogenic cytokine expression 

profile, which is partly mediated by the direct miR-155 target gene SOCS-1. Therefore, 

miR-155 exerts an antiangiogenic but proarteriogenic function in the regulation of 

neovascularization via the suppression of divergent cell-specific target genes and that its 

expression in both EC and bone marrow-derived cells is essential for arteriogenesis in 

response to hindlimb ischemia (Pankratz et al., 2015).

Hypertension and miRs

Essential hypertension affects approximately a billion people worldwide and is considered to 

be causing more than 7 million deaths per year (Santulli, 2013). It is a complex heritable 

trait involving multiple genes that interact with environmental factors. Notably, only up to 

2.2% of inter-individual variance in blood pressure (BP) may be explained by common 

single nucleotide polymorphisms (SNPs) associated with hypertension identified by 

genome-wide association (GWA) studies (Ehret et al., 2011; Marques et al., 2015). This 

aspect and the fact that coding regions account for less than 2% of the entire human genome 

support the theory that other mechanisms besides coding genes contribute to BP regulation. 

The mechanistic importance of non-coding regions of the genome in the pathophysiology of 

hypertension has been suggested by several investigators. In particular, the role of miRs—

which represent only a small fraction of the non-coding RNAs—in the regulation of BP has 

emerged from seminal preclinical studies in which Dicer, the endoribonuclease that 

processes double-stranded RNA including pre-miRs, has been deleted in VSMC (Albinsson 

et al., 2011) or in juxtaglomerular cells, the renal cells that produce renin, the rate-limiting 

enzyme of the renin-angiotensin-aldosterone system (RAAS) (Sequeira-Lopez et al., 2010). 

Both murine models displayed a drop in BP. A less pronounced reduction in BP values was 
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observed in the miR-143/miR-145 knockout mouse, which also exhibited thin arteries with 

an overall reduced vascular tone (Xin et al., 2009).

Animal studies provided functional insights on the role of miRs in hypertension and also 

allowed to test miR-based therapeutic approaches to treat such a disease. For instance, a 

neurogenic model of hypertension with marked circadian elevation of BP, the Schlager 

BHP/2J mouse, exhibits low levels of miR-181a and high renin mRNA during the active 

period (Head et al., 2015). This is consistent with the down-regulation of miR-181a 

observed in kidneys of hypertensive patients (Marques et al., 2015). When treated with a 

miR-181a mimic, a reduction in BP and renal renin mRNA were observed (Head et al., 

2015). Another example of therapeutic use of a miR in hypertension is miR-22, targeting 

chromogranin A mRNA, which has been associated with human hypertension (Sahu et al., 

2010). Spontaneously hypertensive rats (SHR) treated with miR-22 inhibitor displayed a 

decrease in BP (Friese et al., 2013). Interestingly, a polymorphism in the 3′UTR of 

chromogranin A, which increases the binding of miR-22, has been identified in SHR (Friese 

et al., 2013).

Studies in rodents greatly contributed also to the identification of several miRs implicated in 

the pathogenesis of pulmonary hypertension, including miR-21, miR-26a, miR-29a-3p, 

miR-30c, miR-17-92, miR-96, miR-125a, miR-126, miR130-301, miR143/145, miR-204, 

miR-206, miR-210, miR-223, miR-424, and miR 503 (Kim et al., 2013; Potus et al., 2014; 

Courboulin et al., 2015; Luo et al., 2015; Meloche et al., 2015; Schlosser et al., 2015; Tang 

et al., 2015). However, discordant results have been found when comparing preclinical and 

clinical studies, due to the existence of multiple experimental models of pulmonary 

hypertension (Schlosser et al., 2015).

Some miRs have been shown to partake into the pathogenesis of essential hypertension due 

to their ability in modulating the expression of key molecules involved in the regulation of 

vascular tone. For instance, miR-125a-5p and miR125b-5p suppress endothelin-1 expression 

in EC (Li et al., 2010). These findings are supported by the decreased levels of miR125a/b in 

hypertensive rats. Another example is given by miR-155, which can modulate the expression 

of two main players in vascular homeostasis, namely endothelial nitric oxide synthase 

(eNOS) and type I angiotensin II receptor (Sun et al., 2012; Pankratz et al., 2015).

Most recently, Liao and colleagues demonstrated that Let-7g, one of the members of the 

most studied and highly conserved miRs, is able to preserve endothelial function and 

suppress inflammation induced by metabolic dysregulation (Liao et al., 2014). Using both in 

vivo experiments in animals and samples from patients, Let-7g was shown to finely 

modulate the TGF-β/plasminogen activator inhibitor 1 (PAI-1) axis (Liao et al., 2014).

Furthermore, independent research groups have sought to directly study the association of 

miRs and hypertension in humans, mostly focusing on miRs as potential biomarkers, as 

summarized in Table 2. Indeed, miRs in biological fluids are protected from endogenous 

RNase-activity because they are carried in extracellular vesicles, RNA-binding proteins and 

lipoprotein complexes. These miRs are therefore considered unique and highly stable also in 

extreme conditions (Tijsen et al., 2012; Marques et al., 2015).
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Three miRs were found to be up-regulated in hypertension via a microarray analysis in a 

Chinese population: miR-210, miR-425, and miR-505 (Yang et al., 2014). In particular, 

levels of miR-505 were consistently higher in other cohorts of hypertensive patients and this 

miR impairs EC migration and tube formation via the regulation of the gene encoding for 

fibroblast growth factor 18 (FGF18) (Yang et al., 2014).

A genome-wide analysis compared miR expression in plasma from hypertensive and 

normotensive subjects identifying 27 differentially expressed miRs (9 were up-regulated and 

18 were down-regulated in hypertensive patients (Li et al., 2011)). Three miRs were then 

validated using qPCR: hcmv-miR-UL112, miR-296–5p, and let-7e. Intriguingly, hcmv-miR-

UL112 is a human cytomegalovirus (CMV)–encoded miR that interacts with interferon 

regulatory factor-1, a receptor involved in infectious and inflammatory responses. Moreover, 

high titres of CMV have been found in hypertensive patients, leading to the speculative 

conjecture that CMV could contribute to hypertension by modulating miR pathways.

A recent study aiming to investigate the differential expression of hypertension-associated 

miRs in the plasma of patients with white coat hypertension revealed that miR-21, miR-122, 

miR-637, and let-7e are up-regulated in hypertensive subjects, whereas miR-122 and 

miR-637 are higher in white-coat patients than in control subjects (Cengiz et al., 2015). BP 

values were negatively correlated with miR-296-5p.

Interestingly, miR-296-5p was downregulated in hypertensive patients but up-regulated in 

white-coat hypertensives. The authors concluded that the expression analysis of miR-296-5p 

and miR-637 allows to distinguish between white-coat and non-white-coat hypertensive 

individuals (Cengiz et al., 2015).

In a report evaluating metabolic syndrome and its risk factors, differentially expressed miRs 

were identified in the blood and in exosomes isolated from serum of healthy controls 

compared with patients with metabolic syndrome, type 2 diabetes, hypercholesterolemia or 

hypertension (Karolina et al., 2012). The analysis revealed that miR-150, miR-192, and 

miR-27a were down-regulated in subjects with hypercholesterolemia or hypertension; 

miR-130a, miR-195, and miR-92a were up-regulated in patients with hypertension and with 

metabolic syndrome and positively correlated with BP values (Karolina et al., 2012). 

Consistent with these results, preclinical investigations have demonstrated that miR-27a is 

down-regulated in aortas of spontaneously hypertensive rat (SHR) compared to Wistar–

Kyoto (WKY) normotensive animals (Gu et al., 2014). On the other side, the finding of the 

upregulation of miR-92a, predicted to target angiotensin II (Ang II) receptor type I (Karolina 

et al., 2012), is somehow in contrast with studies in mice deficient in miR-92a, which do not 

exhibit significant changes in BP (Charan Reddy, 2015).

Most recently, Kriegel and colleagues identified 35 miR-target pairs, in which mRNA 

encoded by hypertension-related genes was suppressed by endogenous miRs in human 

vascular EC (Kriegel et al., 2015). Such a finding indicates widespread, tonic control of gene 

expression relevant to BP regulation by endothelial miRs.

Several investigators have also analyzed whether SNPs in miR sequences (Fu et al., 2014) or 

in the 3′ untranslated region (UTR) of a messenger RNA (mRNA) of genes known to be 
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functionally involved in the regulation of BP (Marques et al., 2015) were associated with 

hypertension, yielding encouraging findings (Fu et al., 2014; Marques et al., 2015). For 

instance, miR-155 binds more efficiently to the A allele than to the C allele at position 

+1166 of the SNP rs5186 in the 3′UTR of the Angiotensin II Receptor 1 mRNA. The C 

allele is also more prevalent in hypertensive patients than in normotensive subjects 

(Sethupathy et al., 2007). Additionally, SNPs in the arginine vasopressin 1A receptor 

(AVPR1A) gene, bradykinin 2 receptor (BDKRB2) gene and thromboxane A2 receptor 

(TBXA2R) gene can modify the binding site for several miRs (Nossent et al., 2011).

Endothelial miRs in the Clinical Scenario: New Hopes in Interventional 

Cardiology

Percutaneous coronary intervention (PCI) is one of the most commonly performed 

interventions (Stefanini and Holmes, 2013), representing the main option for 

revascularization in cardiovascular disease (Stefanini and Holmes, 2013). Millions of 

procedures to intervene on occlusive vascular lesions are performed worldwide each year 

(~700,000 angioplasties are performed annually only in US) and 70–90% of all angioplasty 

patients receive a stent (Santulli, 2013), inserted permanently at the site of the vascular 

blockage to form an internal scaffolding that keeps the angioplastied vessel from closing.

Recurrent lumen narrowing has been a substantial limitation of PCI from its inception. A 

major breakthrough in the field was the introduction of bare metal stents (BMS), to prevent 

the elastic recoil of the treated vessels (Sigwart et al., 1987). However, the major drawback 

of this procedure is the induction of proliferation/migration and subsequent accumulation of 

VSMC, macrophages, and lymphocytes in the arterial wall, eventually leading to restenosis. 

To reduce rates of restenosis, drug-eluting stents (DES) were introduced in the clinical 

scenario (Marks, 2003), in order to deliver in situ drugs that could inhibit cell proliferation. 

Nevertheless, concerns have been raised over the long-term safety of DES, with particular 

reference to stent thrombosis, essentially attributable to impaired re-endothelization caused 

by the non-selective anti-proliferative properties of DES. Hence, when the obstacle of 

restenosis seemed finally overcome, enthusiasm and euphoria were considerably tempered 

by epidemiologic data reporting that DES did not ameliorate mortality rates when compared 

to BMS (Wijns and Krucoff, 2006). Basic research revealed that the main reason underlying 

these findings was the non-selective properties of the antiproliferative drugs eluted by the 

stents, thereby inhibiting not only the proliferation and migration of the cells responsible for 

restenosis (primarily VSMC), but also the growth and mobility of EC, indispensable for the 

healing of the vessel following stent implantation. Ergo, the lack of proper endothelial 

coverage eventually leads to an increased risk of thrombosis, with catastrophic clinical 

consequences for the patients.

The effect of stent deployment on EC behavior remains poorly understood. Stent 

implantation and balloon angioplasty lead to mechanical damage of the thin endothelial 

layer. Endothelial denudation and medial wall injury are generally considered the initial 

effects of angioplasty-induced injury (Popma and Topol, 1990; Chaabane et al., 2013). 

Given the essential role of EC in suppressing inflammation and thrombosis and overall in 
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controlling vascular tone and function, the restoration of a healthy endothelial layer is an 

imperative therapeutic goal in order to prevent restenosis and to avoid the detrimental 

consequences of in-stent thrombosis (Santulli et al., 2014). Unquestionably, re-

endothelialization of injured coronary arteries is affected by the presence of a stent since 

such a structure provides a non-physiological surface for adhesion and generates 

perturbations in blood flow (Alexander, 2004). Notably, drugs eluted by the stents currently 

available in clinical practice—including rapamycin (sirolimus), everolimus, zotarolimus, 

umirolimus (biolimus A9), novolimus, myolimus, paclitaxel—are not able to differentiate 

EC from VSMC, T-cells or macrophages. Therefore the inhibition of proliferation and 

migration affects all these cellular types, leading to an increased risk for late thrombosis, due 

to delayed/incomplete re-endothelization. Thus, impaired endothelial coverage after 

angioplasty prolongs the window of vulnerability to thrombosis, requiring thereby a 

prolonged dual anti-platelet therapy.

Diverse vasculoprotective methods have been proposed to overcome the restenosis problem 

following PCI, in order to preserve endothelial function (Kipshidze et al., 2004; Yu et al., 

2007; Torella et al., 2009). However, vascular restenosis and thrombosis continue to be a 

major problem in interventional cardiology, limiting the actual effectiveness of 

revascularization procedures. The ideal DES should display a selective anti-proliferative 

effect on VSMC, macrophages, and T-lymphocytes, without affecting EC (Stefanini and 

Holmes, 2013).

Since EC injury is a fundamental element in the pathophysiology of atherogenesis (Cirillo et 

al., 2015), understanding EC repair is of critical importance in developing therapeutic 

approaches to preserve endothelial integrity and vascular health. In this sense miRs and their 

intrinsic properties represent an ideal opportunity to specifically attenuate neointimal 

formation. Several miRs have been implicated in restenosis after interventional endothelial 

injury. For instance, inducing miR-221 in VSMC causes p27Kip1 inhibition (Davis et al., 

2009), thereby increasing VSMC proliferation; on the contrary, overexpression of miR-145 

reduces neointima formation in response to balloon injury (Cheng et al., 2009). Antisense 

knockdown of miR-21, which is moderately increased after vessel injury (Ji et al., 2007), has 

been shown to blunt the formation of neointimal lesions in response to balloon injury and 

the knockout of miR-21 attenuates post-stenting restenosis modulating inflammation and 

VSMC response (McDonald et al., 2015). The mechanistic role of miRs in the restenosis 

process has been also confirmed by the identification of multiple miRs (including miR-21, 

miR-146, and miR142-3p) aberrantly expressed in stented swine arteries (McDonald et al., 

2015).

Harnessing the EC-specific expression of miR-126, we were able to obtain in one fell swoop 

both the inhibition of restenosis, targeting VSMC, and the prevention of restenosis and 

thrombosis, preserving the endothelial function (Santulli et al., 2014). A major challenge 

remains the delivery of miR-based therapies. Indeed, while in preclinical studies, miR 

mimetics and antagomiRs (chemically derived oligonucleotides that have been developed in 

order to specifically silence miRs) have been successfully (Care et al., 2007) delivered 

systemically (intravenously injected), they are preferentially targeted to liver, spleen, and 

kidney. The specific application of miR-based agents to the vasculature, for instance during 
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PCI, can be considered as an effective therapeutic strategy. The direct intravascular delivery 

could be combined to new-generation bioresorbable stents with biodegradable scaffolds 

(Ellis et al., 2015; Kraak et al., 2015; Santulli, 2015b). Other potential alternatives include 

the stabilization of miR-based agents: various chemical modifications of nucleotides can 

enhance their stability in vivo, for instance by using cholesterol-conjugated, 2′-O-methyl–

modified antagomiRs; miR-based drugs can be also conjugated to targeting molecules 

including antibodies, peptides, or other bioactive molecules, which may promote the specific 

homing to the site of the injury.

Conclusions

This review highlights the complex interactions linking miRs, expression of genes, and 

molecular pathways leading to endothelial dysfunction. The potential therapeutic use of 

miRs is currently being explored through several approaches, including inhibition and over-

expression, in many cardiovascular disorders.
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TABLE 1

Angiogenesis and miRs

Pro-angiogenic miRs Target gene Ref.

miR-9 SOCS5 Zhuang et al. (2012)

miR-10a MAP3K7; HOXA1; bTRC Fang et al. (2010)

miR-21 STAT3 Liu et al. (2015)

miR-23/27 SEMA6A; SPROUTY2 Zhou et al. (2011a)

miR-107 DICER1 Li et al. (2015)

miR-126 PI3KR2; SPRED1;VCAM1; SDF1 Nicoli et al. (2010)

miR-130 HOXA5, GAX Li et al. (2015)

miR-132/212 RASA1, SPRED2 Lei et al. (2015)

miR-210 EFNA3 Wang et al. (2013)

miR-217 SIRT1- FOXO/eNOS Menghini et al. (2009)

miR-424 HIF-1α Kim et al. (2013)

miR891a-5p NF-κB Yao et al. (2015)

Anti-angiogenic miRs

miR-17 JAK-1 Katz et al. (2014)

miR-21 RhoB;PPARγ Zhou et al. (2011b)

miR-24 GATA-2; PAK4 Zhou et al. (2014)

miR-92a SIRT1; ITGA5; KLF4 and MKK4 Ohyagi-Hara et al. (2013)

miR-200 Ets-1; IL-8; CXCL1 Chan et al. (2011)

miR-221/222 STA5a; c-KIT; eNOS Nicoli et al. (2012)

miR-492 eNOS Patella et al. (2013)

14q32 miR cluster (329, 487b, 494, 495) Multiple neovascularization genes Welten et al. (2014)

miR-497 VEGFR2 Tu et al. (2015)

miR-505 FGF18 Yang et al. (2014)

miR-506 SPHK1 Lu et al. (2015)

EFNA3, Ephrin-A3; eNOS, Endothelial Nitric Oxide Synthase; FGF18, Fibroblast growth factor 18; JAK1, Janus kinase 1; KLF4, Kruppel-like 
factor 4; PPAR-γ, Peroxisome proliferator-activated receptor gamma; RhoB, Ras homolog gene family, member B; SIRT1, sirtuin (silent mating 
type information regulation 2 homolog) 1; SOCS5, suppressor of cytokine signaling 5; PI3KR2, phosphoinositol-3 kinase regulatory subunit 2; 
RASA1, RAS p21 protein activator; SPRED2, sprouty-related, EVH1 domain containing 1; SEMA6A, Semaphorin-6A; SPHK1, sphingosine 
kinase 1; STAT3, Signal transducer and activator of transcription 3; VCAM-1, vascular cell adhesion molecule 1; VEGFR2, vascular endothelial 
growth factor receptor 2.
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TABLE 2

Regulation of miRs in human tissues during hypertension

miRs upregulated in hypertension Tissue

miR-1, miR-21, miR-92a, miR-130a, miR-195, miR-221, miR-222, let-7e, hcmv-miR-UL112 Systemic circulation and urine

miR-21, miR-132, miR-196a, miR-451 Kidney

miR-132, miR-145, miR-212, miR-221, miR-222 VSMC

miR-132, miR-212 Heart

miRs downregulated in hypertension

miR-9, miR-27a, miR-126, miR-133a, miR-143, miR-145, miR-150, miR-192, miR-296-5p Systemic circulation and urine

miR-181a, miR-638, miR-663 Kidney

VSMC, vascular smooth muscle cell.
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