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Summary

The growth of nonresponse rates for social science surveys has led to increased concern about the 

risk of nonresponse bias. Unfortunately, the nonresponse rate is a poor indicator of when 

nonresponse bias is likely to occur. We consider in this paper a set of alternative indicators. A 

large-scale simulation study is used to explore how each of these indicators performs in a variety 

of circumstances. Although, as expected, none of the indicators fully depicts the impact of 

nonresponse in survey esti mates, we discuss how they can be used when creating a plausible 

account of the risks for nonresponse bias for a survey. We also describe an interesting 

characteristic of the FMI that may be helpful in diagnosing NMAR mechanisms in certain 

situations.

Keywords

Bias; Missing data; Nonresponse; Nonresponse indicators; Survey data quality measures

1. Introduction

Nonresponse rates have been increasing over the recent past (de Leeuw and de Heer, 2002; 

Curtin et al., 2005; Atrostic et al., 2001; Petroni et al., 2004; Brick and Williams, 2013). 

This growth in nonresponse rates has prompted concerns about the quality of survey data. In 

a review of the research on the problem, Groves (2006) recommended that survey 

researchers focus more on limiting bias than on attaining high response rates. This point was 

further strengthened by a review of specialized “gold standard” studies of nonresponse bias 
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(Groves and Peytcheva, 2008). This review found that the response rate was not a good 

predictor of when nonresponse bias might occur. As a result, survey designers and 

statisticians have been seeking alternative measures that may be more useful in predicting 

nonresponse bias.

Several indicators have been proposed and explored theoretically (e.g. Schouten et al., 2009; 

Wagner, 2010). However, there has not been a large-scale simulation study of the 

performance of these indicators in a variety of circumstances. In particular, little is known 

about how these indicators perform under different missing data mechanisms. Little and 

Rubin (2002) define three missing data mechanisms. The first is Missing Completely at 

Random (MCAR). Under this mechanism, the observed data are essentially a simple random 

sample of the full sample. This pattern of missingness does not lead to biased estimates, but 

can lead to increased variance due to smaller sample sizes. The second mechanism is 

described as Missing at Random (MAR). This mechanism indicates that conditioning on 

observed data will eliminate bias from estimates. For example, this corresponds to the 

assumption in weighting class adjustments that respondents within each cell are a random 

subsample of the cell. Under this missingness mechanism, if response rates differ across the 

cells, reweighting the responses back to the proportions in each class will produce unbiased 

estimates. The final mechanism is Not Missing at Random (NMAR). This mechanism 

corresponds to the situation where the missingness is a function of unobserved data. In other 

words, there is no strategy that will eliminate all bias from estimates without making at least 

some untestable assumptions – for example, positing a model for missing data that is not 

estimated from observed data.

In this paper we examine a set of indicators for the risk of nonresponse bias through 

simulation studies. Using the classification described by Wagner (2012), we group these 

indicators into three categories: the response rate; indicators involving complete auxiliary 

data and the response indicator variable; and indicators involving complete auxiliary data, 

the response indicator variable, and the observed survey data. We also examine measures of 

model fit. The simulations vary response rates, missing data mechanisms, and correlations 

between the complete auxiliary data (e.g. sampling frame data) and the survey data. The 

results of these simulations are used to demonstrate the strengths and weaknesses of each 

indicator. For the sake of simplicity, we examine only the simple random sample case 

throughout the paper. While we anticipate that many of the results observed in our 

simulation studies will hold after taking into account the specific features of more complex 

sample designs, we leave this exploration to future research.

The paper proceeds as follows. In section 2, we discuss the set of nonresponse bias 

indicators considered in this study. Section 3 describes the simulation study design and 

discusses the results, including the overall relationship between nonresponse bias and the 

proposed indicators under the three missing mechanisms. Section 4 focuses on the concept 

of “maximal absolute bias,” derived from the R-indicator (Schouten, et al., 2009). Section 5 

considers the special situation of the fraction of missing information (FMI) indicator in the 

NMAR setting. Section 6 considers the behavior of the nonresponse bias indicators after 

adjustment for nonresponse using nonresponse weights. The paper concludes with 

suggestions for improved nonresponse evaluations as well as suggestions for future research.
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2. Measures for the risk of nonresponse bias

2.1 A review of nonresponse bias

In order to understand and evaluate alternative indicators to the response rate for the risk of 

nonresponse bias, it is important to understand the source of nonresponse bias. Nonresponse 

bias occurs when there are systematic differences between respondents and nonrespondents. 

A well known illustration of this problem is the use of the unadjusted respondent mean to 

estimate the population mean. Assuming equal sampling probabilities, the complete-case 

estimator of the population mean is given by

(1)

where r is the number of respondents on the sample and ri is the response indicator for the ith 

element in the sample, that is,

The bias of this estimator can be viewed through two different perspectives. The first 

approach is deterministic; it assumes that the population can be divided into two groups, 

respondents and nonrespondents (Cochran, 1977). Under this approach, the nonresponse 

bias of the unadjusted respondent mean is given by

(2)

where N is the overall population size, M is the population size of the nonrespondent's 

group,  and  are the population means of a given survey variable Y of the respondents 

and nonrespondents, respectively, and  is the proportion of respondents in the 

population, which is also called the population response rate. It is important to note that 

while we have a sample estimate of , in most practical situations, we do not have a sample 

estimate of .

A more general perspective for nonresponse bias is stochastic: it assumes that every element 

in the population has a probability of responding the survey, if requested. This is usually 

referred to as a response propensity and it is denoted by ρi = P(ri = 1), 0 ≤ ρi ≤ 1, i = 1, …, 

N. In most nonresponse adjustment strategies, we assume that all response propensities are 

positive in order to be able to estimate them. Then, under this stochastic approach, the 

nonresponse bias of the unadjusted mean is given approximately (Bethlehem, 1988) by
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(3)

where  is the population covariance between a 

given survey variable Y and the response propensity ρ, and  is the overall 

population response propensity mean. Observe that the sample response rate can be 

considered an estimator for this latter parameter.

The deterministic approach for nonresponse bias is actually a special case of the stochastic 

approach, in which every element in the population has a response propensity of either ρi = 0 

or ρi = 1, that is, everyone is either a respondent or a nonrespondent with certainty.

Notice that while the first term on the bias expression under both approaches can be 

estimated by the sample response rate, the second term cannot be estimated in most practical 

situations. The second term is only available in specialized studies that have a “gold 

standard” measure available. This might be one of the reasons that the first term – the 

response rate—has commonly been used as an indicator for the risk of the nonresponse bias. 

On the other hand, if the difference between  and  varies across different response 

rates, then there might be no relationship between the response rate and nonresponse bias. 

Increasing the response rate, in such a situation, may increase, decrease, or have no impact 

on the nonresponse bias depending upon for which subjects the change occurs.

While the response rate, in the absence of any other information, is the only available 

indicator for the risk of nonresponse bias, it only provides partial evidence of the risk of 

nonresponse bias. However, the nonresponse bias can be further explored when other 

auxiliary variables, denoted X, are available for the entire sample. Such variables are 

typically taken from the sampling frame or result from paradata, that is, data generated by 

the process of collecting data (Couper, 1998; Couper and Lyberg, 2005; Kreuter, 2013). 

Suppose that H subgroups can be formed using the auxiliary variable X, which may be 

continuous or categorical. Then, under the deterministic approach the nonresponse bias can 

be rewritten (Kalton and Kasprzyk, 1986) as

(4)

where  is the proportion of elements in the hth subgroup,  and  are the 

population means of the respondents and nonrespondents of a given survey variable Y in the 

hth subgroup, respectively,  is the population response rate in the hth subgroup and 

. Note again that the  are not observed. The first component, on the 

one hand, can be estimated as a difference between adjusted and unadjusted means where 

the adjustments are the inverses of the response rates in the H subgroups. Such an estimate 
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would eliminate bias due to this first component, but not that due to the second component. 

The first component corresponds to an “MAR component” that can be eliminated through 

standard adjustment procedures. The second piece corresponds to an “NMAR component” 

in that the differences between respondents and nonrespondents on the survey variable Y 
remain after conditioning upon the variables used to create the H subgroups. These two 

pieces can vary independently such that one may be zero while the other is non-zero. They 

may have opposite signs, thereby creating perverse situations where removing the first 

component may increase the overall bias of an estimate. This situation occurs when the sign 

of the relationship between the population respondent mean and the population response rate 

is the opposite of the difference between the population means for the nonrespondents and 

respondents, . For example, if subgroups with larger respondent means also 

have larger response rates, but the nonrespondent mean is larger than the respondent mean in 

these subgroups, the absolute nonresponse bias of a weighted adjusted mean would be larger 

than the unadjusted respondent mean, . This formulation generalizes to settings other than 

that in which cell weighting adjustments are employed.

Usually, in survey practice, subgroups of cases are formed using sampling frame variables or 

paradata and their response rates are monitored throughout the data collection period 

(Wagner, et al., 2012). In the case where there is much variability among these response 

rates, effort is made to equalize them by seeking to increase the levels of groups with low 

response rates. The coefficient of variation of subgroup response rates may also be used as a 

summary measure for that purpose. It is interesting to notice, however, that, unless this extra 

effort reduces Cov(Y, ρ), the nonresponse biases might not be reduced. The auxiliary data 

used to guide data collection effort may also be used to form nonresponse adjustment 

weights. A usual method to deal with nonresponse is by weighting the respondents to 

compensate for the nonrespondents within subgroups, also called nonresponse adjustment 

cells, formed by the auxiliary information. For a given nonresponse adjustment cell, the 

nonresponse weight is the inverse of the response rate on that cell. Response propensity 

adjustments are a generalization of this cell approach in which the response indicator is 

modeled using logistic regression, with fully-observed covariates as predictors.

This discussion provides a framework within which to discuss nonresponse bias. We now 

turn to descriptions of various indicators that may be related to nonresponse bias.

2.2 Indicators for nonresponse bias

In this section, we discuss the indicators investigated by our simulation study. These 

indicators are organized into two sections: indicators using auxiliary variables only and 

indicators using auxiliary variables and survey variables together.

2.2.1 Indicators using auxiliary variables only—Indicators using auxiliary variables 

can be estimated at the survey level. That is, there is a single indicator for the entire survey. 

This simplifies their calculation, but relies upon the strong assumption that a single indicator 

can adequately capture the risk of nonresponse bias across all of the statistics produced by a 

survey. Following the notation from the previous section, we will denote the survey outcome 
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variable as Y and a fully observed covariate as X. We will also introduce an unobserved 

confounding variable, denoted Z. These X, Y, and Z may be either a single variable or a 

vector of variables depending upon the context.

Variability in nonresponse weights, var(Wnr): Whether nonresponse weights are formed 

via adjustment cells or a response propensity model, a higher level of variability of these 

weights could indicate a larger risk for nonresponse bias, since it allows the covariance 

between Y and ρ to potentially increase. Hence, the variance of such weights is an 

alternative indicator to the response rate for the risk of nonresponse bias. A general form of 

nonresponse weighting adjustment takes the nonresponse weight, Wnr, to be the inverse of 

an estimate of the response propensity. That is, , where  is the estimated 

response propensity for the ith respondent. For example, in weighting cells nonresponse 

adjustments, in which the sample is divided into H weighting cells according to auxiliary 

variables observed for both respondents and nonrespondents, the response propensity is 

estimated by the response rate of the cell, that is, , i ∈ h, where nh is the sample size 

and nrh is the number of respondents in cell h. More generally, the response propensities can 

be estimated using a set of auxiliary variables observed for respondents and nonrespondents, 

X, by a logistic regression. The variability of the nonresponse weights can then be measured 

by the variance of these weights:

where . A key assumption of this indicator is that if the respondents vary in 

their observed characteristics greatly from those of the sample, then there is a risk of 

nonresponse bias. This assumption might not be true. For instance, if X is unrelated to Y, 

then variation in X is not an indicator of potential bias in Y.

Särndal and Lundström (2010) propose a similar measure, the coefficient of variation of the 

nonresponse adjustments, where these nonresponse adjustments are based upon a calibration 

procedure. They label this indicator “H3.” A related measure, the variance of 

poststratification weights – or the product of the poststratification and nonresponse weights 

-- can also be used as a nonresponse bias indicator.

R-Indicator, : Schouten, et al. (2009) adapted this idea of using the variability of the 

predicted response propensities as a measure of survey quality, proposing the R-Indicator:

(5)
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where  is the mean of the predicted response propensities. Since , the R-

Indicator varies between 0 and 1, with lower values indicating a larger risk for nonresponse 

bias, a similar reasoning to that which motivates the use of the variability in nonresponse 

weights as an indicator. Särndal (2011) proposed several related “balance” indicators. These 

are based upon a metric of the distance between the sample and responders on a set of 

covariates. Särndal defines one of these balance indicators, BI3, as , where 

is estimated from the sample using design weights. Särndal notes that this measure is very 

similar to the R-Indicator and, in some circumstances (i.e. under simple random sampling, 

maximum likelihood estimates of the logistic regression model, and with categorical 

covariates), they will be equivalent. The assumption of this indicator is similar to that of the 

variation of the nonresponse weights. A lack of balance on observed characteristics X for the 

respondents with respect to the sample is an indication that Y may also be imbalanced.

Coefficient of Variation of Subgroup Response Rates, cv(RRsub): This indicator is 

similar to the R-Indicator, but it requires categorical auxiliary data observed for both 

respondents and nonrespondents in order to define subgroups. Similarly to the weighting cell 

nonresponse adjustment, let  be the response rate in the hth subgroup with nrh 
respondents out of the nh sampled elements, h = 1,…, H. The coefficient of variation of 

subgroup response rates is then defined as

where  is the overall response rate. Large variation in subgroup response rates is taken 

as an indication that there is a risk of nonresponse bias.

Area Under the Curve/Pseudo-R2: These indicators are meant to evaluate the model used 

to predict the response propensities. The Area Under the Curve (AUC), which is also the C 
statistic for binary outcomes, is one such measure. It ranges from 0.5 to 1. Higher values of 

AUC indicate a better predictive model and, therefore, a higher risk for nonresponse bias 

under the assumption that a strong relationship between auxiliary predictors X and the 

response indicator R reflects an imbalance among responders with respect to X.

Similarly, the pseudo-R2 (Nagelkerke, 1991) is another measure of the predictive power of a 

logistic regression model for the response propensity:
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It is scaled to vary between 0 and 1, with high values of the pseudo-R2 also indicating a 

strong association between the observed data and the response indicator and increased risk 

of nonresponse bias. This is similar to the assumption underlying the other balance 

indicators.

2.2.2 Indicators using auxiliary variables and survey variables together—
Despite adding information through the auxiliary variables, the alternative indicators 

discussed in the previous section do not incorporate the relationship between the response 

propensity and a given survey variable Y. However, developing indicators that include 

survey data presents two issues. First, the survey data are only available for responders. 

Second, using survey data implies that the indicators will be at the variable level, as opposed 

to the indicators estimated at the level of the survey. For these indicators, each survey 

statistic could have a different value and, potentially, some of them might have a high risk of 

nonresponse bias, while others do not. This feature, however, may also be viewed as a 

strength, since nonresponse bias is a statistic-level issue that may vary depending on the 

outcome variable or, more generally, the analysis of interest.

Fraction of Missing Information, FMI: Wagner (2010) suggested using the Fraction of 

Missing Information (FMI) as a survey quality measure. The FMI was developed in the 

missing data and multiple imputation literature (Dempster, et al., 1977; Rubin 1987) as a 

measure of uncertainty about the values imputed for missing elements. More precisely, it is 

the proportion of the total variance of a survey estimate explained by the between-

imputation variability. The underlying idea is that if the FMI is large, it means that there is 

much uncertainty about the imputed values of nonrespondents and, therefore, this may 

indicate a large risk for nonresponse bias. The most straightforward method to estimate FMI 

is to multiply impute, say M times, the missing data for the nonrespondents under a model, 

estimating for each of the M imputed dataset the parameter θ by . The FMI is then 

estimated by:

(6)

where  is the between-imputation variance, 

 is the average of the estimates using the M fully-imputed datasets, 

 is the total variance of the estimate and 

 is the within-imputation variance, which is the average of 

the M estimate's variances  computed using the M fully-imputed datasets. If the 

missing values are filled in using a relationship between X and Y estimated from the 

observed data, then the assumption underlying the imputation model is that the data are 

MAR when conditioning on X. As we will show, violations of this assumption can lead to 

biased estimates of the FMI.
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Correlation between Nonresponse Weights and Survey Variables, corr(Wnr,Y): Another 

indicator of this type is the correlation between nonresponse weights and survey variable:

Little and Vartivarian (2005) showed that the effectiveness of a nonresponse adjustment 

depends both on the associations of the survey variable with the auxiliary variables used in 

the adjustments and also with the response propensities. The correlation between the 

nonresponse weights and the survey variable can be used as a proxy of the former, but may 

be a biased estimate of corr(X,Y) if this relationship is different among nonrespondents, i.e. 

NMAR, since corr(Wnr,Y) is computed only over the respondents. Särndal and Lundstrom 

(2010) propose two similar measures. They label |corr(Wnr,Y)|×cvw, where cvw is the 

coefficient of variation of the weights, as H1 and corr(Y,X)×cvw as H2. Another similar 

indicator, the W indicator developed by Schouten (2007), can be used as an indicator for the 

risk of nonresponse bias, even though it was not proposed for this purpose. As with the 

correlation between nonresponse weights and survey variables, this measure is an indicator 

for the range of potential nonre-sponse bias. It is based upon the correlation of predicted 

values for Y (predicted from a model estimated using covariates X and estimated regression 

coefficients β) and R and Y. Using our notation, it can be written:

The * indicates that these data or estimates are available for respondents only. This strategy 

assumes that the estimates from the respondents of the coefficients β and the correlation 

between the predicted values and the respondent Y is the same as that for the full sample. In 

this way, it relies upon assumptions similar to the correlation between the nonresponse 

adjustments and respondent Y values.

Indicators that incorporate the survey variables on top of the auxiliary variables and the 

response indicator might be able to better capture the risk of nonresponse bias. On the other 

hand, they also rely on model assumptions about the relationship of the auxiliary and 

outcome variables. If these assumptions are not met, the conclusions made using such 

indicators might be invalid. However, this is also true for the other indicators, except that 

they might make stronger and less explicit assumptions. Brick and Jones (2008) explore the 

extent to which the form of the weighting (propensity scores, calibration, raking, etc) may 

influence nonresponse bias. They find that the choice of which auxiliary variables to include 

is more important than the method used to develop the weights.

Using a set of simulation studies, we demonstrate the conditions under which a 

representative subset of indicators may or may not be useful for identifying when 

nonresponse bias is likely to occur. In the first simulation study, we examine different 
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mechanisms for the missing data (MCAR, MAR, and NMAR). In the second simulation, we 

focus on the NMAR mechanism.

3. Simulation study

3.1 Study design

Two simulation studies were conducted, each one using k = 1,000 simulations with sample 

sizes n = 1,000 for each simulation to estimate a population mean . Each simulation 

included one observed explanatory variable X and another unobserved Z. In both studies the 

following conditions were varied:

■ Missing mechanism

■ Response rate

■ Correlation between the explanatory and survey variables

■ Correlation between the response propensities and the explanatory variables

The first simulation study considers a broader range of these parameters. In this simulation 

study, a total of 3 × 19 × 19 = 1,083 different simulation studies were conducted using:

■ 3 missing mechanisms: Missing Completely at Random (MCAR), Missing At 

Random (MAR) and Not Missing At Random (NMAR)

■ 19 response rates varying from 0.05 to 0.95 with 0.05 increments

■ 19 correlations between auxiliary variable (X or Z) and survey variable varying 

from 0.05 to 0.95 with 0.05 increments

For the NMAR mechanism in this study, only the unobserved variable Z was used to 

generate the missing pattern.

The focus of the second simulation study was the NMAR mechanism. In this case, the 

missing mechanism was generated using both the observed and unobserved variables X and 

Z. This corresponds to varying the strength of the first and second components of the 

expression developed by Kalton and Kasprzyk (4). The X variable determines the magnitude 

of the first (observable) component while the Z variable determines the magnitude of the 

second (unobservable) component. A total of 35 = 243 different simulation studies were 

conducted using:

■ 3 response rates: 0.2, 0.4 and 0.7

■ 3 correlations between the observed variable X and survey variable Y: low, 

medium and high

■ 3 correlations between the unobserved variable Z and survey variable Y: low, 

medium and high

■ 3 correlations between the response propensities and the observed variable X: 

low, medium and high
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■ 3 correlations between the response propensities and the unobserved variable Z: 

low, medium and high

The levels low, medium and high correspond, respectively to correlations of 0.05, 0.20 and 

0.70. The only exception is when the correlations between the response propensities and 

both covariates X and Z were high. In those cases, due to a restriction problem, they were set 

as approximately 0.54 for both correlations.

The data and missing mechanism generation was done in the same way for both simulation 

studies. First, a sample of size n = 1,000 of a random vector (Y, X, Z) was generated with

(7)

The covariances σyx and σyz vary accordingly to the specified correlations. Then, for each 

one of the 1,000 elements, a response propensity, ρi, was computed using a logistic 

regression model, given by

(8)

In the first simulation study, the coefficients β0, β1 and β2 were varied to meet the specified 

response rates and missing data mechanisms (see Appendix 1). In the second simulation 

study, the values of β1 and β2 varied according to the correlations between the response 

propensities and the observed and unobserved variables, X and Z respectively; while the 

coefficient β0 was set to adjust the overall response rate (see Appendix 2 for a 40% response 

rate example).

For each one of the 1000 elements a random number ui ~ Uniform(0,1) was generated and if 

ui < ρi, then that element was classified as respondent, (ri = 1). Otherwise, it was treated as a 

nonrespondent (ri = 0). The value for the survey variable Y was treated as missing for 

nonrespondents.

For each simulation, we calculated the response rate and several statistics from each of the 

other categories described earlier. From the indicators using auxiliary variables only, we 

calculated the variance of the nonresponse adjustment weights, the R-Indicator and the 

coefficient of variation of subgroup response rates. For the R-Indicator, only the X variable 

was used as a predictor in the response propensity model. Likewise, only the X variable was 

used to define the subgroups for the coefficient of variation of the subgroup response rates. 

The subgroups were formed by using the quintiles of the observed variable X as cut-off 

points.

As examples of the indicators using auxiliary variables X and the survey data Y from 

respondents, we calculated the FMI and the correlation of the nonresponse adjustment 

weights and the survey data. For the FMI, multiple imputation was done using only the 

observed variable X as a covariate in a regression model estimated from the observed data 

and, because of computational constraints, M = 10 multiple imputations. In practice, a larger 
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number of imputations may be needed to reliably estimate the FMI (Graham, et al. 2007). In 

these simulations, the reliability issue is less important as we performed 1,000 replications.

For the model fit statistics, we calculated the AUC and Pseudo-R2 of the logistic regression 

models predicting response, again using X as the predictor. These statistics form a 

representative set of the many statistics that could be estimated given the input data. We also 

computed two different estimates of the mean of Y: 1) the unadjusted respondent mean, and 

2) an adjusted mean, where the adjustments are the inverse of estimated response 

propensities using X as a predictor in a logistic regression model. This allowed us to 

compare the indicators to the bias of each estimate (unadjusted and adjusted). We can make 

these comparisons under the various scenarios described earlier. A key question is whether 

these indicators can be good predictors of when bias is likely.

The simulations and analysis were performed in R 2.13.2 (R Development Core Team, 

2011) with survey (Lumley, 2004; Lumley, 2012), mice (van Buuren and Groothuis-

Oudshoorn, 2011) and rms (Harrell Jr, 2014) packages.

3.2 Results

Figure 1 presents some of the results from the first simulation study. We have omitted the 

MCAR simulation results in order to simplify the presentation. As expected, the MCAR 

mechanism does not lead to biased estimates. In Figure 1, the relative bias of the unadjusted 

respondent mean is on the x-axis. The y-axis presents the level of each indicator. The shade 

of the dot represents the strength of the correlation between X and Y. The top row of the 

figure plots the relative bias against the response rate for the two mechanisms shown (MAR 

and NMAR). The next three rows display the results for indicators that depend upon the 

relationship between the X variable (available for all cases, e.g. sampling frame data or 

paradata) and the response indicator R. These indicators include the coefficient of variation 

of subgroup response rates cv(RRsub), the variance of nonresponse adjustment weights 

(var(Wnr) where the adjustments are based on X), and the R-Indicator. A third type of 

indicator includes those based upon the relationship between the complete data X and the 

survey variable Y. These indicators are presented in the next two rows of Figure 1 and 

include the correlation of the nonresponse weights Wnr and the survey variable Y, and the 

FMI which uses X to impute missing values of Y. Finally, some indicators monitor the 

model fit. The area under the curve (AUC) for the model predicting the probability of 

response using X as a predictor is an example of this type of indicator.

From a review of Figure 1, several interesting patterns emerge. From the first row of plots 

for the response rate, it can be seen that, for a given association between the survey variable 

and the auxiliary variable X (represented by the shading of the points), the nonresponse bias 

is a decreasing function of the response rate. The response rates do place a limit on the bias. 

However, although it may be obvious from the definitions, we can also see that it is not 

possible to distinguish from the response rate which missing mechanism is underlying the 

nonresponse error. Although the response rate places a limit on the potential bias, this does 

not mean that a higher response rates leads to smaller nonresponse bias, since the latter also 

depends on the association of the outcome and auxiliary variable. For example, if by 

increasing the response rate, the nature of the association between the outcome and auxiliary 
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variable changes, there might be an increased in the nonresponse bias if that change actually 

makes that association stronger, even though this increase in response reduces the range of 

the potential nonresponse bias.

Although the response rate is associated with the magnitude of the nonresponse bias range, it 

is important to notice that the range, or maximum bias, is never known to the survey 

practitioner. In other words, higher response rates (under the same level of association 

between nonresponse and the survey outcome) only guarantees a smaller range of the 

nonresponse bias, but its real magnitude, and therefore the bias itself, will most likely be an 

unknown for any given survey variable. Other than for proportions, placing a limit on this 

bias will require making assumptions about the missing mechanism. We will return to this 

question in the next section.

Indicators using both the response indicator and auxiliary variables show a similar pattern, 

but with different levels of correlation between the indicator and the nonresponse bias. For 

instance, the coefficient of variation of the subgroup response rates (cv(RRsub)) presents a 

very similar pattern to the response rate, but with the inverse relationship: for a given 

association between the outcome and auxiliary variables, the larger the cv(RRsub), the larger 

the nonresponse bias is. It is still not possible to distinguish the different missing data 

mechanism based on the value of this indicator for a given survey. Therefore, although it 

appears that this indicator performs better as an indication of the potential maximum 

nonresponse bias, this information is, in virtually every practical situation, hidden since we 

cannot know the missingness mechanism. Further, when the mechanism is NMAR, low 

values of the cv(RRsub) may give the misleading impression that the risk of nonresponse 

bias is low. The plot of the cv(RRsub) under the NMAR mechanism shows consistently low 

estimates of this indicator even as the bias increases. Unless one knows the mechanism, 

interpretation of this indicator is difficult.

The R-Indicator and the variance of the nonresponse weights var(Wnr) seem not to perform 

well in terms of indicating the magnitude of the bias. Under the NMAR mechanism, the R-

Indicator is unrelated to the bias. Under the MAR mechanism, lower values of the R-

Indicator appear to be associated with the magnitude of the bias, however, the range of the 

R-Indicator is limited with the larger biases. On the other hand, these indicators do identify 

when the missing mechanism is MAR versus when it is either MCAR (not shown) or 

NMAR. The indicators behave the same under either the MCAR or NMAR situations, 

basically indicating that the response set is well balanced with respect to X. When the 

situation is MAR, these indicators show a lack of balance. When the R-Indicator is very 

large, the missing mechanism tends to be MCAR or NMAR. Of course, knowing the 

distinction would be crucial information for judging the bias. The variance of the 

nonresponse weights var(Wnr) behaves similarly, but in the opposite direction. That is, very 

large values of the variance of the nonresponse weights tend to indicate a MAR mechanism. 

Again, the problem is that is not possible to make a distinction whether the missing 

mechanism is MCAR or NMAR using these indicators.

The AUC also presents a similar pattern, but in this case, when the missing mechanism is 

MCAR or NMAR it assumes values around 0.50, indicating a weak fit of the model where X 
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predicts the response indicator R, while under the MAR mechanism, as this indicator 

increases, so does the nonresponse bias.

Indicators that use the survey data for the observed cases suffer limitations similar to those 

of other indicators. The FMI ranges from 0 to 1, but just as the previous indicators, larger 

values tend to indicate a large range on the maximum bias when the missing mechanism is 

MAR or NMAR. These ranges are more apparent when the X variable is strongly correlated 

with Y. The correlation between the nonresponse weight and the survey variable 

corr(Wnr,Y) presents an interesting pattern under MAR mechanism: with large negative 

correlation, the largest nonresponse bias tends to be very large, but this tends to rapidly 

decrease as this correlation approaches to zero.

In sum, as expected, none of the indicators reveal the magnitude of the nonresponse bias or 

even whether it exists. They do provide limited evidence on potential mechanisms. This 

evidence is limited to descriptions of the relationships between X and R and X and Y.

4. Maximal absolute bias

As noted in the previous section, none of the indicators used to evaluate the risk of non-

response bias can specifically identify whether this bias is present in the estimation of the 

mean of a given survey variable, but some of them are at least able to present an indication 

whether the range of the nonresponse bias will increase or decrease, depending on the size 

of those indicators. Hence, as an alternative to the well know strategy of maximizing the 

response rate as a solution for nonresponse bias, it has been suggested that it may be useful 

to minimize the “maximal absolute bias” (Schouten, et al., 2009; Buellens and Loosveldt, 

2012). This measure, a function of the R-Indicator, is defined as

(9)

where R(ρ) is the R-Indicator,  is the overall population response propensity mean and S (y) 

is the standard deviation of the survey outcome Y.

However, using such a strategy can be misleading as this measure directly depends on the 

adequacy of the model estimating the R-Indicator. If this model is misspecified, by not 

including important predictors of the response indicator, for example, this measure might 

actually underestimate the true maximal nonresponse bias. As an illustration of this 

situation, we used the results from the simulation conducted under NMAR missing 

mechanism of the first study. In this set of simulations, the R-Indicator is estimated using an 

observed covariate X, although the missing mechanism is generated through an unobserved 

covariate Z. In the graphs below we compare the maximal absolute bias computed with the 

misspecified R-Indicator and the true nonresponse standard bias of the respondent mean, 

across different response rates and associations between the survey outcome Y and the 

unobserved covariate Z.

The results of these simulations confirms that in most cases, the maximal absolute bias 

measure using a misspecified model to estimate the R-Indicator underestimates the true 
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nonresponse bias. This gap tends to decrease as the response rate increases, mostly because 

the true nonresponse bias rapidly decreases as well. This pattern is the opposite for the 

association between Y and Z: as it increases, the difference between the estimated and the 

true bias also increases. There are only two instances in which the estimated maximal 

absolute bias was larger than the true nonresponse bias: when the association of Y and Z is 

low (corr(Y, Z) = 0.05) and the response rate is low (RR = 0.05 and RR = 0.10). This 

illustrates how placing a bound on the maximal absolute bias relies upon an untestable 

assumption about the missing mechanism.

5. Bias of the FMI under NMAR

The second simulation study revealed an interesting characteristic of the FMI. Wagner 

(2010), following Rubin (1987), observed that the FMI is bounded on the upper end by the 

nonresponse rate. However, this is only true under the MAR assumption. Here, we define the 

“bias” of the FMI as the difference of the FMI estimated with the incorrectly specified 

missingness model (i.e. the model that just uses X) and the FMI under the correctly specified 

model (i.e. that using both X and Z). In our simulations, the bias of the estimated FMI can 

be quite extreme when unobserved factors (Z, in our simulations) are powerful drivers of the 

nonresponse process.

Table 1 shows the relative bias of the FMI under a variety of simulated conditions. The 

columns define the relationships between the Y outcome variable and both X (observed) and 

Z (unobserved) variables. The first level of the columns shows the correlations of of Y and X 

(Low=0.05, Medium=0.20, High=0.70). Nested within these correlations are the correlations 

of Y and Z (low=0.05, Medium=0.20, High=0.70). The rows show the correlations between 

the response indicators R and the covariates X (observed) and Z (unobserved). The bias of 

the FMI can be extreme under two different conditions: if the unobserved covariate (Z) is a 

powerful predictor of response(these are the Corr(R,Z) rows marked “High”), or if the 

unobserved covariate is a powerful predictor of the survey outcome variable (Y) (these are 

the Corr(Y,Z) rows marked “High”). A positive bias (overestimate of the FMI) is highlighted 

in light gray. This occurs when the unobserved covariate Z is highly correlated with Y. In 

this case, we have overestimated our ability to predict Y, hence we have a strong positive 

bias on the FMI. A negative bias (underestimate fo the FMI) is highlighted in dark gray. This 

occurs when the unobserved covariate (Z) is a strong predictor of response. This results 

when we have relatively weak prediction of R from the observed X but have at least some 

ability to predict Y. These two features can sometimes “cancel each other out” as in the two 

cells highlighted in black. Kreuter and Olson (2011) explore a similar phenomenon for 

multivariate adjustment models.

This bias may be useful in detecting NMAR mechanisms. If it appears that the estimated 

FMI is much higher than the nonresponse rate, and there are a sufficient number of 

imputations (perhaps as many as 200; Graham et al., 2007), then this may indicate that the 

missing data are NMAR. For the data in Table 1, this condition was obtained in the bottom 

two rows of the table.
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6. Nonresponse bias after adjusting for nonresponse

While our analyses up until now have focused on unadjusted means, in practice, adjustments 

would typically be made to compensate for possible nonresponse bias if information is 

available for such corrections. A common form of correction is done through nonresponse 

adjustment weighting. A nonresponse-weighted adjusted mean is given by

(10)

where  is the inverse of the response rate on the adjustment class c. Its nonresponse 

bias is given by

(11)

in the deterministic setting, and

(12)

in the stochastic setting. We note that nonresponse weights eliminate the portion of the bias 

estimable from the observed data -- the first term in Kalton and Kasprzyk's formulation (4). 

The second component of the original bias in (4) still remains. It is therefore worth 

analyzing under which circumstances the nonresponse weight-adjusted mean presents a 

smaller bias than the respondent mean. For that purpose, we used data from the second 

NMAR simulation study and compared both the respondent mean and the nonresponse-

weighted mean estimators with the population mean across different scenarios. In Figure 3, 

the results of such a comparison are presented.

As expected, in general, the bias of both respondent mean and the nonresponse weighted-

adjusted mean increase as the correlations of X and Y, Z and Y, and both response 

propensity and Y increase. Also, the weighting adjustment seems to perform well when the 

correlation of X and Y is high and the correlation of Z and Y is not large.

In most cases, the nonresponse-weight adjusted mean resulted in less bias than the 

respondent mean, as would be expected. However, in general we see that the difference 

between the two estimators was not large. Moreover, there were some cases in which both 

estimates were very similar or even situations where the adjusted estimator presented a 

larger bias than the unadjusted. The latter situation occurred when the correlation of Z and Y 
and the correlation of the response propensity and Z were high, and the correlation of X and 

Y was not high. In this case, the first and second components of the bias expression might 

have different signs, with the second component dominating the overall bias compared to the 

first component. Therefore, eliminating the first component of the nonresponse bias by 
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making a nonresponse weighting adjustment actually increases the bias compared to the 

respondent mean. This highlights the importance of having strong correlations between 

auxiliary variables X and Y when making nonresponse adjustments.

It is also important to analyze the behavior of the indicators for the bias of this nonresponse 

weight adjusted mean. For simplicity, we do not present a new figure as the pattern of all 

indicators is exactly the same as seen for the bias of the respondent mean in Figure 1. The 

only difference we find is that the range of the bias of this nonresponse adjusted mean under 

MAR is smaller, as would be expected, since the weighting strategy matches the missing 

mechanism in this case. Hence, the same conclusions made previously for the unadjusted 

mean are valid here as well.

7. Conclusion

Each of the indicators explored in the simulation study revealed weaknesses. Of course, the 

response rate yielded no evidence about the nature of the missing data. However, it does 

have a limiting function on the magnitude of any nonresponse bias. In the case of a 

proportion, we can provide limits to the nonresponse bias by assuming that none of the 

nonresponders have the condition (for the lower limit) or that all the nonresponders have the 

condition (for the upper limit). Unfortunately, in the case of continuous measures, the limits 

on the bias for any particular variable and response rate are not known. This strongly limits 

the utility of the response rate as in indicator of the risk of nonresponse bias.

On the other hand, balance indicators such as the coefficient of variation of subgroup 

response rates, the R-Indicator, and Särndal's BI3 indicator have the advantage of indicating 

when responders and nonresponders differ on fully-observed characteristics, such as those 

available for all elements on the sampling frame. In this case, these imbalances are an 

indirect indicator of nonresponse bias on the survey variables for which the nonresponders 

are not observed. A key assumption, therefore, of these indicators is that the selectivity 

observed on the fully-observed characteristics is mimicked by the survey outcome variables, 

which are not fully observed. Further, this same assumption is needed for each variable 

collected by the survey. Model fit statistics for response propensity models provide very 

similar information to this type of indicator. In sum, this class of indicators gives some 

limited evidence about whether the data are MAR vs MCAR, but do not allow us to rule out 

the NMAR possibility. Further, a correctly specified model is needed in order to bound the 

potential biases, as was shown with the “maximal absolute bias” indicator.

As with indicators which involve the partially-observed survey data, they explore, at a 

variable level, the relationship between R and Y. Understanding these relationships across a 

series of Y variables may aid in the evaluation of the risk of nonresponse bias. It directly 

tests the assumption of indicators based on the relationship of X and R that this relationship 

is similar to that of X and Y. However, the full relationship of X and Y cannot be explored in 

the presence of nonresponse (i.e. the relationship between X and YNR is not known). The 

FMI, one such indicator, may be badly biased when the missing mechanism is NMAR. The 

simulations also revealed that situations where the FMI is greater than the nonresponse rate 
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may actually indicate that the missing mechanism is NMAR. Whether such situations occur 

in actual survey data collections has yet to be explored.

It is clear that no indicator solves the problem of monitoring and evaluating survey data 

collections with respect to the risk of nonresponse bias. Each of the indicators reviewed here 

(and any others that could be developed) provides only partial evidence. This is the nature of 

the missing data problem. There can be no certainty about the consequences of having 

missing data. Evaluating the risk requires assumptions about how the data are missing. The 

sensitivity of our conclusions to those assumptions needs to be carefully evaluated. Andridge 

and Little (2011) provide an example of how one might test a broad range of assumptions 

about the nature of the missing survey data. A constellation of views, involving multiple 

indicators may help validate and test these assumptions and, thus, provide a more convincing 

picture of the likely impact of missing data.

Many journals have the practice of reporting response rates. This is a compact way of 

describing the quality of a survey. The information contained in such evaluations is also very 

low. Of course, substantive journals would have a difficult time requiring that comprehensive 

analyses of nonresponse be included in every manuscript. However, it might be reasonable 

to expect that these analyses are conducted and reported as stand-alone products that can be 

referenced by other substantive articles. Of course, that does not absolve researchers from 

the responsibility to investigate how missing data might alter the conclusions of their own 

research.

Future research in this area should be concerned with the relationship between these 

indicators and the risk of nonresponse bias in fully-adjusted estimates. This question, by its 

nature, must be treated empirically as there can be no definitive theoretical answer. The goal 

should be to identify indicators or sets of indicators that provide an indication of the risk of 

bias that can be used as a guide during data collection. Such indicators would be useful for 

comparing the effectiveness of design features in relation to reducing nonresponse bias. 

Further, these measures would be useful inputs into “responsive designs” (Groves and 

Heeringa, 2006) that seek to make mid-course adjustments to the data collection based on 

indicators of errors and costs. For instance, FMI values greater than the nonresponse rate 

may indicate the there is a NMAR mechanism behind the missing data. A closely related 

question has to do with the consequences of tailoring survey data collections to these 

indicators. Does this tailoring lead to less bias (or lower cost or variance) in adjusted 

estimates? This research would require specialized “gold standard” studies across a variety 

of situations, including very realistic and common situations. Such a task is a necessary to 

complete if these indicators are to become part of current data collection protocols.
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Appendix

Appendix 1

: Values of β0,β1 and β2 for the first simulation study

RR MCAR MAR NMAR

β0 β1 β2 β0 β1 β2 β0 β1 β2

0.05 −2.94 0.00 0.00 −27.18 2.00 0.00 −27.18 0.00 2.00

0.10 −2.20 0.00 0.00 −25.64 2.00 0.00 −25.64 0.00 2.00

0.15 −1.73 0.00 0.00 −24.52 2.00 0.00 −24.52 0.00 2.00

0.20 −1.39 0.00 0.00 −23.69 2.00 0.00 −23.69 0.00 2.00

0.25 −1.10 0.00 0.00 −22.93 2.00 0.00 −22.93 0.00 2.00

0.30 −0.85 0.00 0.00 −22.25 2.00 0.00 −22.25 0.00 2.00

0.35 −0.62 0.00 0.00 −21.68 2.00 0.00 −21.68 0.00 2.00

0.40 −0.41 0.00 0.00 −21.06 2.00 0.00 −21.06 0.00 2.00

0.45 −0.20 0.00 0.00 −20.55 2.00 0.00 −20.55 0.00 2.00

0.50 0.00 0.00 0.00 −20.00 2.00 0.00 −20.00 0.00 2.00

0.55 0.20 0.00 0.00 −19.45 2.00 0.00 −19.45 0.00 2.00

0.60 0.41 0.00 0.00 −18.90 2.00 0.00 −18.90 0.00 2.00

0.65 0.62 0.00 0.00 −18.32 2.00 0.00 −18.32 0.00 2.00

0.70 0.85 0.00 0.00 −17.74 2.00 0.00 −17.74 0.00 2.00

0.75 1.10 0.00 0.00 −17.08 2.00 0.00 −17.08 0.00 2.00

0.80 1.39 0.00 0.00 −16.28 2.00 0.00 −16.28 0.00 2.00

0.85 1.73 0.00 0.00 −15.50 2.00 0.00 −15.50 0.00 2.00

0.90 2.20 0.00 0.00 −14.34 2.00 0.00 −14.34 0.00 2.00

0.95 2.94 0.00 0.00 −12.86 2.00 0.00 −12.86 0.00 2.00

Appendix

Appendix 2

: Values of β0, β1 and β2 for the second simulation study (40% response rate)

Corr(X.R) Corr(Z,R) β0 β1 β2

Low

Low −1.40 0.05 0.05

Medium −3.20 0.06 0.22

High −21.35 0.13 1.90

Medium

Low −3.20 0.22 0.06

Medium −5.05 0.23 0.23

High −30.90 0.64 2.32

High

Low −21.35 0.13 1.90

Medium −30.90 2.32 0.64

High* −64.20 3.10 3.10

*
In this case the high level of Corr(X,R) and Corr(Z,R) is High ≈ 0.54.
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Figure 1. 
Indicators (y-axis) vs. Nonresponse Relative Bias (x-axis) of the respondent mean
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Figure 2. 
True Standard Nonresponse Bias vs. Maximal absolute bias
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Figure 3. 
Respondent Mean vs. Nonrespondent Weighted Mean vs. Overall Mean by Corr(Y,X), 

Corr(Y,Z), Corr(R,X) and Corr(R,Z) under a 40% response rate
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