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Abstract

Although bioinformatic analysis of the increasing numbers of diverse genome sequences and 

amount of functional data has provided insight into the evolution of signaling networks, 

bioinformatics approaches have limited application for understanding the evolution of highly 

divergent protein families. We used biochemical analyses to determine the in vitro properties of 

selected divergent components of the heterotrimeric guanine nucleotide–binding protein (G 

protein) signaling network to investigate signaling network evolution. In animals, G proteins are 

activated by cell-surface seven-transmembrane (7TM) receptors, which are named G protein–

coupled receptors (GPCRs) and function as guanine nucleotide exchange factors (GEFs). In 

contrast, the plant G protein is intrinsically active, and a 7TM protein terminates G protein activity 

by functioning as a guanosine triphosphatase–activating protein (GAP). We showed that ancient 

regulation of the G protein active state is GPCR-independent and “self-activating,” a property that 

is maintained in Bikonts, one of the two fundamental evolutionary clades containing eukaryotes, 

whereas G proteins of the other clade, the Unikonts, evolved from being GEF-independent to 

being GEF-dependent. Self-activating G proteins near the base of the Eukaryota are controlled by 

7TM-GAPs, suggesting that the ancestral regulator of G protein activation was a GAP-functioning 

receptor, not a GEF-functioning GPCR. Our findings indicate that the GPCR paradigm describes a 

recently evolved network architecture found in a relatively small group of Eukaryota and suggest 

that the evolution of signaling network architecture is constrained by the availability of molecules 

that control the activation state of nexus proteins.

INTRODUCTION

Cells transduce extracellular stimuli to intracellular responses with complex signaling 

molecule systems. Whereas research continues to expand the known edges of these 
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networks, at the core of any signaling system are conserved signaling elements that affect 

sensitivity, rate, and amplitude limits. These molecules typically serve as the nexus of 

multiple protein-protein contacts and therefore are more evolutionarily constrained than are 

peripheral signaling elements. The intrinsic properties of the core proteins in these 

interactions determine the signaling outcome and therefore constrain evolution.

The evolution and expansion of major signaling networks within an organism affect cell and 

organism physiology. Take, for example, a heterotrimeric guanine nucleotide–binding 

protein (G protein)–coupled receptor (GPCR) and its cognate G protein complex (Fig. 1, A 

and B). The G protein can be viewed as an enzyme that performs hydrolysis of guanosine 

triphosphate (GTP) in two elementary steps: the exchange of guanosine diphosphate (GDP) 

for GTP and the subsequent hydrolysis of GTP to GDP (1). Each of these steps occurs at a 

certain intrinsic rate in vitro. Regulatory molecules, often cell-surface, seven-transmembrane 

domain (7TM) receptors, can act on one or both of these steps to modify the activity of the 

G protein. The 7TM cell-surface receptor, upon binding to its ligand, activates the G protein 

by catalytically removing a tightly bound GDP from the Gα subunit to enable diffusion-

limited GTP binding to bring about G protein activation (1, 2) (Fig. 1B). In this system, 

nucleotide exchange is the rate-limiting step in G protein activation. Now, imagine a 

structurally equivalent G protein that spontaneously exchanges nucleotides (3, 4), rendering 

GPCR-modulated activation unnecessary (Fig. 1C). Consequently, some other type of 

regulatory molecule is needed for self-activating G proteins. In the course of this thought 

experiment, it becomes clear how the intrinsic properties, including guanine nucleotide 

exchange factor (GEF) function and self-activation, of two of the core signaling elements 

can affect the evolutionary trajectory of the system as a whole.

The bound nucleotide of the Gα subunit determines whether the G protein complex is active 

(GTP-bound) or inactive (GDP-bound) (Fig. 1B) (1, 2). In animals, the rate of intrinsic GTP 

hydrolysis is much faster than the rate of basal GDP exchange (1, 2, 5). It follows that the 

animal G protein forms an inactive heterotrimer and is regulated at the step of exchange by a 

7TM-GEF, the GPCR (Fig. 1B). In contrast, G proteins in plants readily exchange GDP for 

GTP without GPCRs (3, 4, 6-8). Rather, the plant G protein is regulated by a putative 7TM 

receptor–regulator of G protein signaling (7TM-RGS) protein (4, 7, 9, 10) that accelerates 

the hydrolysis of GTP by Gα, inactivating the heterotrimer and thus acting as a guanosine 

triphosphatase (GTPase)–activating protein (GAP). Upon lig- and stimulation, the 7TM-

RGS is proposed to be inhibited, enabling the Gα subunit to exchange GDP for GTP (Fig. 

1C) (7, 9, 11). Although RGS proteins are found in animals, none has a 7TM domain, and 

none are regulated by a ligand (12). The divergent intrinsic properties of these two signaling 

elements, the 7TM receptor and the G protein α subunit, profoundly affect the mechanism of 

G protein activation; in one case, a ligand stimulates a stimulatory element (receptor-GEF, 

Fig. 1B), and in the other, the ligand inhibits an inhibitory element (receptor-GAP, Fig. 1C).

Here, we show that the regulation of ancestral G proteins is GPCR-independent, or “self-

activating,” and that this property is inherited throughout the Bikonts but not by the 

Unikonts. Rather than relying strictly on in silico analyses, we purified an informative subset 

of these proteins and analyzed their physical properties. We found that all G proteins from 

bikonta species had the trait of GPCR-independent activation, which was characterized by 

Bradford et al. Page 2

Sci Signal. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rapid GDP-GTP exchange on Gα and slow GTP hydrolysis. In contrast, none of the 

unikonta G proteins had the self-activating property. Other Bikonts, such as Arabidopsis, had 

self-activating G proteins and were selectively regulated at the GTP hydrolysis step by a 

7TM-RGS protein, a regulatory mechanism monophyletic to Bikonta. We propose that the 

main regulatory point of ancestral G proteins is not at the activation step, but rather at the 

inactivation step, which counters the GPCR-dominant system in animals and fungi. The loss 

of the intrinsic trait of the self-activating G protein correlates with the expansion of GPCR-

encoding genes in Unikonts. Together, our findings provide a new glimpse into the 

evolutionary mechanism of how signaling molecules change their intrinsic properties as 

interactions with new partners emerge.

RESULTS

The eukaryotic repertoire of G protein components and 7TM-RGS proteins

Genome sequencing projects have shown the conservation, diversity, and phylogenetic 

relationships of genes that encode G protein components and 7TM-RGS proteins across 

organisms. Notably, animal and yeast G proteins, which are primarily regulated by GPCRs 

(1, 13), are included in Opisthokonts (14, 15), whereas plant G proteins, which do not use 

GPCRs, separated early from Opisthokonts and constitute Archaeplastida (Fig. 1A) (14-16). 

To guide the selection of an informative set of divergent G proteins for biochemical testing, 

we compiled conserved G protein components and their regulators. All eukaryotic organisms 

are currently classified into six evolutionary supergroups (Fig. 1A) (14, 16). The genes 

encoding Gα, Gβ, Gγ, and RGS proteins were found in all six supergroups (Fig. 1A and fig. 

S1), and their sequences were conserved in each organism within each supergroup, which 

suggests that these four proteins constitute a functional signaling module throughout the 

eukaryotes. On the other hand, genes homologous to those encoding opisthokonta GPCRs, 

including class A, B, and C GPCRs, Frizzled/Smoothened-family GPCRs, and yeast 

GPCRs, or genes homologous to the slime mold 7TM receptor cyclic adenosine 

monophosphate receptor 1 (cAR1) were found throughout eukaryotes, even in green algae 

and alveolata (17), despite these taxa lacking genes encoding Gα and Gβγ subunits (figs. S1 

to S3) (18). Phylogenetic (fig. S2) (17) and network (fig. S3) analyses of these receptors in 

bikonta genomes suggest that the products of these homologous GPCR-encoding genes have 

G protein–independent functions in Bikonts. Furthermore, some eukaryote genomes that 

have genes encoding G protein components lack genes encoding canonical GPCRs (fig. S1), 

suggesting that the regulation of their G proteins is GPCR-independent.

We assembled a set of 7TM-RGS proteins with two independent membrane topology 

programs (Fig. 1D) (19, 20). The 7TM-RGS proteins are distributed in several independent 

lineages, including fungi, Filasterea (Capsaspora owczarzaki) (21), land plants, Excavata 

(Trichomonas vaginalis and Naegleria gruberi), Rhizaria (Bigelowiella natans), and brown 

algae (Ectocarpus siliculosus) (Fig. 1, D and E, and fig. S4). Therefore, we speculate that 

7TM-RGS receptor GAPs are extant in organisms whose G proteins exhibit intrinsic, GEF-

less activation and are regulated at the step of GTP hydrolysis. The wide distribution of the 

7TM-RGS architecture in eukaryotes suggests the potential receptor-GAP systems across 

supergroups. The 7TM-RGS architecture was retained (for example, within Fungi) or 
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individually invented (for example, in C. owczarzaki) in some evolutionary clades (figs. S1 

and S4). The lack of 7TM domain–containing RGS proteins in metazoans, in conjunction 

with the massive radiation of GPCR-like proteins, indicates when the GPCR-dependent 

signaling system became dominant.

Nucleotide exchange and hydrolysis rates of evolutionarily informative eukaryotes

To understand the evolutionary process by which GEF-dependent and GEF-independent Gα 

proteins emerged, we purified Gα subunits from representative eukaryotes and analyzed 

their intrinsic properties in vitro. With the radioactive nonhydrolyzable GTP analog 

[35S]GTPγS, we measured the rates of nucleotide exchange of T. vaginalis Gα proteins 

(TvGα1, TvGα2, TvGα4, and TvGα5), Dictyostelium discoideum Gα4 (DdGα4), 

Arabidopsis thaliana Gα (AtGPA1), E. siliculosus (EsGPA5), Homo sapiens Gαi1, and C. 
owczarzaki Gα3 (CoGα3) (Fig. 2 and Table 1). This selection covers the Eukaryota at 

informative nodes. The GTP binding rates of the TvGα proteins ranged from 0.20 to 1.15 

min−1 (Fig. 2B), making the binding rates of TvGα proteins two to three orders of 

magnitude faster than that of HsGαi1 (Fig. 2E, kobs = 0.006 min−1) and comparable to that 

of AtGPA1 (Fig. 2C, kobs = 1.15 min−1). DdGα4 and CoGα3 bound GTP at a rate of 0.029 

and 0.020 min−1, respectively (Fig. 2, E and F), comparable to that of HsGαi1. Intrinsic 

tryptophan fluorescence (22), an alternative method to analyze intrinsic rates of GTP 

binding, confirmed that T. vaginalis G protein subunits have rapid nucleotide exchange (kobs 

= 1.62 to 6.53 min−1). Notably, plant Gα proteins reach and maintain a high plateau of 

fluorescence in the presence of hydrolyzable GTP (6, 7), indicating that their exchange rate 

exceeds their hydrolysis rate. Similar to plant Gα, T. vaginalis Gα proteins exhibited 

increased fluorescence in the presence of GTP and maintained a plateaued signal (fig. S5), 

indicating that T. vaginalis Gα proteins favor the GTP-bound state in the absence of GEFs.

Because a GEF-independent or GEF-dependent classification system implies a relationship 

between rates of nucleotide exchange and GTP hydrolysis, we also determined the rates of 

intrinsic GTP hydrolysis by measuring the steady-state consumption and single turnover 

of 32P-labeled free phosphate hydrolyzed by Gα subunits (Fig. 2 and Table 1). The steady-

state rate represents the continuous cycling rate of GDP exchange and GTP hydrolysis of Gα 

subunits, whereas the single-turnover rate shows a single GTP hydrolysis event for Gα 

subunits but does not account for GDP exchange. The single-turnover hydrolysis rates of 

HsGαi1 (kcat = 0.82 min−1), DdGα4 (kcat = 0.19 min−1), and CoGα3 (kcat = 0.86 min−1) 

were much faster than their respective rates of nucleotide exchange. The hydrolysis rate of 

AtGPA1 (kcat = 0.053 min−1) was similar to that previously reported (5, 7). TvGα proteins 

had rates of steady-state GTP hydrolysis ranging from 3.8 × 10−3 to 0.018 GTP/(min × Gα), 

indicating that their rates of GTP hydrolysis were 11- to 300-fold slower than their rates of 

nucleotide exchange. Thus, these data suggest that GDP nucleotide exchange is the rate-

limiting step in the G protein cycle in Unikonts, which includes animals, fungi, and amoeba, 

whereas GTP hydrolysis is the rate-limiting step in the G cycle in Bikonts, which includes 

plants, algae, and protists.
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Specific regulation of the G cycle of T. vaginalis by a 7TM-RGS protein

In both animal and plant G protein systems, regulatory molecules act at the rate-limiting 

steps (1, 7). Because T. vaginalis has genes encoding 7TM-RGS proteins (Fig. 1) and the 

rate-limiting step of TvGα is GTP hydrolysis (Fig. 2), we hypothesized that the T. vaginalis 
Gα was likely regulated by 7TM-RGS proteins. The T. vaginalis genome contains genes 

encoding predicted 5TM-RGS and 7TM-RGS proteins (fig. S6), whereas it lacks genes 

encoding canonical GPCRs (17, 18). We purified RGS domains from a 5TM-RGS and a 

7TM-RGS protein, designated as TvRGS1 and TvRGS2, respectively, and tested them for 

GAP activity by measuring steady-state GTP hydrolysis by TvGα (Fig. 3). TvRGS2 

selectively accelerated the GTPase activity of TvGα5 threefold (Fig. 3, E and F), but it did 

not affect GTP hydrolysis by TvGα1, TvGα2, or TvGα4 (Fig. 3, B to D). TvRGS1 did not 

change the rates of GTP hydrolysis of any TvGα protein (Fig. 3, B to F). These results 

implicate a 7TM-RGS protein as a membrane-bound modulator of another GEF-less G 

protein system in T. vaginalis.

Nonconvergent emergence of the GEF-independent properties of two Gα proteins from 
basal organisms

To illustrate a limitation of sequence analysis for phylogenetic construction of the G 

proteins, the amino acid sequence of the plant Gα subunit is only ~33% identical to that of a 

human G protein subunit, yet the root mean square deviation between the crystal structures 

of both proteins is 1.8 Å, suggesting that these two divergent Gα subunits have essentially 

the same three-dimensional (3D) structure despite divergent primary sequences (4). 

Sequences of genes encoding Gα subunits among the Bikonts (A. thaliana and T. vaginalis) 

are also only ~30% identical (figs. S6 and S7). Therefore, to address whether the GEF-

independent property of Gα subunits was monophyletic (of single origin) or convergent (of 

independent origins) without relying entirely on sequences, we took a comparative 

biochemistry approach. We determined whether 3D structural requisites for self-activation 

were shared between plants and protists, which also are poorly conserved at the level of gene 

sequence (fig. S6). Our rationale was that if two highly divergent proteins shared the same 

3D structural requisite for a complex biochemical property, then they likely shared 

evolutionary history.

Gα subunits consist of two domains, a GTPase (or Ras) domain and a helical domain (23). 

Interactions with guanine nucleotides, Gβγ, and GPCRs occur in the Ras domain (23-25). 

The helical domain has been considered as a cap, shielding the nucleotide-binding pocket 

from the extracellular environment (23-25). Upon contact with an activated GPCR, there is a 

large outward swing of the helical domain, presumably exposing GDP and enabling 

nucleotide exchange (3, 4, 24). A similar mechanism was suggested for the self-activation 

property of the Arabidopsis Gα subunit in which frequent spontaneous fluctuations of the 

helical domain constantly expose the nucleotide-binding pocket, enabling rapid exchange of 

GDP for GTP (3, 4), whereas mutational analyses identified residues that determine the rates 

of GDP dissociation in a nucleotide-binding motif and others (26-28). It was unknown, 

however, whether the structural basis for the self-activation of the plant Gα subunit was 

applicable to T. vaginalis Gα subunits, which branched from the other eukaryotic 

supergroups earlier in evolution. Given the vast possibilities to evolve spontaneous 
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nucleotide exchange, if Trichomonas G proteins and AtGPA1 used the same 3D structure to 

achieve self-activation, it follows that this property is likely monophyletic.

Therefore, we created chimeric proteins (Fig. 4, A to D) by exchanging the helical domain 

of human Gαi1 for that of TvGα5 to generate TvGα5αi helical. Likewise, we substituted the 

helical domain of TvGα5 with that of human Gαi1 to generate HsGαi1
α5 helical. When we 

analyzed these chimeric proteins for nucleotide exchange rates by measuring intrinsic 

tryptophan fluorescence, we found that TvGα5αi helical spontaneously exchanged nucleotide 

at a rate (kobs = 0.37 min−1) that was more than an order of magnitude slower than that of 

the wild-type TvGα5 (kobs = 6.5 min−1) (Fig. 4E). Intrinsic fluorescence assays 

demonstrated a low value of intrinsic exchange of GDP for GTP (kobs = 8.2 × 10−3 min−1) in 

HsGαi1, but when its helical domain was swapped with that of TvGα5, HsGαi1 α5 helical had 

a fast rate of nucleotide exchange (kobs = 0.25 min−1) (Fig. 4F). Likewise, [35S]GTPγS 

binding assays showed that the helical domain of TvGα5 was sufficient to confer rapid 

activation on HsGαi1
α5 helical (Fig. 4, G and H, and Table 2).

Next, we measured the rates of GTP hydrolysis of the chimeric proteins with single-turnover 

or steady-state [γ-32P]GTP hydrolysis assays (Fig. 4, H to J, and Table 2). The 

TvGα5αi helical chimera, which had a slow GTP-hydrolyzing Ras domain and a slow 

nucleotide-exchanging helical domain, had a markedly slow rate of steady-state GTP 

hydrolysis [kcat = 0.013 GTP/(min × Gα)]. Conversely, the HsGαi1
α5 helical chimera, which 

had a fast nucleotide-exchanging helical domain and a fast GTP-hydrolyzing Ras domain, 

showed the fastest rate of steady-state GTP hydrolysis [kcat = 0.41 GTP/(min × Gα)]. The 

wild-type TvGα5 and HsGαi1 proteins showed slow rates of steady-state GTP hydrolysis 

[kcat = 6.1 × 10–3 GTP/(min × Gα) and kcat = 3.9 × 10−3 GTP/(min × Gα), respectively], 

likely as a result of slow rates of nucleotide exchange or GTP hydrolysis (Table 2). Evidence 

from the experiments with chimeric proteins suggests that the helical domain is necessary 

and sufficient to confer properties of self-activation on a G protein α subunit, and that the 

Ras domain determines the rate of GTP hydrolysis, which is the same structural basis for 

activation that was shown in Gα subunits from plants and mammals.

DISCUSSION

To understand primitive regulatory systems, we comprehensively analyzed the biochemical 

properties of a divergent and informative set of heterotrimeric G proteins. We identified 

GEF-independent Gα subunits in plants, brown algae, and T. vaginalis and GEF-dependent 

Gα subunits in ancient animals and amoeba. Furthermore, we demonstrated that a 7TM-

RGS protein from a basal eukaryote, T. vaginalis, is selective for T. vaginalis Gα proteins. 

On this basis, we propose a new canon in the evolution of signaling molecules and 

regulatory molecules whereby the intrinsic properties of a signaling molecule are 

constrained by its cognate regulatory element.

Ancestral G protein regulation

Genes encoding G proteins are broadly conserved in eukaryotes (Fig. 1) (18) but not in 

prokaryotes and Archaea. The RGS domain is also found in primitive eukaryotes (Fig. 1), 

and GAP activity is conserved (Fig. 3) (6). The evidence suggests that regulation of the 
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nucleotide-bound state of G proteins by RGS proteins has existed since the ancient 

eukaryotes but that regulation by GPCRs is a recent event. In general, functionally paired 

genes create genetic constraints to keep both genes in the genome. The evidence that RGS-

encoding genes are conserved only in organisms that have Gα subunits indicates that the 

function of RGS proteins is linked to G protein signaling (figs. S1 and S4) (18). In contrast 

to the apparent evolutionary linkage of genes encoding Gα and RGS proteins, genes 

encoding GPCR-like proteins were found in eukaryotes (figs. S1 to S3) even in alveolata 

(17) and green algae, which lack genes encoding Gα, Gβ, and Gγ proteins (fig. S1) (18). 

Although those divergent GPCR-like proteins share similarity with the GPCRs of 

Opisthokonts, they have G protein–independent functions. We propose that 7TM receptors 

functionally coupled to G proteins in Unikonts, and that the cognate Gα subunit evolved 

from a GEF-independent, spontaneous nucleotide exchanger to a GEF-dependent, slow 

nucleotide exchanger, and that the 7TM receptor co-evolved to become a GPCR.

GEF-dependent regulation of G proteins emerged in Unikonts, which include animals, fungi, 

and amoeba (1, 13, 29). These three evolutionarily distant organisms, whose Gα proteins are 

activated independently of GEFs (Fig. 2), are included in Bikonts, which separated early 

from Unikonts (fig. S1) (14-16). This suggests that the canonical model of G protein 

exchange, in which the activation state of the Gα protein is modulated by GEFs, emerged 

within one evolutionary clade, the Unikonts. This is consistent with claims that the GPCR-

encoding genes of H. sapiens originated from a common ancestor to both animals and 

amoeba within the Unikonts (30, 31). Because the root of Eukaryotes is predicted to lie 

within Excavata or between Excavata and the other supergroups (16), a self-activating G 

protein is likely the ancestral state, with the paradigmatic mammalian Gα that has slow 

nucleotide exchange evolving later within the Unikonts and radiating greatly within the 

Opisthokonts.

G protein regulation by the 7TM-RGS protein in T. vaginalis: Evidence for convergent 
evolution

Like that of other Bikonts, the G cycle of T. vaginalis is also regulated by the GEF-

independent activation of Gα and by its modulator, a 7TM-RGS protein (Fig. 3). One of the 

three 7TM-RGS proteins in T. vaginalis specifically stimulates the GTPase activity of 

TvGαs, which indicates specific receptor-Gα coupling. Phylogenetic analyses indicate a 

complex evolutionary history of the 7TM and the RGS domain (fig. S4). Indeed, for certain 

nodes, the gene trees conflict with the species tree, which suggests the independent origin of 

the 7TM-RGS signaling system in the eukaryotic supergroup (fig. S4).

In contrast to the convergent evolution of the 7TM-RGS protein topology, the conserved 

structural basis for nucleotide exchange rate in T. vaginalis and A. thaliana (Fig. 4) strongly 

suggests the existence of a common Gα ancestor shared by Unikonts and Bikonts. The 

helical domain is unconstrained by effector coupling (2), leaving it free to evolve faster or 

slower intrinsic nucleotide exchange properties through a series of stepwise mutations in 

response to previously unencountered modulator couplings (17, 31). This reveals a structural 

basis for the evolutionary plasticity seen in the G protein signaling network architecture, and 
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provides a partial answer to how such an apparently highly constrained system can display 

such diversity in regulation across evolutionary time and space.

How the Trichomonas G protein is regulated in vivo is unknown; however, the intrinsic 

property prompts the hypothesis that either a GAP (for example, a 7TM-RGS protein) or a 

GDI (GDP dissociation inhibitor) functions to maintain inactive TvGα proteins at steady 

state. A noncanonical GEF similar to animal Ric8 (32-34) might function to promote GTP 

loading onto TvGα proteins. This happens in animal systems in which G proteins are 

regulated by both a GEF (for example, GPCRs and Ric8) and a GAP (for example, RGS 

proteins) (35), although the rate-limiting step and the primary regulation point are nucleotide 

exchange (1). Future in vivo studies may identify such a system that complements the 7TM-

RGS regulatory system that we identified here, but our work suggests that the primary locus 

of G protein regulation is at the step of nucleotide hydrolysis. In either case of GDIs or 

GEFs, the unidentified regulators of Trichomonas G proteins likely have structures and 

actions that are distinct from those found in the mammalian G protein system because the 

Trichomonas genome does not encode canonical GDIs (for example, Gβγ-encoding genes) 

or GEFs (for example, GPCRs and Ric8).

Conclusion and future perspectives

Functional residues, such as those within the catalytic sites of enzymes, are highly 

constrained and thus well conserved across organisms, because mutations within these sites 

are normally deleterious (36). We extend this concept of constraint from the level of the 

primary sequence to the functional traits of signaling proteins, and we propose that an 

intrinsic functional property of a signaling molecule, which is often not evident in 3D 

structures, is also evolutionally constrained by the binding regulatory partners (for example, 

an RGS protein for a Gα subunit). Although Gα proteins showed low sequence similarity 

across supergroups (26 to 37% similarity in sequence, figs. S2 and S3), four tested plants (6, 

7), the Chromalveolate E. siliculosus, and four T. vaginalis Gα proteins show properties of 

GEF-independent activation (Fig. 2) (6, 7). In comparison, the Gα proteins of animals (7), 

fungi (37), C. owczarzaki, and D. discoideum are dependent on GEFs for their activation 

(Fig. 2).

To create a type of network architecture, signaling pathways are reconstituted with new 

connections (or disconnections) between signaling molecules. Once a protein-protein 

interaction is fixed, the molecular trait (for example, a binding surface) becomes 

constrained. Here, we showed that the origins of the GEF-dependent G protein correlated 

with the expansion in the number of GPCR-encoding genes (Fig. 2 and fig. S1) (17, 31). The 

slow nucleotide exchange property of the Gα subunit was likely constrained by the dominant 

regulator, Opisthokonta GPCRs, in that clade. Whereas understanding the divergent G 

protein signaling pathways and the mechanisms involved provides a fascinating look into 

evolutionary time, it may also prove to have practical implications in the development of 

new pharmaceutical treatments. For example, although trichomoniasis caused by the protist 

T. vaginalis has efficacious clinical treatment (38), other GEF-independent relatives, 

including the “brain-eating amoeba” Naegleria fowleri, the lethal causative agent in primary 

amoebic meningoencephalitis, lack viable therapies (39). Given that there are 50 genes 
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encoding 7TM-RGS proteins in N. fowleri (Fig. 1), the bikont G protein pathway may prove 

to be an important target for future anti-protozoan pharmaceuticals.

MATERIALS AND METHODS

Cloning and protein purification of wild-type proteins

Complementary DNAs (cDNAs) encoding the T. vaginalis Gα subunits TvGα1, TvGα2, 

TvGα5, and TvGα6 were amplified by polymerase chain reaction (PCR) assay from the 

genomic DNA of T. vaginalis strain G3. cDNAs encoding TvGα4 and the E. siliculosus Gα 

subunit EsGα5 (accession no. D8LTN0) were amplified by PCR from an Escherichia coli–
optimized synthetic gene made by CellTek. TvRGS1CTerm consists of residues 230 to 362 of 

TvRGS1, TvRGS2CTerm of residues 294 to 436 of TvRGS2, TvRGS3CTerm of residues 284 

to 427 of TvRGS3, and TvRGS4CTerm of residues 295 to 429 of TvRGS4. A sequence 

encoding a His6 tag was added to those encoding the TvGα and TvRGS proteins with the 

Gateway TOPO cloning system (pENTR to pDEST17). cDNAs encoding the C. owczarzaki 
Gα subunit CoGα3 (accession no. EFW45256) and the D. discoideum Gα subunit DsGα4 

(XP_638196.1) were amplified from their cDNA libraries and cloned into the pENTR-

TOPO vector. The Gα-encoding genes were subcloned into pDEST17, which expresses N-

terminal His6-tagged proteins in E. coli. The expression vectors for A. thaliana GPA1 and H. 
sapiens Gαi1 were as described previously (19). The Gα proteins were expressed in 

ArcticExpress RP cells (Agilent Technologies) at 12°C. The ArcticExpress RP cells were 

transformed with the pDEST17 constructs, plated onto LB agar containing carbenicillin (100 

μg/ml) and gentamicin (30 μg/ml), and grown at 37°C overnight. A single colony was then 

isolated and cultured overnight in 5 ml of LB supplemented with ampicillin (100 μg/ml) and 

gentamicin (30 μg/ml). This overnight culture was then used to inoculate 2 liters of TB broth 

containing ampicillin (10 μg/ml), and the culture was grown at 37°C with shaking at 225 

rpm until the absorbance at 600 nm (A600) reached a value of 1.00. Cultures were then 

chilled to 4°C and incubated at 12°C with shaking at 150 rpm for 30 min to induce 

expression of the ArcticExpress chaperonin. Isopropyl-β-D-thiogalactopyranoside was added 

to a final concentration of 0.5 mM to induce protein expression. The cultures were incubated 

at 12°C with shaking at 150 rpm overnight (for 16 hours). Cells were pelleted by 

centrifugation at 3000g at 4°C for 45 min and stored at −20°C until ready for use. The pellet 

was allowed to thaw in a room temperature water bath. Cold N1 buffer [25 mM tris-HCl (pH 

7.6), 100 mM NaCl, 5% (v/v) glycerol, 10 mM imidazole, 5 mM MgCl2, 50 µM GDP, 5 mM 

β-mercaptoethanol] was added to a thawed pellet to a final volume of 40 ml. 

Phenylmethylsulfonyl fluoride and leupeptin were added to final concentrations of 1 mM 

and 1 μg/ml, respectively. The pellet was fully resuspended by a minimal amount of low-

intensity sonication. Lysozyme (from chicken egg white) and MgCl2 were then added to 

final concentrations of 0.25 mg/ml and 10 mM, respectively. The suspension was rocked at 

4°C for 20 min, at which point Lubrol-PX detergent was added to a final concentration of 

0.1%. The solution was rocked for an additional 30 min. The cells were then fully lysed by 

sonication with a 550 Sonic Dismembrator (Fisher Scientific) attached to a 20-kHz 

ultrasonic converter. A pulsing program (0.5 s on, 0.5 s off) at the max microtip setting was 

applied for a total of 6 min. An ice water bath was used to maintain the samples at 4°C. 

NaCl was then added to a final concentration of 300 mM, and the solution was allowed to 
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rock at 4°C for 20 min. The solution was then centrifuged at 47,800g for 35 min in an SS-34 

rotor (Sorvall Instruments). The soluble fraction was mixed with the pellet (100 μl/g) of 

prewashed TALON resin (Clontech Laboratories, catalog no. 635504). This suspension was 

rocked at 4°C for 90 min. The tubes were centrifuged briefly to pellet the resin, which was 

removed to a prechilled column, in which it was washed with a combination of 10 ml of 

N1-300 (N1 buffer containing 200 mM NaCl) in five separate 2-ml additions and 6 ml of N1 

buffer in three separate 2-ml additions. N2 buffer [200 mM tris-HCl (pH 7.6), 100 mM 

NaCl, 5% (v/v) glycerol, 300 mM imidazole (pH 7.5, filtrated), 10 mM MgCl2, 5 μM GDP, 

5 mM β-mercaptoethanol] was used to elute the protein in 500-μl aliquots. The Bradford 

assay (Bio-Rad) was used to determine protein concentrations, and SDS–polyacrylamide gel 

electrophoresis analysis was performed to determine protein purity. Peak fractions were 

combined and dialyzed into imidazole-free buffer.

Cloning and purification of chimeric proteins

The helical domains of TvGα5 and HsGαi1 were swapped by site-directed mutagenesis. A 

multiple sequence alignment of TvGα5, HsGαi1, and AtGPA1 was used to identify the 

conserved residues linking the helical and Ras domains. Large primers were constructed for 

the beginning and end of the helical domain, but with about half of the primer (whichever 

portion was upstream of the polymerase from the desired helical domain) consisting of the 

Ras domain–encoding sequence from the gene with the desired retained Ras domain. For 

example, a forward primer for the generation of a TvGα5αi1 helical cDNA began within ~90 

bases from the end of the region encoding the N-terminal Ras domain of TvGα5 and ended 

~90 nucleotides from the region encoding the beginning of the helical domain of HsGαi1. 

KOD Hot Start DNA Polymerase (Novagen) was used in a PCR to amplify the region 

encoding the desired helical domain, with “sticky ends” on either side corresponding to the 

sequence of the region encoding the desired Ras domain. PCR products were resolved on a 

1% agarose gel and purified. A QuikChange Lightning Mutagenesis Kit (Agilent 

Technologies) was then used to perform a PCR in which entry vectors containing the gene 

with the desired Ras domain were amplified with the linear DNA of the opposite helical 

domain with sticky ends, termed a megaprimer. The Dpn I restriction enzyme, which cleaves 

only methylated DNA, was used to cleave any remaining template vectors. Transformation 

of DH5α cells with the amplified vectors and subsequent miniprep was followed by gene 

sequencing as described earlier. DNAs containing helical domain swaps with the correct 

sequence were subcloned into vectors expressing His6-tagged protein. All purification steps 

were performed at 4°C. Pellets of ArcticExpress RP cells were isolated in the manner 

described earlier, and then were thawed, crushed, and resuspended mechanically with a 

pipette tip in ~20 ml of resuspension solution [25 mM tris (pH 7.6), 100 mM NaCl, 5% (v/v) 

glycerol, 20 mM imidazole, 2 mM MgCl2, 1 mM dithiothreitol (DTT), and 25 μM GDP]. 

One EDTA-free protease inhibitor cocktail tablet (Roche) was added for every 50 ml of 

buffer. The volume was adjusted to 40 ml, and a high-pressure homogenizer (Avestin 

EmulsiFlex-C5) was used to emulsify the suspension, which was then centrifuged for 30 min 

at 27,000g. The supernatant was transferred to a new tube and mixed with prewashed 

Clontech nickel resin beads. The solution was incubated with shaking for 90 min and then 

washed three times at 4°C with resuspension buffer. The beads were then transferred to a 

1.5-ml tube and centrifuged before being resuspended in 500 μl of elution buffer 
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(resuspension buffer adjusted to 10 μM GDP, 200 mM imidazole). After centrifuging the 

beads, the supernatant was withdrawn as fraction 1. Two more fractions were taken by an 

identical method, and their concentrations were determined by photospectroscopy.

Intrinsic tryptophan fluorescence measurements

The tryptophan fluorescence of a given Gα subunit was used as an indicator of its activation 

state (22). TvGα proteins have the critical tryptophan residue in their switch II region, which 

shifts from an aqueous to a hydrophobic environment upon activation, resulting in increased 

fluorescence in the activated state (22). This shift enabled measurement of the relative 

portions of the sample that were in activated versus inactivated states. Fluorescence was 

measured at 20°C in 100 mM tris-HCl (pH 7.6), 100 mM NaCl, 1 mM EDTA, 10 mM 

MgCl2, and 5% glycerol. The Gα protein was added to a final concentration of 400 to 500 

nM (active concentration varied). After establishment of the baseline fluorescence of the 

subunit, the reaction solution was spiked with the indicated amount of nucleotide (in 

proportion to the concentration of the active Gα protein). Excitation and emission 

wavelengths were 284 and 340 nm, respectively, and the excitation and emission slit widths 

were 3.0 and 4.0 nm, respectively. Data were collected at the shortest possible interval, 

usually every 20 s. The observed rate constants, kobs, were estimated by the one-phase 

association equation in GraphPad Prism 5.

Steady-state and single-turnover GTP hydrolysis assays

For steady-state measurements, 800 nM purified Gα protein was prepared in HEL buffer [50 

mM Hepes-NaOH (pH 7.0), 1 mM EDTA, 0.1% Lubrol-PX, and 1 mM DTT] with an equal 

volume of [γ-32P]GTP buffer (HEL buffer containing 10 mM MgCl2, 2 µM GTP, and 

[γ-32P]GTP at ~5000 to 10,000 cpm/pmol) to start the hydrolysis reaction. At a given time 

point, the reaction was stopped by quenching a 100-μl aliquot in ice-cold 50 mM HPO4 

buffer (pH 2.0) containing 5% (w/v) charcoal. After quenching and charcoal extraction, 

which denatures proteins and removes organic compounds, the amount of 32PO4 hydrolyzed 

was quantified by Cherenkov radiation counting of supernatants. For single-turnover 

reactions, 900 nM purified Gα subunit was preloaded with a mixture of 3 mM GTP and 

[γ-32P]GTP for 10 to 30 min at room temperature before the reaction was moved to ice for 5 

min. The hydrolysis reaction was then started by the addition of 10 mM MgCl2 and 100 μM 

GTPγS. Reactions were quenched, extracted, and processed as described earlier. kcat values 

observed in single-turnover experiments were estimated from the one-phase association 

model. Because single-turnover GTP hydrolysis was not successfully measured for some of 

the Trichomonas Gα proteins, kcat values (min−1) for TvGα1, TvGα2, and TvGα4 were 

inferred from the steady-state rates of hydrolysis and from the specific activities of the 

TvGα proteins.

[35S]GTPγS binding assay

Purified Gα (1 µM) in assay buffer [50 mM tris-HCl (pH 7.0), 1 mM EDTA, 0.1% Lubrol-

PX, 1 mM DTT] was mixed with an equal volume of [35S]GTPγS GTP buffer (HEL buffer 

containing 8 µM GTPγS and [35S]GTPγS at ~2000 cpm/pmol) to start the reaction. At each 

time point, an aliquot of the reaction mixture was removed and quenched in 1.5 ml of ice-

cold wash buffer [20 mM tris-HCl (pH 7.5), 100 mM NaCl, 10 mM MgCl2]. At the earliest 
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possible time, the quenched reaction mixtures were filtered through nitrocellulose filters 

(type HA Millipore) at −5 mmHg, washed three times with 3 ml of cold wash buffer, and 

then dried. A Cherenkov radiation count of the nitrocellulose filters with ScintiSafe 

scintillation cocktail was performed. Counts per minute at a particular time were taken to be 

directly proportional to the amount of GTPγS bound at that time. kobs was calculated in the 

same way as described for the intrinsic fluorescence assay.

Identification of G protein–encoding genes

Amino acid sequences for Gα, Gγ, and RGS proteins were downloaded from the National 

Center for Biotechnology Information (NCBI) conserved domain database (CDD) with the 

following accession numbers: SM00275 for Gα, SM00224 for Gγ, and SM00315 for RGS. 

To further identify Gα-, Gγ-, and RGS-encoding genes, we downloaded Pfam seed 

alignment files (Gα: PF00503; Gγ: PF00631; and RGS: PF00615) and used them for a 

hidden Markov model (HMM)–based search (http://hmmer.janelia.org/) to nonredundant 

protein data set from the GenBank or UniProtKB database. To identify Gβ proteins, we used 

an aligned sequence file of H. sapiens and land plant Gβ proteins as a template. Matches 

showing high sequence similarity were downloaded, and duplicates were removed. 

Remaining matches were checked for residues critical for the functions of Gα (nucleotide-

binding residues and helical domain insertion), Gβ (N-terminal coiled-coil), or Gγ (coiled-

coil and C-terminal CAAX motif) proteins. Those candidates that lacked these sites were 

eliminated. The proteome data sets for B. natans CCMP2755 v1.0, Guillardia theta 
CCMP2712 v1.0, Emiliania huxleyi CCMP1516 v1.0, and Cyanophora paradoxa were 

retrieved from the Joint Genome Institute database (JGI, http://www.jgi.doe.gov/) or the C. 
paradoxa genome database (http://cyanophora.rutgers.edu/cyanophora/) and were used for 

the HMM-based search. Those candidates that remained were declared G protein candidates 

and were targeted for cloning and purification. To identify Trichomonas RGS protein 

sequences, we used the NCBI RefSeq database.

Prediction of TM RGS–containing proteins

RGS protein sequences were retrieved from the NCBI CDD (RGS superfamily: cl02565), 

JGI, and Broad Institute (http://www.broadinstitute.org/) databases for membrane prediction. 

The prediction of TM helices was made with the online programs SOSUI (20) and 

TMHMM2.0 (19). Those sequences that were predicted by at least either SOSUI or 

TMHMM2.0 to have a heptahelical portion with an extracellular N terminus were declared 

7TM-RGS candidates. Those sequences that had an N-terminal 7TM domain and a C-

terminal RGS domain were used for further phylogenetic analysis.

Phylogenetic analyses

The phylogenetic trees were constructed on 108 7TM-RGS proteins with the MEGA5.0 

software package (40). The amino acid sequences were aligned with ClustalW using the 

standard settings: gap opening penalty and gap extension penalty for initial pairwise 

alignment: 10 and 0.1, respectively; gap opening penalty and gap extension penalty for 

multiple alignment: 10 and 0.2, respectively; Gonnet protein weight matrix; residue-specific 

penalties: on; hydrophilic penalties: on; gap separation distance: 4; end gap separation: off; 

use negative matrix: off. The 7TM domains or the RGS domains were individually extracted 
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from the aligned sequences. The nonaligned portions were manually deleted, and the 

remaining sequences were used for phylogenetic analysis. The ML trees were created with 

the Jones-Taylor-Thornton (JTT) substitution model with a bootstrap of 100. The tree for 

7TM-RGS proteins was made with the combined sequences of the 7TM domains and the 

RGS domains. Three sequences were removed before the phylogenetic analysis because of 

long deletions in the aligned sequences. For a phylogenetic analysis of GPCRs, the seed 

sequences of GPCRs (PF00001, PF00002, PF00003, and PF05462) were downloaded from 

the Pfam26.0 database. The bikonta GPCRs (PF00001, PF00002, PF00003, PF01534, and 

PF05462) were collected from NCBI CDD or the JGI database. The bikonta sequences were 

queried with TMHMM2.0 (19) or SOSUI (20) online programs to predict TM helices. Those 

bikonta GPCRs having five to eight TM regions were aligned with the Pfam GPCR 

sequences with ClustalW implemented in MEGA5.0 (40). Those aligned sites containing 

more than 80% gap were removed. The ML tree was created with a JTT+F substitution 

model of amino acids with a bootstrap of 50. A phylogenetic network was created with a 

packaged program, Splitstree4.0 (41). Distances between sequences were obtained with the 

ML method, and the minimum spanning network was computed.

Statistical analysis

Statistical significance was evaluated by one-way ANOVA followed by Tukey’s test with 

GraphPad Prism 5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Distribution of G protein components among eukaryotes
(A) The indicated taxa are representative genomes. The presence of G protein elements in 

the indicated species or lineages is represented by red, blue, green, and yellow dots for genes 

encoding Gα, Gβγ, Opisthokont GPCRs, and RGS proteins, respectively. Lack of a dot 

signifies that those genes were not found. We organized the eukaryotes into six supergroups: 

Opisthokonta (containing C. owczarzaki and H. sapiens), Amoebozoa (containing D. 
discoideum), Archaeplastida (containing A. thaliana), Excavata (containing T. vaginalis), 

Chromalveolata (containing E. siliculosus), and Rhizaria. (B) Regulation of G protein 

activation in animals. Ligand-bound GPCR accelerates the dissociation of GDP from the G 

protein α subunit by changing the orientation of its helical domain. Gα hydrolyzes GTP, 

thereby inactivating itself. GTP hydrolysis is promoted by an RGS or other GAP protein. 

Nonreceptor GEFs, such as the protein Ric8 (resistance to inhibitors of cholinesterase), act 

as noncanonical and cytosolic GEFs. (C) Regulatory model of G protein signaling in 

Arabidopsis. The Arabidopsis Gα protein AtGPA1 rapidly releases its GDP as a result of 

spontaneous fluctuations between its Ras domain and helical domain. AtGPA1 slowly 

hydrolyzes its bound GTP; however, the membrane-localized 7TM-RGS protein AtRGS1 

constitutively promotes GTP hydrolysis or acts as a GDI. (D) Frequency of TM helices in 

RGS domain–containing sequences among the 5169 sequences queried (see Materials and 

Methods). The TM helices were predicted with the membrane prediction software program 

SOSUI. (E) Distribution of 7TM-RGS proteins in Eukaryotes by a maximum-likelihood 

(ML) tree of 7TM-RGS proteins. Individual trees of the 7TM and RGS domains are shown 

in fig. S4 and were generated as described in Materials and Methods. The single genus 

Naegleria has 50 7TM-RGS proteins.
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Fig. 2. Analysis of nucleotide exchange and hydrolysis by representative Gα subunits indicates 
that fast nucleotide exchange is an ancestral property
(A) Phylogeny showing the rates of nucleotide exchange and GTP hydrolysis of 

representative Gα subunits from each of the eukaryotic supergroups: T. vaginalis (Excavata), 

D. discoideum (Amoebozoa), C. owczarzaki (non-animal Opisthokonta), H. sapiens 
(Opisthokonta), and A. thaliana (Archae-plastida). See Fig. 1 and figs. S1 to S4 for the genes 

encoding GPCRs and 7TM-RGS proteins that are found in each clade. No information is 

available for Rhizaria because the genome was only recently released. Note that the origin of 

the nucleotide exchange–limited G cycle appears to have come after the split between the 

Amoebozoa and Opisthokonta and the Rhizaria, Chromalveolata, and Archaeplastida. The 

rates ± SE are computed from more than 12 data points shown in (B) to (F). A cutoff value 

of 1.0 in the kobs/kcat indicates the rate-limiting step. (B to F) Superimposed time courses of 

[35S]GTPγS binding and single-turnover [γ-32P]GTP hydrolysis in room temperature 

reactions containing 500 nM Gα proteins from C. owczarzaki, D. discoideum, A. thaliana, 

E. siliculosus, and H. sapiens. The [γ-32P]GTP hydrolysis data from the H. sapiens Gα 

protein are presented as means ± SEM of four independent experiments. The [35S]GTPγS 

binding data for T. vaginalis Gα proteins are presented as means ± SEM of three (TvGα1, 

TvGα2, and TvGα4) or seven (TvGα5) independent experiments. Nucleotide exchange and 

hydrolysis data for EsGα5, HsGαi1, AtGPA1, and CoGα3 and hydrolysis data for TvGα5 

are calculated from means of at least two replicates, and the variation is expressed as SD.
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Fig. 3. Specific regulation of Gα subunits by a 7TM-RGS supports the notion of coevolution of 
Gα subunits with receptor GAPs
(A) Steady-state hydrolysis of GTP by the indicated wild-type T. vaginalis Gα (TvGα) 

subunits. Purified Gα subunits (250 or 500 nM) were incubated with 10 μM [γ-32P]GTP for 

the indicated times before hydrolyzed 32PO4 was extracted with charcoal and quantified. All 

of the wild-type T. vaginalis Gα subunits displayed relatively slow rates of intrinsic 

hydrolysis. Data show the relative amounts of GTP hydrolyzed per mole of Gα subunit from 

two independent experiments. (B to F) Effects of RGS proteins on the GTP hydrolysis rates 

of TvGα subunits. The indicated Gα subunit (250 nM) and the indicated RGS proteins (500 

nM) were incubated over a (B and D) 2-hour or (C and E) 3-hour period. Steady-state 

[γ-32P]GTP hydrolysis rates were calculated for (B) TvGα1, (C) TvGα2, (D) TvGα4, and 

(E) TvGα5 in the presence of 500 nM RGS1, RGS2, or glutathione S-transferase (GST). (F) 

Summary. Enhancement of the GTPase activities of the indicated TvGα subunits by RGS1 

or RGS2 relative to those in the presence of the GST control. GAP activity was only seen 

with RGS2 on TvGα5. *P < 0.01, analysis of variance (ANOVA) followed by Tukey’s test. 

All other combinations led to statistically insignificant changes in GTPase activity. All data 

are representative of at least two experiments. Error bars represent SD.
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Fig. 4. Nucleotide binding kinetics of wild-type and chimeric Gα subunits support a 
monophyletic relationship for the property of fast nucleotide exchange
(A to D) Cartoon representations of wild-type and chimeric G proteins with the Ras and 

helical domains indicated: (A) the T. vaginalis Gα5 subunit structure (green), (B) the T. 
vaginalis TvGα5αi hel chimera containing the T. vaginalis Ras (green) and human helical 

(red) domains, (C) the human chimera HsGαi1
α5 hel containing the human Ras (red) and the 

T. vaginalis helical (green) domains, and (D) the human Gαi1 subunit (all red). (E and F) 

Purified (E) TvGα5 and TvGα5αi hel subunits (400 nM) and (F) HsGαi1
α5 hel and HsGαi1 

subunits (400 nM) were incubated at 25°C before nonhydrolyzable GTPγS was added, and 

the change in intrinsic fluorescence was monitored over time. GTP binding manifests as a 

positive change in intrinsic fluorescence. (G) Purified TvGα5, HsGαi1, or HsGαi1
α5 hel 

chimeric proteins (500 nM) were incubated with the radio-nucleotide [35S]GTPγS for the 

indicated times before bound radionucleotide was quantified. (H and I) Single-turnover GTP 

hydrolysis assays in which the indicated purified Gα proteins (800 nM) were preloaded with 

hydrolyzable [γ-32P]GTP for the indicated times and then incubated in an excess of non-

hydrolyzable GTPγS before charcoal extraction and quantification of 32PO4 were performed. 
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(J) Steady-state GTP hydrolysis of chimeric proteins. The procedure followed was the same 

as that for the wild-type TvGα proteins in Fig. 3. Note that wild-type HsGαi1, TvGα5, and 

TvGα5αi1 hel displayed slow steady-state hydrolysis, whereas HsGαi1
α5 hel displayed faster 

steady-state hydrolysis. All data are representative of at least two experiments. Error bars 

represent SD. GTPγS binding and GTP hydrolysis data for HsGαi1 and TvGa5 are as shown 

in Fig. 2.
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Table 2
Rates of GTPγS binding and GTP hydrolysis in wild-type and chimeric Gα subunits

Rates of GTPγS binding were determined by in vitro [35S]GTPγS binding assays. Rates of GTP binding were 

determined by intrinsic fluorescence measurements. Rates of GTP hydrolysis were measured by [γ-32P]GTP 

hydrolysis assay. The values of GTPγS binding and GTP hydrolysis (single-turnover) are shown as min−1. The 

steady-state hydrolysis values are given as GTP hydrolyzed/(min × Gα), where the amount of active Gα was 

determined by its ability to bind to GTPγS. Experiments for which no data were obtained are marked with an 

“x.”

HsGαi1 HsGαi1
α5 hel TvGα5αi1 hel TvGα5

GTPγS binding 6.4 × 10−3 ± 3.1 × 10−4 0.12 ± 0.03 x 0.80 ± 0.17

Intrinsic fluorescence binding 8.2 × 10−3 ± 5.2 × 10−3 0.25 ± 0.01 0.37 ± 0.02 6.53 ± 0.68

GTP hydrolysis (single-turnover) 0.82 ± 0.16 0.49 ± 0.05 0.0052 ± 0.001 6.2 × 10−3 ± 1.0 × 10−3

Steady-state hydrolysis 3.9 × 10−3 ± 5.8 × 10−4 0.41 ± 0.03 0.013 ± 0.002 6.1 × 10−3 ± 5.8 × 10−4

Rate-limiting step* Binding Binding Hydrolysis Hydrolysis

*
The rate-limiting step was found by comparing the rate of single-turnover (or estimated single-turnover) GTP hydrolysis to the rate of GTPγS 

binding. The rates shown in this table were computed from more than 12 data points of at least two experiments. Variability is represented by the 
SEM.
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