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Abstract

Three species of Myodes voles known to harbor hantaviruses include the bank vole (Myodes 
glareolus), which serves as the reservoir host of Puumala virus (PUUV), the prototype arvicolid 

rodent-borne hantavirus causing hemorrhagic fever with renal syndrome (HFRS) in Europe, and 

the grey red-backed vole (M. rufocanus) and royal vole (M. regulus) which carry two PUUV-like 

hantaviruses, designated Hokkaido virus (HOKV) and Muju virus (MUJV), respectively. To 

ascertain the hantavirus harbored by the northern red-backed vole (M. rutilus), we initially 

screened sera from 233 M. rutilus, as well as from 90 M. rufocanus and 110 M. glareolus, 

captured in Western and Eastern Siberia during June 2007 to October 2009, for anti-hantaviral 

antibodies. Thereafter, lung tissues from 44 seropositive voles were analyzed for hantavirus RNA 

by reverse transcription-polymerase chain reaction. Partial L-, M- and S-segment sequences, 

detected in M. rutilus and M. rufocanus, were closely related to HOKV, differing from previously 

published L-, M- and S-segment sequences of HOKV by 17.8–20.2%, 15.9–23.4% and 15.0–

17.0% at the nucleotide level and 2.6–7.9%, 1.3–6.3% and 1.2–4.0% at the amino acid level, 

respectively. Alignment and comparison of hantavirus sequences from M. glareolus trapped in 

Tiumen Oblast showed very high sequence similarity to the Omsk lineage of PUUV. Phylogenetic 

analysis, using neighbor-joining, maximal likelihood and Bayesian methods, showed that HOKV 

strains shared a common ancestry with PUUV and exhibited geographic-specific clustering. This 
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report provides the first molecular evidence that both M. rutilus and M. rufocanus harbor HOKV, 

which might represent a genetic variant of PUUV.
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1. Introduction

Hantaviruses (family Bunyaviridae, genus Hantavirus) possess a negative-sense, single-

stranded, tripartite RNA genome, comprising L, M and S segments, which encode an RNA-

dependent RNA polymerase (RdRp), envelope glycoproteins (Gn and Gc) and nucleocapsid 

(N protein), respectively (Plyusnin et al., 1996). Several hantaviruses, harbored by rodents 

(order Rodentia) belonging to the Muridae and Cricetidae families, cause hemorrhagic fever 

with renal syndrome (HFRS) (Jonsson et al., 2010). Hantaan virus (HTNV), Dobrava-

Belgrade virus (DOBV) and Seoul virus (SEOV) are the principal pathogenic murid rodent-

borne hantaviruses, while Puumala virus (PUUV), carried by the bank vole (Myodes 
glareolus), is the prototype HFRS-causing arvicolid rodent-borne hantavirus.

M. glareolus is one of the most abundant and widely distributed small mammal species in 

Europe, occurring in most areas except near the coast of the Mediterranean Basin and in the 

far northern territories (Olsson et al., 2010). In the Asian part of the continent, its range 

extends to the Sayan Mountains and northern Kazakhstan (Shenbrot and Krasnov, 2005). 

Following the latest glacial period, M. glareolus recolonized the continent and formed at 

least eight distinct lineages of co-evolved PUUV (Sironen et al., 2001). Phylogenetic studies 

suggest that the Omsk lineage of PUUV in western Siberia has a common evolutionary 

origin with that of the Finnish lineage (Dekonenko et al., 2003).

Three other species of Myodes voles serve as reservoir hosts of hantaviruses: the grey red-

backed vole (M. rufocanus), northern red-backed vole (M. rutilus) and royal vole (M. 
regulus). The former two species have overlapping geographic ranges with M. glareolus in 

Europe and Asia (Shenbrot and Krasnov, 2005). In particular, M. rufocanus is distributed in 

the northern Paleoarctic, extending from northern Fennoscandia through northern Russia to 

Kamchatka, northeastern and northern Korea, Mongolia, China, Sakhalin (Russia) and 

Hokkaido (Japan), whereas M. rutilus is a Holarctic species found throughout northern 

Europe, Asia, Alaska and Canada. By contrast, M. regulus is confined to mountainous 

regions at elevations above 500 m in the Korean Peninsula (Kaneko, 1990).

Hantaviral antigens were initially detected in M. rufocanus in Far East and Siberian Russia 

(Kosoy et al., 1997; Tkachenko et al., 1983, 1987). Subsequently, genetic evidence of a 

PUUV-like hantavirus, designated Hokkaido virus (HOKV), was demonstrated in M. 
rufocanus trapped in Hokkaido, Japan (Kariwa et al., 1995, 1999; Sanada et al., 2012), the 

Far East region and Buryatia Republic of Russia (Plyusnina et al., 2008; Yashina et al., 2004, 

2013) and Jilin province, China (Zhang et al., 2007). Another PUUV-like virus, named Muju 

virus (MUJV), was detected in M. regulus, trapped at multiple sites in the Republic of Korea 
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(Lee et al., 2014; Song et al., 2007). Both HOKV and MUJV share a common ancestry with 

PUUV.

Although hantaviral antigens or antibodies have been reported in M. rutilus, captured in 

Alaska (Lee et al., 1982) and in European, Siberian and Far East Russia (Kosoy et al., 1997; 

Tkachenko et al., 1987; Yashina et al., 2012), the hantavirus harbored by M. rutilus has not 

been characterized. In the present study, genetic analysis of hantaviruses in M. rutilus, M. 
rufocanus and M. glareolus, sharing the same ecological habitats in the Western Siberia, 

indicates that both M. rutilus and M. rufocanus serve as reservoir hosts of HOKV. Based on 

whole genome sequence analysis of MUJV (Lee et al., 2014) and findings from this 

investigation, HOKV and MUJV appear to represent genetic variants, or genotypes, of 

PUUV, rather than distinct hantavirus species. We, therefore, tentatively propose that HOKV 

and MUJV be called the Hokkaido and Muju genotypes of PUUV.

2. Materials and methods

2.1. Rodent trapping and screening

During June 2007 to October 2009, rodents were captured in 12 forest localities of seven 

administrative regions of Western and Eastern Siberia (Altai Republic, Altai and 

Krasnoyarsk Krais, and Tiumen, Omsk, Kemerovo and Tomsk Oblasts), where two or three 

Myodes species were sympatric (Table 1 and Fig. 1). Captured Myodes voles were identified 

according to a complex of morphologic criteria, including configuration of the prisms and 

triangles of the occlusal surface of the third upper (M3) and first lower (M1) molars, body 

size, length and hairiness of tail, and fur coloration (Gromov and Erbaeva, 1995; Gromov 

and Polyakov, 1977). Sera and lung tissues were stored in liquid nitrogen for subsequent 

analysis for anti-hantavirus antibodies by the indirect immunofluorescent antibody test (IFA) 

using Vero E6 cells infected with HTNV (76–118), PUUV (CG1820) and SEOV (SR-11) as 

antigens (Dzagurova et al., 1995), and for hantavirus RNA by reverse transcription-

polymerase chain reaction (RT-PCR) (Yashina et al., 2004, 2013). Although hantaviral 

antigens have been detected before antibody responses in M. glareolus experimentally 

infected with PUUV (Apekina et al., 2014), we were unable to test all tissues from wild-

trapped Myodes voles by RT-PCR, due to budgetary constraints, and instead were able to 

test tissues only from IFA-seropositive voles.

2.2. Ethics statement

All trapping and handling of rodents and processing of their tissues were performed 

according to well-established protocols (Mills et al., 1995), approved by the Institutional 

Animal Care and Use Committee of the State Research Center of Virology and 

Biotechnology “Vector”.

2.3. RT-PCR, mtDNA and DNA sequencing

Total RNA was extracted from lung tissue of anti-hantaviral antibody-positive rodents with 

the RNeasy MiniKit (Qiagen, Hilden, Germany), and cDNA was synthesized using Expand 

reverse transcriptase (Roche) and universal primer 5′-TAGTAGTAGACTCC-3′. Four sets of 

nested primers were used to amplify selected regions of the large (L: positions 180–522), 
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medium (M: 2764–3004) and small (S: 43–1251) segments (nucleotide position numbers are 

those for PUUV strain CG1820: GenBank M63194, M29979, M32750). Sequences of 

primers are shown in Table 2. To confirm the taxonomic identity of hantavirus RNA-positive 

voles, genomic DNA was extracted from frozen lung tissue using the QIAamp DNA Mini 

Kit (Qiagen), and the partial 426-nucleotide region of the cytochrome b gene of 

mitochondrial DNA (mtDNA) was amplified by PCR using previously described universal 

primers: +14115 (5′-CGAAGCTTGATATGAAAAACCATCGTTG-3′); and −14532 (5′-

GCAGCCCCTCAGAATGATATTTGTCCAC-3′) (Smith & Patton, 1991). Amplicons were 

gel-purified with QIAquick Gel Extraction kit (Qiagen) and directly sequenced using ABI 

Prizm BigDye Terminator kit (PE Applied Biosystem) and an automatic ABI Prism 310 

genetic analyzer.

2.4. Genetic and phylogenetic analyses

Pair-wise alignment and comparison of newfound hantavirus nucleotide sequences were 

performed using ClustalW (Thompson et al., 1994). The distance-based neighbor-joining 

method, supported by MEGA 5.1 (Tamura et al., 2011), was used to construct phylogenetic 

trees, which were evaluated by bootstrap analysis of 1,000 neighbor-joining iterations. In 

addition, unrooted phylogenetic trees were generated by maximum likelihood and Bayesian 

methods, implemented in PAUP* (Phylogenetic Analysis Using Parsimony, 4.0b10) 

(Swofford, 2003), RAxML Blackbox webserver (Stamatakis et al., 2008) and MrBayes 3.1 

(Ronquist and Huelsenbeck, 2003), under the best-fit GTR+I+Γ model of evolution selected 

by hierarchical likelihood-ratio test in MrModeltest v2.3 (Posada and Crandall, 1998) and 

jModelTest version 0.1 (Posada, 2008). Two replicate Bayesian Metropolis–Hastings 

Markov Chain Monte Carlo runs, each comprising six chains of 10 million generations 

sampled every 100 generations with a burn-in of 25,000 (25%), resulted in 150,000 trees 

overall. Each genomic segment (S, M and L) was treated separately in phylogenetic 

analyses. The posterior node probabilities were based on 2 million generations and estimated 

sample sizes over 100 (implemented in MrBayes).

3. Results

M. rutilus was the dominant Myodes species captured at six sites, M. rufocanus at three and 

M. glareolus at two, with equal numbers of M. rutilus and M. glareolus at one site (Omsk 

Oblast) (Table 1). Sera, diluted 1:10, from 433 voles (233 M. rutilus, 90 M. rufocanus and 

110 M. glareolus) were initially screened by IFA for the presence of anti-hantaviral 

antibodies. Individuals of one, two or three Myodes species in 11 of the 12 trap sites were 

anti-hantavirus antibody positive (Table 1).

Of the 44 (10.2%) seropositive voles, hantavirus RNA was detected in two of 17 M. rutilus, 

two of 19 M. rufocanus and three of eight M. glareolus, which were taxonomically verified 

by mitochondrial DNA analysis. Sequence analysis, based on a 426-nucleotide cytochrome b 
region of mtDNA, showed that intraspecies differences in Myodes voles (M. glareolus, M. 
rufocanus and M. rutilus) varied from 0 to 2.3%, while interspecies differences were from 

6.8–9.6%. In all studied cases, cytochrome b typing matched morphological specification of 
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hantavirus RNA-positive Myodes voles. The GenBank accession numbers for the 

cytochrome b sequences are provided in Table 3.

Hantavirus RNA-positive voles were captured in three localities of the Altai region: near 

Teletskoye Lake (Artybash village, Altai Republic), Pokrovka and Solton villages (Altai 

Krai) and in one locality of Tiumen Oblast near Kuchuk Lake (Table 1 and Fig. 1). In one of 

these sites (Teletskoye Lake), hantavirus RNA was detected in two of three hantavirus-

infected Myodes species (M. rutilus and M. rufocanus), and in each of three other sites 

hantavirus sequences from a single host species were identified.

Hantavirus RNA was detected in lung tissues from seven of 44 anti-hantaviral antibody-

positive Myodes voles. Of these, six voles had anti-hantavirus antibody titers ≥1:80 (Table 

4). Six of 17 voles with antibody titers ≥1:80 were hantavirus RNA positive, compared to 

one of 27 voles with anti-hantaviral antibody titers ≤1:40. At titers of ≥1:320, four of five 

voles were hantavirus RNA positive (Table 4).

Analysis of partial L- (position 180–522), M- (position 2764–3004) and S- (position 43–

1251) segment sequences from M. rutilus and M. rufocanus showed that both species 

harbored a hantavirus which was most closely related to HOKV. HOKV was detected in M. 
rutilus in Solton, in M. rufocanus in Pokrovka and in both M. rutilus and M. rufocanus in 

Teletskoye Lake (Table 1). In both Solton and Teletskoye Lake, M. rutilus was the dominant 

species, accounting for 53.8% and 86.0% of all captured Myodes voles, respectively.

The nucleotide sequence similarity among the newly identified HOKV strains 

Teletskoye854/Mrt, Teletskoye937/Mrf, Solton35/Mrt and Pokrovka674/Mrf were 83.6–

97.7%, 80.5–98.8% and 84.5–97.6% for the L-, M- and S-segments, respectively. And the 

deduced amino acid sequence similarity was 99.1–100% for the RdRp, 98.8–100% for the 

Gc glycoprotein and 97.3–99.3% for the N protein. Minimal nucleotide sequence divergence 

(<3%) was shown for HOKV strains, Teletskoye854/Mrt and Teletskoye937/Mrf detected in 

M. rutilus and M. rufocanus, respectively, from one locality. Compared with previously 

published HOKV L-, M- and S-segment sequences from M. rufocanus, 79.8–82.2%, 76.6–

84.1% and 83.0–85.0% similarity was found at the nucleotide level and 92.1–97.4%, 93.7–

98.7% and 96.0–98.8% at the amino acid level. The amino acid sequences of the RdRp, Gc 

and N proteins of the Siberian HOKV strains differed from that of PUUV strains by 6.1–

9.7%, 5.0–6.3% and 3.5–4.5%, and from that of MUJV strains by 9.7–10.5%, 5.0–6.3% and 

4.2–6.0%.

Hantavirus RNA, detected in three of four seropositive M. glareolus in Tiumen Oblast 

(Kuchuk170/Mg, Kuchuk197/Mg, Kuchuk246/Mg), showed the highest degree of sequence 

similarity to the Omsk lineage of PUUV, previously described in M. glareolus captured in a 

neighboring administrative region of Siberia (Omsk Oblast): 93.3–96.7% and 97.5% for M 

and 96.6–96.9% and 98.5–99.2% for S segment at the nucleotide and amino acid levels, 

respectively. Compared with other PUUV strains, Kuchuk170/Mg, Kuchuk197/Mg and 

Kuchuk246/Mg differed by 14.5–19.6% at the nucleotide level and 1.8–6.1% at the amino 

acid level for the L segment, and by 14.1–17.4% and 3.7–8.7% for the M segment, and by 

11.2–17.4% and 1.7–4.7% for the S segment, respectively. The partial amino acid sequences 
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of the Siberian HOKV strains differed from that of the Siberian PUUV strains by 6.1–7.9% 

for RdRp, 6.2–7.5% for Gc and 3.7–5.0% for N protein.

Phylogenetic trees based on partial S-, M- and L-segment sequences, using neighbor-joining, 

maximum-likelihood and Bayesian methods, indicated that HOKV strains were placed 

within the well-supported clade formed by three hantaviruses associated with Myodes voles: 

PUUV, HOKV and MUJV (Fig. 2). HOKV strains formed five genetic lineages, represented 

respectively by previously described strains from Japan (Kamiiso-8Cr-95, Tobetsu60Cr, 

Kiritappu126S, Nakagawa49S, Ishikari9S) and Russia (Sakhalin99S), Republic Buryatia 

(Mukhorshibir767, Tunka227), Russia-China (Fusong and Khekhtsir3S) and two new 

lineages from Russia: Siberia 1 (Solton35/Mrt, Teletskoye854/Mrt, Olhon109/Mrf) and 

Siberia 2 (Pokrovka674/Mrf). The N protein sequence of the newfound HOKV strains 

contained specific amino acid signatures of HOKV (Val/Ile68, Val/Ala79 and Ile262) and 

residues common for all HOKV strains and those also shared by MUJV, Khabarovsk virus 

(KBRV) and Topografov virus (TOPV) (Arg26, Pro283). Specific amino acid signatures for 

the Siberia 1 lineage were Met127, Asp302 and Asp307, and for the Siberia 2 lineage 

Gln237.

The Siberia 1 lineage of HOKV included three new strains from the Altai region (Solton35, 

Teletskoye854, Teletskoye937) and the previously described strain Olhon109 from M. 
rufocanus captured in Olhon district of Irkutsk Oblast (Yashina et al., 2013), located more 

then 1,750 km to the east, near Baikal Lake. The Siberia 2 lineage was found in M. 
rufocanus captured at one site near Pokrovka village (Altai Krai), located approximately 260 

km southwest from the two other sites, Teletskoye Lake and Solton. The newly identified 

PUUV strain Kuchuk170 from M. glareolus was placed within the Omsk lineage of PUUV, 

according to geography.

4. Discussion

The principal objectives of this study were to determine the molecular phylogeny of 

hantaviruses harbored by three species of Myodes voles inhabiting the same natural foci in 

Western and Eastern Siberia and to fill a long-standing gap in knowledge about the 

hantavirus harbored by M. rutilus. This report provides the first genetic evidence that HOKV 

is harbored by both M. rufocanus and M. rutilus in Siberian Russia. That HOKV was found 

irrespective of whether the dominant Myodes species was M. rutilus (Teletskoye Lake and 

Solton) or M. rufocanus (Pokrovka) suggests that both species are natural reservoirs of 

HOKV.

Host-specificity studies of experimental PUUV infection in wild-trapped and colonized 

cricetid rodents (Klingström et al., 2002) are compatible with our finding of HOKV RNA in 

lung tissues of two species of anti-hantaviral antibody-positive, wild-trapped voles, M. 
rufocanus and M. rutilus. Because M. rutilus was the dominant Myodes species over M. 
rufocanus in Solton and Teletskoye Lake, spillover infection of HOKV from the latter to the 

former is unlikely.
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Overall, hantavirus RNA was detected in only 15.9% (7/44) of the anti-hantaviral antibody-

positive Myodes voles. The discordance between the prevalence of anti-hantaviral antibody 

and hantavirus RNA was most striking in M. rufocanus (2/19, or 10.5%) and M. rutilus (2/17 

or 11.8%), compared to M. glareolus (3/8, or 37.5%) (Tables 1 and 4). However, this 

discrepancy may have been artificially accentuated by including 12 voles (6 M. rutilus, 4 M. 
rufocanus and 2 M. glareolus) with anti-hantaviral antibody titers of ≤1:20. That is, 

hantavirus RNA was more commonly detected in voles with antibody titers ≥1:80 (6/17, or 

35.3%) or ≥160 (5/8, or 62.5%), which is consistent with experimental PUUV infection 

studies, which showed that 48% of voles with high levels of antibodies correlated with 

PUUV antigen in lung tissues (Apekina et al., 2014).

A possible reason for the low success rate of detecting hantavirus RNA in seropositive voles 

include the insufficiently sensitive RT-PCR assay; that is, although the L-segment 

oligonucleotide primers were broadly cross reactive and have been successfully employed 

for gene amplification of KBRV in Microtus maximowiczii, Vladivostok virus (VLAV) in 

Microtus fortis and Tula virus (TULV) in Microtus arvalis, the most reasonable explanation 

for the low RT-PCR positivity in lung tissues among antibody-positive M. rufocanus and M. 
rutilus was the lower viral load, which was beyond the limits of detection. Few studies have 

compared two of these hantaviral markers in M. rufocanus. For example, only 5 of 8 

seropositive wild Microtus and Myodes voles were RT-PCR positive (Plyusnina et al., 2008).

Another possible reason for the discrepancy is that HOKV infection may be less robust and 

persistent in M. rutilus and M. rufocanus, resulting in lower viral copy numbers, compared 

to PUUV infection in M. glareolus. Thus, while 75% (3/4) of seropositive M. glareolus from 

Kuchuk was PUUV RNA positive, only 12.5% (1/8) of seropositive M. rufocanus and 16.7% 

(1/6) M. rutilus were HOKV RNA positive in Pokrovka and Teletskoye Lake, respectively.

By contrast, passively acquired maternal antibodies cannot explain the anti-hantaviral 

antibody prevalence, because all of the captured voles were subadults and adults. Equally 

unlikely is the occurrence of spillover and the failure to capture another arvicolid rodent 

species that represents the reservoir host of HOKV. Only two or three species of Myodes 
voles, which are potential reservoirs of PUUV and PUU-like virus, inhabit the studied 

territory and all of these species were trapped and analyzed. No other Myodes species are 

described in Siberia.

We were unable to detect PUUV in one seropositive M. glareolus captured in Teletskoye 

Lake, where HOKV was found in seropositive M. rutilus and M. rufocanus. Similarly, in the 

trapping site of Kuchuk in Tiumen Oblast, where PUUV was detected in the dominant M. 
glareolus, we failed to find HOKV in one seropositive M. rutilus. These results are 

consistent with that of previous studies, indicating hantavirus antigen in M. glareolus and M. 
rutilus within the same natural focus, where M. glareolus was the dominant species 

(Myasnikov et al., 1992).

Geographic-specific clustering within distinct genetic lineages has been recognized for 

arvicolid rodent-borne hantaviruses, such as PUUV (Plyusnin et al., 1995; Sironen et al., 

2001), MUJV (Lee et al., 2014; Song et al., 2007) and TULV (Song et al., 2004; Tkachenko 
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et al., 2015). Available data on PUUV support the hypothesis that the phylogeography of 

different lineages was formed by separate post-glacial migrations of M. glareolus (Asikainen 

et al., 2000). We suggest a similar basis for the distribution pattern of distinct lineages of 

HOKV. Previously, it was shown that the vast territory of European and Asian Russia, 

including the southern regions of Siberia, was colonized by the same haplogroup of M. 
rufocanus (Abramson et al., 2012). In accordance with these data, we found genetically 

closely related HOKV strains of Siberia 1 lineage in the geographically distant Altai region 

and Baikal Lake area (Teletskoye854/Mrt, Teletskoye937/Mrf, Solton35/Mrt and Olhon109). 

Geographically close but genetically distant Siberia 2 and Siberia 1 lineages were found in 

the mountainous area of the Altai region, suggesting that the two lineages are associated 

with different colonization events of M. rufocanus, which had long periods of isolated 

evolution.

Discovery of multiple newfound hantaviruses raises critical questions about their taxonomic 

relationships (Lee et al., 2014; Maes et al., 2009) and evolutionary origins (Yanagihara et al., 

2014). Our data and results from other studies on the genetic diversity of PUUV, MUJV and 

HOKV (Lee et al., 2014; Plyusnina et al., 2008; Sironen and Plyusnin, 2011; Zhang et al., 

2007) indicate that the current criterion of at least a 7% amino acid sequence difference in 

both the complete N protein and GnGc, promulgated by the International Committee on the 

Taxonomy of Viruses (ICTV) (Plyusnin et al., 2012), is not fulfilled to warrant separate 

hantavirus species designation for PUUV, HOKV and MUJV. In this study, differences 

between the N protein sequences (based on nearly the complete N protein, 402 of 433 amino 

acids) of Siberian HOKV and PUUV strains were 4.8–6.0%. Recently, based on a thorough 

genetic analysis of DOBV strains, a consortium of European hantavirus experts proposed 

four genotypes: namely Dobrava, Saaremaa, Kurkino and Sochi (Klempa et al., 2013). 

Similarly, analysis of publicly available sequences of hantaviruses harbored by Myodes 
voles supports the concept of three PUUV genotypes: Puumala, Hokkaido and Muju.

Also, the ICTV criterion requiring a unique ecological niche of the reservoir host is invalid 

for HOKV. M. rufocanus and M. rutilus, which belong to the same family (Cricetidae), 

subfamily (Arvicolinae) and genus (Myodes) and which inhabit the same localities in 

coniferous and broad-leaved forests of Siberian and Far East Russia, harbor HOKV. Thus, 

this criterion might need to be revised to simply requiring that reservoir hosts belong to the 

same genus.

Although approximately 7% of the human population in the Omsk region and 9% in the 

Tiumen region have anti-hantaviral antibodies (Myasnikov et al., 1987), only low numbers 

of HFRS cases have been registered in Western Siberia. Serological studies in the Altai 

Republic and Altai Krai have also revealed anti-hantaviral antibody prevalence of 

approximately 1–2% (Malkin et al., 1996). It is unclear if the rarity of HFRS in Siberia is 

due to under-reporting or to the lower pathogenicity of HOKV. Future in-depth studies are 

warranted to clarify if HOKV and MUJV, like PUUV, cause HFRS.
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Highlights

• Three species of Myodes voles occupy the same ecological niche in Siberia

• Myodes glareolus harbors Puumala virus in Siberia

• Myodes rufocanus and Myodes rutilus serve as the reservoir hosts of the 

Hokkaido genotype of Puumala virus in Siberia
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Fig. 1. 
Map of Russia, showing the locations of the rodent trapping sites: (1) Kuchuk, (2) Ust-

Ishim, (3) Sukhorechie, (4) Balakhnino, (5) Parnaya, (6) Khmelevka, (7) Kolyvan, (8) 

Pokrovka, (9) Solton, (10) Kuzedeyevo, (11) Teletskoye Lake, (12) and Srednyaya Shush, as 

well as (13) Omsk region (Dekonenko et. al., 2003) and (14) Olhon district (Yashina et al., 

2013). Sites where anti-hantavirus antibody-positive and hantavirus RNA-positive voles 

were captured are labeled with double and filled circles, respectively
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Fig. 2. 
Phylogenetic trees, generated by the maximum-likelihood and Bayesian methods, using the 

GTR+I+Γ model of evolution as estimated from the data, were based on the alignment of the 

coding regions of the (S) partial S segment (position 43–1251), (M) partial M segment 

(position 2764–3004) and (L) partial L segment (position 180–522) of Myodes vole-borne 

hantaviruses and other representative hantaviruses. Because the unrooted phylogenetic trees 

using these methods were very similar, the trees generated by MrBayes were displayed. The 

phylogenetic positions of the newfound Myodes vole-borne hantaviruses from Siberia are 

shown in relationship to PUUV CG215 (AF367066); PUUV CRF161 (AF367069, 

AF367061); PUUV CRF308 (AF367070); PUUV Virrat/25Cg (Z69985, Z70201); PUUV 

Pallasjarvi/63Cg/98 (AJ314597); PUUV Sotkamo (NC_005224, NC_005223, NC_005225); 

PUUV Pieksamaki/Mg4/2008 (JN831946); PUUV Pieksamaki/Mg7/2008 (JN831945); 

PUUV Kazan (Z84204, Z84205, EF405801); PUUV Udmurtia/338Cg (Z30708); PUUV 

CG1820 (M32750, M29979, M63194); PUUV Samara/147Cg (AB433855); PUUV Samara/

49Cg/2005 (AB433850, AB574183); PUUV Samara/94Cg/2005 (AB574184); PUUV DTK/
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Ufa-97 (AB297667); PUUV Couvin/59Cg/97 (AJ277034, AJ277040); PUUV Cg-Erft 

(AJ238779, AJ238778); PUUV Omsk222 (AF442616); PUUV Opina916 (AF294652); 

PUUV Cg13891 (U22418); PUUV Balkan-2 (AJ314601); PUUV Klippitztoerl (AJ888751); 

PUUV Vranica (U14137); PUUV Vindeln/L20 (Z48586); PUUV Mellansel/Cg47 

(AJ223374); PUUV Umea (AY526219, AY526218, AY526217); PUUV Fyn (AJ238791); 

PUUV Fyn131 (AJ278092); PUUV Eidsvoll/Cg1138 (AJ223369); PUUV Solleftea/Cg6 

(AJ223377); HOKV Kitahiyama128 (AB675463, AB676848, AB712372); HOKV 

Kamiiso-8Cr-95 (AB010730); HOKV Kamiiso-Crf (AB011631); HOKV Tobetsu27S/2004 

(AB675465); HOKV Tobetsu35/2010 (AB675451, AB675452); HOKV Ishikari9S/2009 

(AB675469); HOKV Kiritappu126S/2000 (AB675474); HOKV Sakhalin99/1998 

(AB675453, AB675454, AB675455); HOKV Tunka227 (KP325675, KR072694); HOKV 

Muhorshibir767 (AM930972, AM930975); HOKV Muhorshibir791 (AM930976); HOKV 

Olhon109 (KP325674, KM245956, KM245961); HOKV Fusong 200-05 (EF211820); 

HOKV Fusong-247 (EF442087, EF442094); HOKV Fusong-302 (EF442095); HOKV 

Fusong8405 (EF422372); HOKV Khekhtsir3S/1998 (AB677476); HOKV Khekhtsir37/2002 

(AB677484, AB677488); HOKV CRF74372 (AY491383); HOKV CRF74333 (AY491381); 

MUJV 11-1 (JX028273, JX028272, JX028271); MUJV 11-4 (JX046484, JX046483, 

JX046482); MUJV 11-5 (JX046487, JX046486, JX046485); TOPV Ls136v (AJ011646, 

AJ011647, AJ011649); KBRV MF-43 (U35255, AJ011648, AJ011650); TULV M5302v 

(NC_005227, NC_005228, NC_005226); PHV PH-1 (Z49098, X55129, EF646763); and 

LUXV LX309 (HM756286, HM756287, HQ404253). Other rodent-borne hantaviruses 

included ANDV Chile9717869 (NC_003466, NC_003467, NC_003468); SNV NMH10 

(NC_005216, NC_005215, NC_005217); HTNV 76–118 (NC_005218, Y00386, 

NC_005222); SOOV SOO-1 (AY675349, AY675353, DQ562292); DOBV Greece 

(NC_005233, NC_005234, NC_005235); and SEOV 80-39 (NC_005236, NC_005237, 

NC_005238). Shrew- and mole-borne hantaviruses included MJNV Cl05–11 (EF641804, 

EF641798, EF641806); TPMV VRC66412 (AY526097, EU001329, EU001330); and NVAV 

MSB95703 (FJ539168, HQ840957, FJ593498). The corresponding geographic areas are 

indicated as BAL (Balkan), BEL (Belgium), BUR (Buryatia), CHN/RUS (China/Russia), 

DAN (Denmark), FIN (Finland), JPN/RUS (Japan/Russia), KOR (Korea), NSCA (Northern 

Scandinavia), OMSK (Omsk), RUS (Russia), SIB-1 (Siberia), SIB-2 (Siberia), and SSCA 

(Southern Scandinavia). The numbers at each node are posterior node probabilities based on 

150,000 trees. The scale bar indicates nucleotide substitutions per site. The GenBank 

accession numbers for the newfound hantaviral sequences from Siberia are listed in Table 3.
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Table 2

Oligonucleotide primers for nested PCR used in this study

Gene Primer sequence (5′-3′) Positiona, orientation Reference

L AGAGAA(G/A)T(T/C)TACTA(C/A)AAATGGAGAAATACA 20 (+) Yashina et al., 2013

TTTAAATT(G/A)AACAT(T/G)GC(T/C)TC(A/T)AGTGC 677 (−)

GA(C/T)CAGATGATAAA(G/A)CATGA(T/C)TGGTC 154 (+)

CTGTGTTGA(G/T)AT(A/G)TTTGA(T/G)CCATCAGT 549 (−)

M ATTTAA(G/A)CAATGGTG(C/T)ACTAC(T/A)AC 2644 (+) Yashina et al., 2000

CC(G/A)TAACACATTGC(A/G)GC 3117 (−)

TAGAAAGAAATGTGCATTTGC 2743 (+)

CCTGA(G/A)CCCCATGC(A/T/C)CCATC 3024 (−)

S TTCTGCAGTAGTAGTAGACTCCTTGAAAAG 1 (+ −)

Yashina et al., 2010 This study

C(A/T)GGTGCACA(G/T)GCAAANACCC 991 (−)

G(A/T)GG(A/C/T)CA(G/A)AC(A/T)GCAGA(C/T)TGG 380 (+)

AGCTCAGGATCCATGTCATC 1271 (−)

CCCAGATCTATGAGTGACTTGACAGACATCCAAG 42 (+)

CC(A/T)GGTGT(A/G)AG(T/C)TCTTC(A/T)GC 629 (−)

a
The numbers correspond to genome positions of PUUV strain CG1820 (GenBank M63194, M29979, M32750).
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Table 4

Myodes voles with anti-hantavirus antibodies and hantavirus RNA

Trap locality Animal no./species Anti-hantavirus IFA titer Hantavirus RNAa

Khmelevka Khmelevka161/Mg 20 −

Kolyvan Kolyvan721/Mrt 40 −

Pokrovka Pokrovka613/Mrf 20 −

Pokrovka622/Mrf 40 −

Pokrovka630/Mrf 640 −

Pokrovka632/Mrf 10 −

Pokrovka670/Mrf 80 −

Pokrovka674/Mrf 320 +

Pokrovka678/Mrf 160 −

Pokrovka695/Mrf 160 −

Solton Solton35/Mrt 640 +

Solton39/Mrt 40 −

Solton38Mrf 40 −

Teletskoye Lake Teletskoye338/Mrt 40 −b

Teletskoye361/Mrt 40 −

Teletskoye854/Mrt 80 +c

Teletskoye860/Mrt 20 −

Teletskoye864/Mrt 80 −

Teletskoye2321/Mrt 80 −

Teletskoye937/Mrf 160 +

Teletskoye894/Mg 40 −

Kuzedeyevo Kuzedeyevo91/Mrt 20 −

Parnaya Parnaya1241/Mrt 80 −

Srednyaya Shush Shush1004/Mrt 10 −

Shush1007/Mrt 40 −

Shush1010/Mrt 40 −

Shush1018/Mrt 20 −

Shush1002/Mrf 40 −

Shush1008/Mrf 40 −

Shush1013/Mrf 80 −

Shush1050/Mrf 80 −

Shush1056/Mrf 40 −

Shush1059/Mrf 40 −

Shush1060/Mrf 10 −

Shush1066/Mrf 20 −

Shush1102/Mrf 80 −

Ust-Ishim Ust-Ishim261/Mg 20 −

Ust-Ishim277/Mg 80 −

Kuchuk Kuchuk170/Mg 40 +

Infect Genet Evol. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yashina et al. Page 23

Trap locality Animal no./species Anti-hantavirus IFA titer Hantavirus RNAa

Kuchuk197/Mg 640 +

Kuchuk207/Mg 40 −

Kuchuk246/Mg 640 +

Kuchuk232/Mrt 10 −

Sukhorechie Sukhorechie1394/Mrt 10 −

a
Hantavirus L-segment RNA was detected in rodent lungs by RT-PCR

b
negative

c
positive

Abbreviations: Mrt, M. rutilus; Mrf, M. rufocanus; Mg, M. glareolus.
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