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Root developmental adaptation to Fe toxicity: Mechanisms and management
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ABSTRACT
Iron (Fe) is an essential microelement but is highly toxic when in excess. To cope with Fe excess,
plants have evolved complex adaptive responses that include morphological and physiological
modifications. The highly dynamic adjustments in overall root system architecture (RSA) determine
root plasticity and allow plants to efficiently adapt to environmental constraints. However, the
effects of Fe excess on RSA are poorly understood. Recently, we showed that excess Fe treatment in
Arabidopsis not only directly impairs primary root (PR) growth but also arrests lateral root (LR)
formation by acting at the tip of the growing primary root. Such a change is believed to help RSA
adjust and restrict excessive Fe absorption in the part of the rhizosphere subject to acute toxicity
while maintaining the absorption of other nutrients in the less stressed components of the root
system. We further showed that the suppression of PR growth and LR formation under excess Fe is
alleviated by KC addition, providing useful insight into the effectiveness of nutrient management to
improve RSA and alleviate Fe toxicity symptoms in the field.
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Iron (Fe) is an essential microelement but is highly toxic
when in excess. Classic symptoms of Fe toxicity are leaf
discoloration (bronzing) and a stunted root system.1 To
cope with, and survive, adverse iron-toxic soil conditions
and excessive iron accumulation in tissue, plants have
evolved morphological and physiological avoidance and/
or tolerance strategies. These include restricting excessive
Fe absorption at the root level,2 immobilization of active
iron that entered the tissues in “dumping sites,” e.g., old
leaves or leaf-sheath tissue,3 and inclusion and tolerance
via increased thresholds to elevated levels of Fe2C within
cells, such as through enzymatic detoxification.4 Among
these strategies, restricting excessive Fe absorption is one
of the most important, by “engaging the enemy outside
the gates.” Highly dynamic changes in the overall root
system architecture (RSA) determine root plasticity and
allow plants to efficiently acclimate to environmental
constraints and restrict the excessive accumulation of
nutrients and toxicants. In fact, plants can respond to
the heterogeneous availability of nutrient resources by
flexibly, and relatively rapidly, allocating carbon flow to
facilitate directional root growth to patches where the
most favorable conditions are found.5-7 Excess Fe has
been shown to inhibit LR initiation but not subsequent
LR development,8,9 and these inhibitory effects are only

seen in newly grown roots that are engaged in the elon-
gation process for the duration of exposure to excess Fe
and are not seen in the proximal root portions.8,9 More-
over, physical contact of the PR tip with excess Fe is nec-
essary, and indeed sufficient, for LR formation inhibition
in the newly grown roots.8 Excess Fe also arrests PR
growth by decreasing both cell elongation and divi-
sion,1,9,10 and principally results from direct contact of
the root tip with external Fe.10,11 Concentrations of the
main toxic (ferrous) form, Fe2C, tend to increase in verti-
cally lower soil strata, where low pH and/or anoxic con-
ditions prevail.12 Thus, we propose the purpose of the
observed RSA adjustment to be the restriction of exces-
sive Fe absorption, which also occurs predominantly in
the Fe2C form, and prevent serious Fe toxicity. Mean-
while, the relatively stable LR number and length in the
proximal root portions may permit the maintenance of
the absorption of other nutrients in the less stressed
areas.

Additional to the above, a significant shift in plant tis-
sue cation homeostasis, especially that of potassium (K),
has been noted under Fe toxicity.1,13 Although the previ-
ous reports by our group and others laboratory had
shown that potassium plays a critical role in regulating
root development under Fe toxicity,10,14 the detailed
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morphological and physiological targets were not identi-
fied. Here, our data show that the suppression of PR
growth and LR formation in the newly developed roots

(the distal portion of the root system) under excess Fe is
significantly alleviated by KC addition (Fig. 1). This res-
cue effect from Fe toxicity is strongly reminiscent of KC’s
alleviatory effects under the cation stress brought about
by the NH4

C ion,15,16 an ion whose toxicity is also sensed
at the root tip,17 and KC amendment, thus, offers itself as
a practical agricultural strategy to reduce the manifesta-
tion of cation toxicity in the field.18 Although the mecha-
nism of alleviation remains as yet poorly understood,
there are several plausible hypotheses, 1) KC may reduce
the activity and availability of Fe2C in the root medium,
thus facilitating maintenance of root development; 2)
KC may reduce the transport of Fe2C into root cells to
limit toxicity; 3) KC may act on the target of Fe-medi-
ated root development or the enzymatic systems that
control Fe2C immobilization and detoxification. These
hypotheses require testing to identify the precise targets
of KC action, but the positive effects on RSA, and the
alleviation of Fe toxicity symptoms in general by KC,
may constitute a reasonable nutrient management
approach to combating Fe toxicity in real-life agricul-
tural settings.
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