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In recent years, metabolomics analyses have been widely applied to cerebral ischemia research. This paper introduces the latest
proceedings of metabolomics research on cerebral ischemia. The main techniques, models, animals, and biomarkers of cerebral
ischemia will be discussed. With analysis help from the MBRole website and the KEGG database, the altered metabolites in rat
cerebral ischemia were used for metabolic pathway enrichment analyses. Our results identify the main metabolic pathways that are
related to cerebral ischemia and further construct ametabolic network.These results will provide useful information for elucidating
the pathogenesis of cerebral ischemia, as well as the discovery of cerebral ischemia biomarkers.

1. Introduction

Cerebral ischemia is caused by insufficient blood and oxygen
delivery to the brain, which manifests as cerebral death or
partial necrosis of the brain. According to the World Health
Organization (WHO), ischemia causes 5 million deaths and
5 million cases of irrecoverable disability globally each year
(http://www.who.int/en/). Cerebral ischemia is difficult to
cure and has a high relapse rate.The specific cause of ischemia
is quite complex and the mechanism of pathogenesis remains
unclear. Recently, the rapid development of systems biology
in areas like genomics, transcriptomics, and proteomics has
brought cerebral ischemia research to a new level.

Metabolomics, also called metabonomics, is based on
qualitative and quantitative analyses of the end products
in specific organisms or cells [1]. In 1970, E. C. Horning
and M. G. Horning began to study metabolic profiles of
metabolites in humans [2]. In 1982, van der Greef analyzed
urine samples by gas chromatography-mass spectrometry
(GC-MS) for the first time. This was followed by Nicholson’s
research that applied nuclear magnetic resonance (NMR) to
analyze the metabolic profiles of plasma and urine samples
[3–5]. Metabolomics research rapidly progressed during the
mid-1990s, when Fiehn and Nicholson defined the concepts

of metabolomics and metabonomics, respectively [6, 7].
Acting as a bridge between genotypes and phenotypes,
metabolomics can determine comprehensive changes that
happen in diseases by analyzing big data pools.Metabolomics
studies can clarify specific mechanisms from a systematic
perspective by revealing metabolic networks and biomarker
groups. When compared to isolated single pathways or
single biomarkers, the systemic data are more beneficial for
elucidating the pathogenesis of complex diseases like cerebral
ischemia [8].

Thus far, the pathogenesis of cerebral ischemia has been
linked to energy metabolism, excitatory amino acid toxicity,
reactive oxygen species (ROS), and inflammatory responses.
These processes involve many kinds of metabolites, whose
qualitative and quantitative expression is the focus of
metabolomics. This paper introduces the analytical tech-
niques and models used in metabolomics research on cere-
bral ischemia.Then, the biomarkermetabolites in rat cerebral
ischemia are summarized. Additionally, based on pathway
enrichment analyses, we have successfully determined related
metabolic pathways and constructed a metabolic network for
rat cerebral ischemia. These novel analyses provide powerful
references that clarify cerebral ischemia pathogenesis and
reveal related biomarkers.
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2. Techniques in Metabolomics Research

2.1. NMR. NMR is one of the most common techniques
used in metabolomics research and has been used since the
1970s [9]. Compared to MS, NMR is a nondestructive test.
When samples are difficult to obtain, like cerebrospinal fluid
(CFS), digestive fluid, or seminal fluid, NMR is advantageous
because it is reproducible, safe, and efficient with the samples.
In addition, 1H-NMR can provide robust information on
metabolites, and it is advantageous in determining unknown
compound structures. However, because NMR is not as
sensitive as MS, it is unable to detect molecules at low
concentrations [10]. Presently, scientists have successfully
appliedNMR to constructmetabolite profiles from rat tissues,
plasma, andhumanbodyfluids of cerebral ischemia. Creation
of these profiles has promoted research on related patho-
genesis and on development of anticerebral ischemia drugs.
Importantly, NMR is a powerful tool in the fields of drug
toxicity prediction, disease diagnosis, and aging research [1,
11–13].

2.2. Chromatography-CoupledMS. GC-MSwas the first tech-
nique applied to metabolomics research [5]. To use GC-
MS for a metabolomics assay, the derivatization step is
essential to process biofluid samples like blood and urine
[14]. Since commercial structure databases are available
for reference, GC-MS is highly advantageous in metabolite
identification. In contrast to GC-MS, high-performance liq-
uid chromatography-MS (HPLC-MS) and ultra-performance
liquid chromatography-MS (UPLC-MS) techniques do not
need the derivatization step. Because they can detect plenary
compounds, HPLC-MS and UPLC-MS have become the key
techniques used in untargeted and targeted metabolomics
[15–17]. Additionally, UPLC use reduces the chromatography
running time, making high-throughput analyses achievable
[15, 16]. However, techniques for LC-MS are underdevel-
oped, and there are not comprehensive and unified MS
databases for endogenous small molecules. So experience-
based reasoning and alignmentwith standard data are needed
to identify the structures of compounds. In addition, the
capillary electrophoresis-MS (CE-MS) technique has a high
peak capacity and better sensitivity, so it can also be success-
fully applied [10]. In current cerebral ischemia metabolomics
research, LC-MS is the dominant approach used for analyzing
plasma, brain tissue, and CFS samples.

3. Animals and Models in Cerebral
Ischemia Metabolomics Research

Commonly used animals for cerebral ischemiametabolomics
research include rats, mice, gerbils, rabbits, dogs, cats, mon-
keys, and pigs (Table 1). Among these, the rat is most
frequently used. Since research on other animals is relatively
rare, we chose to summarize biomarkers and conduct func-
tional enrichment analyses from rat cerebral ischemia data.
For models, middle cerebral artery occlusion (MCAO) is
the most canonical and most common [18]. In the original
MCAO model, the exact locations of round tips could not
be directly observed. Also, because the round tips cause

unexpected reactions that may increase noise signals, MCAO
has to be continuously modified. In fact, Shmonin and his
colleagues have developed 5 modified MCAOmodels. Based
on the infarct areas and data stability, they selected stable
models of permanent cerebral ischemia [19].

4. Biomarkers in Rat Cerebral Ischemia

Based on important articles published from 1992 to present,
we summarized 120 significantly changed metabolites in
cerebral ischemia. All metabolites were presented at supple-
mentary table in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/9162074 with KEGG ID and
the related detection information. They have been divided
into the following 5 categories: amino acids, nucleic acids,
neurotransmitters, lipids, and others (mainly organic acids).
Samples include plasma, serum, CSF, cortex, hippocampus,
striatum, thalamus, midbrain, white matter, pineal body, and
olfactory bulb. Of these tissues, plasma, serum, CSF, cortex,
hippocampus, and striatum are relatively well studied, while
the remaining samples are less studied.

4.1. Amino Acids. Table 2 lists 25 amino acids that change
in cerebral ischemia. These were measured from plasma,
serum, cortex, hippocampus, striatum, thalamus, and mid-
brain rat tissues. It has been reported that excitatory amino
acids (EAA, including glutamic acid and aspartate) and
glycine in brain tissues increased 1 hour after reperfusion
following ischemia [20, 21]. Wang et al. observed increased
levels of glutamic acid in serum and CSF at 24 hours after
ischemia/reperfusion, while other amino acids like alanine
dynamically decreased and then increased. Glycine and
serine levels in CSF continued to decrease in the 6 hours after
ischemia [22]. However, not all experiments indicated that
excitatory amino acids increased after ischemia/reperfusion.
Wang et al. reported that the level of aspartate remained
stable at 12 hours after reperfusion, although glutamic acid
increased. Other amino acids like leucine, isoleucine, valine,
and glutaminewere decreased in rat serum and brain extracts
[21].

4.2. Nucleic Acids. 20 of the 120 cerebral ischemia biomarkers
are nucleic acids (Table 3). Irie et al. used LC-MS andmatrix-
assisted laser desorption/ionization-MS (MALDI-MS) tech-
niques to detect 20 nucleic acids in rat cortex, hippocampus,
and striatum after reperfusion and compared the results to
a normal hemisphere. In cortex and striatum, most nucleic
acid levels changed significantly, while levels in the hip-
pocampus remained unchanged. Most nucleic acids, except
AMP, constantly decreased during the long time period after
reperfusion [23]. Two theories have been proposed to explain
these decreases. First, during the early stage of ischemia, the
robust synthesis process of excitatory amino acids quickly
depletes the nucleic acid pool [24]. Second, the activity
of ribose 5-phosphate dehydrogenase, which participates
in the pentose phosphate pathway, decreases in ischemia,
reducing the total nucleic acid level [25]. Increased AMP
levels induce phosphorylation of AMP-activated protein
kinase (AMPK), a kinase activated byAMP, further activating
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Table 2: Amino acids metabolites in cerebral ischemia.

Metabolites Plasma Serum CSF Cortex Hippocampus Striatum Thalamus Midbrain Whole brain
tissue Reference

Tyrosine √ √ √ [20, 22, 23]
Serine √ √ [50]

Dopamine √ √ √ √ √
[20, 22, 23,
50, 51, 55]

Alanine √ √ √ √ √
[20, 22, 23,

27]
Citrulline √ √ [23]
Methionine √ [20]
𝛾-Aminobutyric acid
(GABA) √ √ √ [23, 27, 28, 55]

Threonine √ [50]

Glutamate √ √ √ √
[21, 23, 27, 52,

55]
Valine √ √ √ [21, 50]
Tryptophan √ √ √ [20, 23]
Serotonin √ √ √ √ √ [51]
Glycine √ √ √ [22, 28, 50]
Phenylalanine √ √ √ [21, 23]

Glutamine √ √ √
[23, 27, 28,
55, 87]

Glutamic acid √ √ √ [20–22, 50]
Histidine √ √ √ [23]
Aspartate √ √ √ √ [20, 23, 27, 52]
Isoleucine √ √ √ [21]
Leucine √ √ [21]
Nicotinuric acid √ √ [27]
Homocysteine √ [20]
Lysine √ [21]
Ornithine √ [50]
Arginine √ √ [50]

phosphofructokinase-2 (PFK-2). In cells that lack oxygen, the
PFK-2 activation induces a new round of damage [26].

4.3. Neurotransmitters. 16 species of neurotransmitter
biomarkers in rat cerebral ischemia have been detected
in all areas of the brain (Table 4). Neurotransmitters can
be divided into two groups: amino acid neurotransmitters
and monoamine neurotransmitters. In the amino acid
group, glutamate and aspartate are important excitatory
neurotransmitters in brain CNS, while GABA and glycine are
major inhibitory neurotransmitters. Taurine and serine can
inhibit glutamate and GABA receptors. In previous studies,
the observed results from amino acid neurotransmitters are
not consistent. For example, taurine has been observed to
decrease in ischemic tissues like cortex, hippocampus, and
whole brain tissue; yet another research has found increased
taurine levels in the hippocampus after ischemia [27–29].

In the monoamine group, the testing area and time
after ischemia influence the results. In extracellular fluids,
the levels of dopamine (DA), norepinephrine (NE), and

serotonin (5-HT) increase after ischemia but quickly decrease
after reperfusion. DA was increased at 30 minutes after
ischemia in rat striatum [30]. DA and 5-HT release were sig-
nificantly increased at 10minutes after ischemia in rat nucleus
accumbens [31]. However, the DA release was decreased in
the nucleus accumbens and cortex of rat bilateral vertebral
arteries [32]. Monoamines like DA, NE, and 5-HT do not
share the same behavior changes in different cerebral areas,
but they are related to free radical production, excitatory
cellular toxicity, and cell death [33].

4.4. Lipids. Lipid metabolites for cerebral ischemia are very
important and getting more attention. MALDI-MS imaging
was used to visualize the spatial distribution and concentra-
tions of sulfatide (d18:1-C24h:0), phosphatidylcholine (PCs),
and LysoPCs within brain slices of MCAO rats [34, 35].
In clinical metabolomics research, the following six free
lipids in CSF were significantly increased: myristic acid,
docosahexaenoic acid (DHA), arachidonic acid, linoleic acid,
palmitic acid, and oleic acid. Of these, arachidonic acid levels
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Table 3: Nucleic acids metabolites in cerebral ischemia.

Metabolites Cortex Striatum Whole brain tissue Reference
UMP √ √ [23]
UDP √ √ √ [23, 27]
UDP-glucose √ √ [23]
UTP √ [27]
Uridine √ √ [23]
Uracil √ √ √ [23, 27]
Guanosine √ √ [23]
GMP √ √ [23]
Cytidine √ √ [23]
CDP-choline √ √ [23]
CMP √ √ [23]
ATP √ √ √ [23]
AMP √ √ [23]
ADP √ √ [23]
Ribose 5-phosphate √ √ [23]
Neu5Ac √ √ [23]
Xanthine √ √ √ [23, 27]
Pseudouridine √ √ [23]
PE √ √ [23]
PEP √ √ [23]
UMP: uridine monophosphate; UDP: uridine diphosphate; UTP: uridine-5󸀠-triphosphate; GMP: guanosine 5󸀠-phosphate; CDP-choline: cytidine 5󸀠-
diphosphocholine; CMP: cytidine-5󸀠-monophosphate; ATP: adenosine 5󸀠-triphosphate; AMP: adenosine 5󸀠-monophosphate; ADP: adenosine 5󸀠-diphosphate;
Neu5Ac: N-acetylneuraminate; PE: phosphoethanolamine; PEP: phosphoenolpyruvate.

changed most significantly. These results indicated that cere-
bral ischemia was related to the metabolism of arachidonic
acid and DHA, as well as phospholipase activation [36]. It
was also reported that, in the first fewminutes after ischemia,
monounsaturated fatty acids (MUFAs) began to accumulate
and continued to increase over hours and days. Furthermore,
there was a particularly high increase of MUFAs in the
CA1 area of the hippocampus [37–43]. A similar result of
increasing abundance of LPC 16:0, LPC 18:0, LPC 18:1, PC
34:0, PC 36:1, and PC40:6was stated byMALDI-MSprofiling
research [35]. Similar to MUFAs, some polyunsaturated fatty
acids (PUFAs) like leukotriene C4 and prostaglandin E2 have
a fast increase in early periods of ischemia/reperfusion [44].
In addition to mediating multiple important processes in
cerebral ischemia, lipids are also involved in the development
of Alzheimer’s disease (AD), Parkinson’s disease (PD), and
Niemann-Pick disease [45, 46]. Currently, lipidomics and
sterolomics have been used in AD research, independent of
metabolomics [47]. Lipidomics is a powerful technique that
can also be applied in cerebral ischemia research [48, 49].

4.5. Other Metabolites. 52 of the 120 metabolites altered in
cerebral ischemia are basic metabolites frommany important
basal metabolic pathways (Table 5). Most of these basic
metabolites are organic acids. Some examples are succinate,
citrate, malate, cis-aconitic acid, and malonic acid, all of
which are TCA pathway intermediates. Wang et al. detected
citrate and malonic acid accumulation in serum at 0.5 and 3
hours after ischemia, while succinate levels decreased at 24
hours after ischemia [50]. Similar to Wang et al., Irie et al.

detected citrate, malate, and cis-aconitic acid accumulation
in striatum at 3 hours after ischemia [23]. A satisfying expla-
nation for this is that some TCA-related enzymes like aconi-
tase and oxoglutarate dehydrogenase are inhibited, causing
cycle suppression and subsequent intermediate accumulation
(except succinate) [47]. As for lactate and pyruvate, they are
significantly increased after ischemia, indicating that local
cerebral ischemia enhances anaerobicmetabolism [22, 27, 29,
39, 51–53].

Many basic metabolites, such as UDP, CDP-choline,
glucose-6-phosphate (G6p), and UDP-Glucose, participate
in biomembrane synthesis. After ischemia, these levels
are reduced in cortex and in human acute lymphoblastic
leukemia Jurkat cells, which is likely related to the cell
membrane damage caused by ischemia [20, 34].

4.6. Summary. In early studies of cerebral ischemia, re-
searchers usually prepared whole brain tissue homogenates.
Results from these studies indicated the average level of
metabolites in the whole brain. Unfortunately, the expression
of individual metabolites in different cerebral areas is distinct
[52, 54]. For instance, Macr̀ı et al. found that alanine levels
are reduced in the hippocampus and yet remain stable in the
cortex [55].Used as an index for ischemia evaluation, the ratio
of choline to creatine changes differently inmales and females
and also in different cerebral areas [56–58]. Therefore, in
cerebral ischemia metabolomics research, the influence of
both spatial and temporal issues should be fully considered
in biomarker discovery. Samples should be restricted to
specific cerebral areas to ensure the accuracy of identified
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Table 6: Top 10 relational pathway list (𝑝 < 0.01).

Label 𝑝 value Adjusted 𝑝 value In background In set In set/in background%
Metabolic pathways 5.51𝐸 − 13 4.24𝐸 − 11 1455 61 4.2
Citrate cycle (TCA cycle) 4.39𝐸 − 09 1.69𝐸 − 07 20 8 40.0
Pyrimidine metabolism 4.45𝐸 − 07 1.14𝐸 − 05 59 10 16.9
Tyrosine metabolism 4.99𝐸 − 06 8.56𝐸 − 05 76 10 13.2
Parkinson’s disease 5.56𝐸 − 06 8.56𝐸 − 05 13 5 38.5
Glycine, serine, and threonine metabolism 9.36𝐸 − 06 1.12𝐸 − 04 49 8 16.3
Alanine, aspartate, and glutamate metabolism 1.01𝐸 − 05 1.12𝐸 − 04 24 6 25.0
Oxidative phosphorylation 1.79𝐸 − 05 1.64𝐸 − 04 16 5 31.3
Neuroactive ligand-receptor interaction 1.91𝐸 − 05 1.64𝐸 − 04 128 15 11.7
Butanoate metabolism 2.21𝐸 − 05 1.70𝐸 − 04 40 7 17.5

biomarkers. With the help of MALDI-MS imaging, we can
acquire differentmetabolite concentrations from each area by
spatial localized scans of brain tissue slices [34, 59].

5. Functional Enrichment Analyses of Altered
Metabolites in Cerebral Ischemia

We used the Metabolite Biological Role (MBRole) website
to analyze the enrichment of pathways of the 120 altered
metabolites in cerebral ischemia [60].Then, we set the global
metabolites of rats from the KEGG database as background
and identified 25 pathways related to cerebral ischemia when
the p value was set at 0.01. These pathways contained 80
of the 120 metabolites, and isomers were counted as two
metabolites. The rest of 13 metabolites lacked pathway anno-
tation in the KEGG, and 27 metabolites were not recorded
in the KEGG (supplementary table). Table 6 lists the top 10
pathways ranked by adjusted p values.These data indicate that
the biomarkers of rat cerebral ischemia are mainly related to
pathways like the TCA cycle, pyrimidine metabolism, tyro-
sinemetabolism, oxidative phosphorylation, and neuroactive
ligand-receptor interaction. Based on the pathway enrich-
ment analyses and related information in theKEGGdatabase,
we constructed a metabolic network of rat cerebral ischemia
(Figure 1). This metabolic network centers on the TCA
cycle, surrounded by tyrosine metabolism, alanine, aspartate
and glutamate metabolism, pyrimidine metabolism, and
pyridine metabolism. It contains 53 of the 120 metabolites.
The network only represents the relationships among altered
metabolites. Due to variance in many factors like exact area
of sampling, time of sampling, and the models applied, the
dynamic behaviors of eachmetabolite were not considered in
the construction of this network.

In addition, three important pathways including Parkin-
son’s disease, oxidative phosphorylation, and neuroactive
ligand-receptor interaction had either relatively distant rela-
tionships with others or lacked supportive literature. Conse-
quently, they were not included in the basic network.

Parkinson’s disease is a progressive neurodegenerative
movement disorder that is mainly caused by nigrostriatal
dopaminergic neuron death [61]. Currently, there are 13
small molecules reported to participate in the pathogenesis
of PD according to KEGG (ATP, ADP, orthophosphate,

diphosphate, AMP, hydrogen peroxide, L-tyrosine, ade-
nosine, 3,4-dihydroxy-L-phenylalanine, 3󸀠,5󸀠-cyclic AMP,
superoxide anion, dopamine, 1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine, rotenone, and 1-methyl-4-phenylpyridi-
nium). Five cerebral ischemia biomarkers are involved in the
PD pathway: ATP, AMP, ADP, tyrosine, and dopamine. The
results of pathway enrichment analyses indicate a relationship
between cerebral ischemia and PD pathogenesis.

Oxidative phosphorylation is an essential energy meta-
bolism pathway occurring in mitochondria. This pathway
contains 16 metabolites in total. Fumarate, succinate, ADP,
ATP, and NAD+ were enriched and are considered to be the
biomarkers most related to energy metabolism. All of these
aremembers of the electron transfer chain.NADH is oxidized
to NAD+ by dehydrogenase and simultaneously releases an
electron. The transformation of succinate to fumarate is part
of the electron transfer chain and the TCA cycle. Previous
research reported that the intracellular ATP/ADP ratio was
very high in cerebral ischemia [62, 63]. The ratios of ATP
to ADP and NADH to NAD+ may be cerebral ischemia
biomarkers.

Neuroactive ligand-receptor interaction is a signal trans-
duction molecular pathway that plays a key role in neuro-
transmitter release. 14 of the altered metabolites in cerebral
ischemia are components of this pathway: dopamine, sero-
tonin, norepinephrine, ATP, ADP, UTP, UDP, GABA, glu-
tamate, N-acetylaspartylglutamate, taurine, glycine, homo-
cysteine, and alanine. Their involvement proves that altered
mechanisms of neuroactive agents are associated with this
pathway.

6. Conclusion and Discussion

In metabolomics research, the identification of metabolites
is truly an arduous task. The existence of isomers, as well as
overlapping peaks in NMR profiles, makes it difficult to
identify specific compounds based on individualMS orNMR
information [97]. For the MS technique, the present strategy
is to upgrade the working resolution to improve com-
pound composition accuracy and then verify the com-
pounds by secondary-MS of the pyrolysis fragments. As for
NMR, common strategies applied to identify complicated
compounds include increasing the magnetic field intensity
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Figure 1: Metabolic network of changed metabolites in cerebral ischemia. Bold type: metabolites already tested in rat. Gray type: metabolites
not yet tested in rat.

and use of multiple-nuclear NMR (1H, 13C, 15N, etc.)
or multiple-dimension NMR editing (2D-COSY, NOESY,
TOCSY, HSQC, etc.) [98–100]. The list of 120 currently
known metabolites summarized in this paper provides
an informative reference for quickly identifying cerebral
ischemia metabolites.

Our explanation for the pathways found by functional
enrichment analyses in cerebral ischemia will provide useful
information for elucidating the pathogenesis of cerebral
ischemia. The metabolic network we constructed will be
useful in selectingmolecular targets and clarifying themolec-
ular mechanisms of cerebral ischemia. It should be noted
that, due to the technical level of analytical instruments,
current metabolomics technologies are not really global and
not every metabolite can be accurately measured. In every
piece of research, analytical instrument types, sample types,
sampling time, and researcher skills all may influence the
results of metabolomics study and the obtained biomarkers.
So the enrichment analysis based on themetabolites from the
literature will certainly have biases. However, up to now there
are no papers summarizing themetabolic changes in cerebral
ischemia nor any related databases. Our review will provide
useful information for future research in this field.
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