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I take thee to my weddyd wyf, to have and to hold fro thys day forwarde, for 

better for wors, for richer for porer, in sikenesse and in helthe, tyl deth us de-

parte, yf holy Chyrche wyl it ordeyne; and thereto I plyght the my trouthe.’ The 

Sarum Rite Saint Osmund, Bishop of Salisbury, England, 11th century

Until Death Do Us Part (Japanese Manga:  Hep-

burn: Shi ga Futari wo Wakatsu made

 

Inflammation, Necrosis and Cancer

In sickness and in health, both scheduled (apoptotic) and un-

scheduled (necrotic, necroptotic, ferroptotic etc.) cell death, arising 

naturally or subsequent to disease, release factors which can pro-

mote chronic inflammation. Cancer is just as fundamentally a dis-

order of cell death as much as it is a disorder associated with prolif-

eration, in almost half of individuals causing their death. Chronic 

infection and inflammation contributes to at least 25% of all cancer 

cases worldwide [1]. Autoimmunity, persistence of pathogens, and 

cancer are associated with chronic inflammation. This is the patho-

logically conducive microenvironment favoring both the initiation 

and progression of cancer [1, 2]. Chronic inflammation promotes 

acquisition of genomic instability by enabling survival during pro-

longed exposure of tissue to endogenous mutagens, initially height-

ened apoptosis coupled with higher cellular turnover, prolonging 

autophagic survival, emergence of necrotic death, and promotion 

of neoplastic transformation. 

Indeed, an inflammatory response may not necessarily impute 

by itself a good prognosis. Both T effector cells and T regulatory 

cells are found within the tumor microenvironment, providing 

complementary roles, as well as bone marrow-derived myeloid 

progenitors [2]. These include tumor-associated macrophages and 

CD103+ dendritic cells (DCs) promoting an immune response to 

tumor [3, 4].

Summary
Tumor proliferation is concomitant with autophagy, lim-
ited apoptosis, and resultant necrosis. Necrosis is associ-
ated with the release of damage-associated molecular 
pattern molecules (DAMPs), which act as ‘danger sig-
nals’, recruiting inflammatory cells, inducing immune 
 responses, and promoting wound healing. Most of the 
current treatment strategies for cancer (chemotherapy, 
radiation therapy, hormonal therapy) promote DAMP 
 release following therapy-induced tumor death by 
necroptosis and necrosis. Myeloid cells (monocytes, 
dendritic cells (DCs), and granulocytes), as well as mes-
enchymal stromal cells (MSCs) belong to the early im-
migrants in response to unscheduled cell death, initiat-
ing and modulating the subsequent inflammatory re-
sponse. Responding to DAMPs, MSCs, and DCs promote 
an immunosuppressive milieu, while eosinophils induce 
oxidative conditions limiting the biologic activity of 
DAMPs over time and distance. Regulatory T cells are 
strongly affected by pattern recognition receptor signal-
ing in the tumor microenvironment and limit immune 
reactivity coordinately with myeloid-derived suppressor 
cells. Means to ‘aerobically’ oxidize DAMPs provide a 
novel strategy for limiting tumor progression. The pre-
sent article summarizes our current understanding of the 
impact of necrosis on the tumor microenvironment and 
the influence of oxidative conditions found within this 
setting.
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The production and consumption of released factors, including 

chemokines and cytokines, within stressed tissues as well as its 

chronicity may promote tumor death or progression.

The mammalian immune system is reciprocally composed of dy-

namic networks of immune cells and non-immune cells, enabling 

metabolic homeostasis, timely eradication of effete cells, and protec-

tion against pathogens. Simultaneous tolerance towards  self-antigens 

and, conversely, reactivity to new or occult antigens occurs in set-

tings of tissue damage and wound healing. When  tissue homeostasis 

is perturbed, mediators such as cytokines, chemokines, matrix re-

modeling proteases, reactive oxygen species (ROS), and bioactive 

mediators such as histamine induce mobilization and infiltration of 

leukocytes and mesenchymal stromal cells (MSCs) into damaged tis-

sue. Indeed, oxidative stress, in addition to its ability to recruit in-

flammatory cells, can limit metastasis of tumors [5, 6]. Subsequently, 

the complementary processes of inflammation and wound healing 

begin. Inflammatory immune response focuses on the elimination of 

pathogens responsible for cell damage and induces a rather cytotoxic 

environment while wound healing is characterized by phagocytosis 

of cell debris and apoptotic cells, immune suppression, enabling re-

epithelialization and synthesis of extracellular matrix (ECM), resolv-

ing inflammation and restoring tissue homeostasis.

The development of tumors over many years typically leads to 

reciprocal alterations in the host and the tumor, enabling tumor 

growth, paradoxically in the setting of substantial necrosis and 

(chronic) inflammation. In these circumstances, genomically un-

stable/neoplastic cells harness collaborative capabilities (see below) 

of immune cells and local non-mutated but injured tissues to favor 

their own survival and proliferation, in part by releasing immune 

suppressive factors such as transforming growth factor β (TGF-β), 

IL-10, and kynurenine. Tumor cells escaping eradication induce 

release of tissue healing factors promoting neo-vascularization and 

resultant nutrient supply.

Wound healing and tumor stroma formation share many impor-

tant properties, including accumulation and activation of leukocytes 

and MSCs in response to released endogenous ‘danger signals’ from 

injured/necrotic tissue. Damage-associated molecule pattern mole-

cules (DAMPs) are factors found in all stressed cells, including S100 

proteins, uric acid, ATP, hyaluronan, heat shock proteins (HSPs), 

heparan, syndecan, versican, cold-inducible RNA-binding protein 

(CIRP) [7–10], and high-mobility group box 1 (HMGB1) [11–16].

Necrosis Is a Poor Prognostic Factor in the Tumor 
Microenvironment

Regardless of the origin and site of neoplastic cells, necrotic cell 

death with subsequent release of DAMPs is a characteristic feature 

of advanced solid tumors mainly due to three conditions: 

– inadequate nutrient supply to tumor cells as a consequence of 

the imbalance between tumor growth and angiogenesis, 

– the host’s cytotoxic immune response to the tumor, and 

– downregulation of programmed (apoptotic) cell death by the 

tumor itself. 

Released DAMPs can critically impact the tumor microenviron-

ment by enhancing wound healing processes such as angiogenesis and 

stroma formation or by influencing the immune response [17–19]. 

Tumors ‘addicted to death’ [20], stressed ‘internally’ with 

genomic stress, release DAMPs sustaining conditions associated 

with chronic inflammation and cell proliferation.

When evaluating a tumor, it is important to assess three ele-

ments within its microenvironment consisting of: 

– Factors released by 

 • tumor cells themselves (including DAMPs) and/or 

 • tumor-associated cells consisting of MSCs and fibroblasts, 

 epithelial and endothelial cells, as well as infiltrating leukocytes.

– The quantity and quality of tumor-associated leukocytes. 

– The state of activation of tumor and associated cells.

Eosinophilic granulocytes (Eos) and MSCs belong to the subset 

of cells often found in the setting of wound healing, chronic in-

flammation, and within the tumor microenvironment. Their pres-

ence is associated with the prognosis of cancer patients (see below). 

DAMPs including HMGB1 and S100A4 from necrotic cells act as 

chemoattractants and survival/proliferation factors for both Eos 

and MSCs [21, 22]. Additionally, MSCs and DCs pulsed with 

S100A4 induce regulatory T cells (Tregs) [19, 23]. Tregs also re-

spond to and are promoted by DAMPs (see below)

Mesenchymal Stromal Cells

Biology of MSCs

Multipotent MSCs, unlike hematopoietic stem cells, originate 

within the stroma of the bone marrow. They lack typical hemat-

opoietic cell surface markers, including CD34 and CD45, and have 

the potential to differentiate into several types of tissue cells, such 

as adipocytes, osteoblasts, and chondrocytes [24]. 

MSCs were first identified in the 1960s and were regarded as 

colony-forming fibroblasts. Later, they were shown to have the 

ability to be induced to differentiate according to external stimuli. 

Although MSCs reside predominantly in the bone marrow, they 

are also distributed throughout many other tissues, where they are 

thought to serve as local sources of dormant (quiescent) stem cells 

[25] contributing to tissue healing. The contributions of MSCs to 

tissue formation become apparent in cases of tissue remodeling 

following injury or chronic inflammation. These conditions are 

typically accompanied by mobilization of multipotent MSCs and 

their subsequent recruitment to the site of damage [25]. MSCs con-

tribute to the formation of fibrous scars following injury [26] and, 

in the setting of wound healing, can act as ‘nurse-like cells’ [27]. 

This is accomplished by:

– scavenging ROS [28] which are provided by inflammatory cells 

migrating into sites of damage [29, 30],

– paracrine mechanisms promoting cell proliferation and induc-

ing angiogenesis, and 

– induction of local immunosuppression thus protecting regener-

ating tissue from cytotoxic collateral damage caused by acti-

vated local leukocytes ‘sensing damage and danger’ [29, 30].
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In the setting of wound healing, MSCs can act as immune regu-

latory cells by releasing IL-10 or by producing the enzyme in-

doleamine-dioxygenase (IDO) associated with induction of toler-

ance and a shift from Th1 to Th2 immune response [31]. Because 

of their immunosuppressive capacities, MSCs have been applied in 

clinical trials to treat:

– autoimmune diseases including ulcerative colitis,

– graft-versus-host disease (GvHD) following transplantation of 

hematopoietic stem cells,

– nonhealing wounds due to local aseptic chronic inflammation.

Immunosuppressive MSCs Are Recruited to  
Necrotic Sites within Tumors

MSCs within tumor tissue influence the biological behavior of tu-

mors as well as the host’s immune response to them. Systemically 

transferred MSCs can migrate into colon carcinomas [32]. In breast 

cancer, MSCs promote tumor metastasis [33]. We could show that 

active DAMPs from necrotic cells are capable of enhancing prolifer-

ation and chemotaxis of MSCs in vitro [22] while oxidized DAMPs 

lose their stimulatory capacities on MSCs [22, 34]. Uric acid, 

HMGB1, and S100A4 act as chemoattractants and proliferation-pro-

moting factor to MSCs [22]. Moreover, in the presence of S100A4, 

MSCs induce CD4+ CD25+ FoxP3+ Tregs expressing IL-10 and 

IDO [23]. Interestingly, HMGB1 and S100A4 are both sensitive to 

oxidation and need reducing conditions for preserving their biologic 

activities [35, 36]. Consistently, uric acid (acting as an antioxidant) 

protects S100A4 from oxidation (thus inactivation) showing a syn-

ergistic chemotactic effect when combined with S100A4 [23]. Con-

sidering the clinical data demonstrating that the presence of MSCs 

within the tumor microenvironment is rather disadvantageous for 

cancer patients [33], induction of oxidative conditions within tumor 

tissue could significantly impact the biology and response of MSCs 

to DAMPs and thus provide a therapeutic option.

Stranger and Danger Models (Signal 0s in the  
Immune Response)

Three decades ago, Charles Janeway [37] proposed a conceptual 

working frame model of the immune system: it protected against in-

fectious pathogens rather than other innocuous foreign antigens, and 

this discrimination between infectious and innocuous antigens was 

achieved by antigen-presenting cells (APCs) through recognition of 

pathogen-associated molecular patterns (PAMPs) by their interaction 

with pattern recognition receptors. The significance of this ‘stranger 

model’ concept has been well appreciated with Toll-like receptors 

(TLRs) identified successively, which collectively have been termed 

pattern recognition receptors (PRRs). Janeway’s model failed to ex-

plain initiation of sterile inflammatory responses to tumors, tissue 

damage or injury including myocardial infarction and cerebrovascu-

lar accidents, tissue transplants, allergy and in autoimmune diseases 

(although microorganisms might contribute to the course of re-

sponses in some cases). This inconformity led Polly Matzinger [29] to 

ponder and advance the ‘danger hypothesis’ in 1994. She postulated 

that the immune system not only responds to pathogens but also to 

endogenous signals arising from nonphysiological cell stress, damage, 

and death. In this model, dying cells release endogenous danger sig-

nals (DAMPs). This so-called ‘sterile inflammation’ event initiated by 

DAMPs (Signal 0) facilitates an early innate and adaptive immune re-

sponse (Signal 1–4) through activation of APCs in response to injury, 

trauma, ischemia, cancer, and other tissue damage, regardless of the 

presence of overt pathogenic infection [38]. It is now well established 

that necrosis, pyroptosis (inflammatory cell death), necroptosis, fer-

roptosis, late apoptosis, and autophagy would lead to DAMP release 

[39], at least under certain circumstances if not all. Notably, many re-

ceptors are shared between DAMPs and PAMPs, including members 

of TLRs, NOD-like receptors (NLRs), AIM2-like receptors (ALRs), 

RIG-I-like receptors (RLRs) and others, providing colloquy between 

nonmicrobial and microbial inflammatory responses.

In response to DAMPs and PAMPs, APCs are central to initiat-

ing the immune responses and modifying the magnitude of the on-

going response. The most efficient APCs are professional DCs that 

are pivotal for recognition of antigens/immunogens and manipula-

tion of a series of responses. With such capacities, DCs are indis-

pensable for how immunity is directed and enabled [40]. As pro-

fessional sentinels, DCs continuously sense and translate the sur-

rounding cues, arising from infection, tissue damage or injury and 

cytokines, orchestrating a repertoire of immune responses in the 

settings of various physiological and pathological conditions. 

Hence, improved understanding of how DCs respond to DAMPs 

may allow for detailed pathways for immune optimization and new 

approaches to numerous diseases, including cancer. 

Dendritic Cells 

DC Maturation 

The immune system is classically separated into innate and 

adaptive (acquired) immunity. The distinctive feature of innate im-

munity is its rapid response to a limited repertoire of substrates, in-

cluding PAMPs and DAMPs, which is promoted and realized by 

innate myeloid and lymphoid cells. In contrast, adaptive immunity 

engages two primary types of lymphocytes (T and B cells) encoun-

tering antigen and clonally expressing antigen-specific receptors, 

promoted by VDJC somatic recombination. The transition from in-

nate to adaptive immunity involves DC capture and presentation of 

antigens to naive T and B cells to promote their effector function.

Schuler and Steinman [41] first identified DC function in vitro 

in 1985, with evidence that cultured epidermal Langerhans cells 

(LCs) could drive T-cell clonal expansion more efficiently than 

freshly isolated LCs. DCs are capable of transiting from immature, 

antigen-capturing and preserving cells to mature, antigen-present-

ing cells. ‘Maturation’ is preferential to ‘activation’ because the for-

mer represents a process of large-scale differentiation with gradual 

gain of function, whereas the latter typically refers to on-off or lim-

ited arrays of events [40].
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DC maturation plays an essential role in dictating the fate of T 

cells and the subsequent adaptive immunity. Encountering envi-

ronmental changes, DCs respond quickly and differentiate to ma-

ture cells capable of eliciting T-cell acquired immunity. Hence, 

maturation indicates a comprehensive differentiation and altera-

tion, involving redistribution of major histocompatibility complex 

(MHC) complex to the surface, acquisition of antigen presenta-

tion/cross-presentation capability, up-regulation of surface co-

stimulatory molecules, secretion of cytokines and chemokines, in-

creased capacity to migrate into lymph nodes, and morphological 

changes/cytoskeleton reconstitution. 

Characteristics of Tumor-Associated-DCs (TA-DCs)

DCs are found in the microenvironment of several types of can-

cer and confer a better prognosis [42–47]. DAMPs and tumor-as-

sociated cytokines including VEGF, IL-10, and prostaglandin E2 

(PGE2) can profoundly limit the ability of DCs to promote a TH1 

response [19, 48]. TA-DCs are immunosuppressive and can also 

induce regulatory T-cell expansion [19, 46, 49]. Besides their im-

munosuppressive nature, TA-DCs are able to produce angiogenic 

factors promoting tumor survival, progression, and metastasis [42, 

47, 50]. Additionally, DCs cultured in the presence of tumor fac-

tors can lose CD14/CD45 and express endothelial markers includ-

ing CD31, CD34, von Willebrand factor, vascular endothelial 

growth factor receptor 2 (VEGFR-2), and VE-cadherin [51–55]. 

The Tumor Microenvironment Limits the Efficacy of DC 

Vaccination

TA-DCs are usually described as immature cells with low ex-

pression of co-stimulatory molecules and incapable of inducing 

robust antitumor immune responses [55–59]. Ex vivo matured 

DCs loaded with tumor antigens are trapped within the tumor mi-

croenvironment and thus incapable of migrating into regional 

lymph nodes [60]. Current strategies to circumvent the immuno-

suppressive influence of the tumor microenvironment target either 

local bioactive factors such as cytokines and chemokines, or tu-

mor-associated cells including myeloid-derived suppressor cells 

and Tregs. Indeed, depletion of Tregs before vaccination with car-

cinoembryonic antigen (CEA) pulsed DCs can enhance specific T-

cell response to CEA [61]. Similar effects of Treg depletion could 

be observed in patients with metastatic renal cell carcinomas [62]. 

Interestingly, depletion of TA-DCs from the tumor microenvi-

ronment of ovarian cancer boost antitumor immune responses in a 

murine model [63]. Thus, depletion of these cells prior to DC-

based vaccination may also induce effective antitumor immune re-

sponses. The group from the University of Pennsylvania and Uni-

versity of Lausanne found that oxidation of antigen was critically 

important for delivery of immunogenic antigen from tumors to 

immunogenic DCs [64]. This is consistent with earlier observa-

tions that oxidation of HMGB1 was critical for conferring toler-

ance to antigens delivered by tolerogenic DCs [36].

DAMPs critically impact the tumor microenvironment by en-

hancing angiogenesis or influencing the immune response [20, 65]. 

Current studies and therapeutic strategies addressing the immuno-

suppressive nature of the tumor microenvironment focus on cy-

tokines and chemokines released from tumor or tumor-associated 

cells. We have recently shown that necrotic material (DAMPs) en-

hance the chemotaxis and proliferation of MSCs [22] with potent 

immune regulatory capacity. DAMPs, including S100A4, induce 

regulatory DCs [19]. S100A4 promotes metastasis, stimulates an-

giogenesis, induces cell motility, and increases expression of matrix 

metalloproteinases [66–69] and is associated with poor prognosis 

of cancer patients [70, 71–73]. S100A4 loses its stimulatory capac-

ity following oxidation. Given the hypoxic and reducing conditions 

prevalent within the tumor microenvironment, tumor-associated 

S100A4 is protected from oxidation. The stimulatory effect of 

DAMPs on MSCs was abrogated following oxidation of these fac-

tors [22]. Providing oxidizing conditions could abrogate the im-

munosuppressive activity of DAMPs on tumor-associated MSCs 

and DCs.

Eosinophilic Granulocytes 

Biology of Eosinophils

Compartments with abundant resident populations of eosino-

philic granulocytes (Eos) include tissues with substantial cellular 

turnover and regenerative capacity such as the bone marrow, the 

primary and secondary lymphoid tissues (e.g., spleen, lymph 

nodes, and thymus) [74], the uterus [75], and nearly the entire gas-

trointestinal tract (with the exception of the esophagus) [74, 76]. 

This linkage with cell turnover and tissue repair also may explain 

the presence of Eos at sites of wound repair [77] and the common-

ality of an Eos infiltrate among solid tumors [78]. 

Eos contain and can release several cationic proteins, which in 

addition to their cytotoxic character are also potentially important 

for tissue remodeling and clearance of cellular debris [79]. Eos are 

falsely thought to be responsible for the cell death and tissue dam-

age commonly observed in disease states associated with increased 

numbers and tissue-specific recruitment [80]. 

Eos mediate their effects via at least three independent mecha-

nisms in addition to the release of cytotoxic granule proteins. 

These mechanisms enable Eos to modulate the intensity of inflam-

mation: i) Eos are potent regulators of local inflammatory re-

sponses [81]; ii) recruited Eos are a source of ROS [82] and estab-

lished small molecule lipid mediators of inflammation. In particu-

lar, Eos generate cysteinyl leukotrienes (i.e., LTC4, LTD4, LTE4, 

and LTB4) [83, 84], 5-HETE [85], PGE2 [86], and platelet-activat-

ing factor (PAF) [87]. The capability of cysteinyl leukotrienes to 

mediate primary inflammatory responses such as edema [88], the 

recruitment of other pro-inflammatory leukocytes [89], and the in-

duction of tissue histopathology [90] uniquely positions these mol-

ecules as mediators of inflammation. iii) Eos are a prodigious 

source of cytokines associated with tissue repair and remodeling 

(see table 2 in [17]).

A growing body of literature suggests that both Eos-mediated 

immune regulation and tissue repair/remodeling in particular may 

represent important non-overlapping Eos effector functions [79].
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In addition to their capacity to synthesize and release a variety 

of immune regulatory molecules [17], some studies have suggested 

that Eos may function as APCs [91–96]. In the presence of exoge-

nous CpG-DNA, a PAMP, human eosinophils enhance maturation 

of autologous DCs [81]. While Eos-derived neurotoxin did not 

contribute to the described effect, DCs internalized MBP, released 

from CpG-stimulated Eos [81]. Thus, induction of DC maturation 

by Eos may be due to released MBP, in response to necrosis.

Eos may also affect local T-cell responses by modulating the bal-

ance between Th1 and Th2 immune responses (e.g., through Eos-

derived IDO production of kynurenine [31]). Importantly, IDO is 

essential for the induction of tolerance by tissue-recruited T cells 

[31, 97, 98]. Thus, similar to other Eos-mediated immune suppres-

sive activities (e.g., the potential induction of Tregs through TGF-β 

production [99]), Eos-derived IDO may also play a crucial role in 

immune suppression. Eos are capable of both synthesizing and re-

leasing cytokines characterized as either Th1 (e.g., IFN-γ), Th2 (e.g., 

IL-4, IL-5, and IL-13), Th3 (TGF-β, IL-10), and possibly Th4 (IL-17 

[100–102] also known as Th17) cytokines, or acute phase responses 

(e.g., TNF-α, IL-1, IL-6, and VEGF) (see tables 1 and 2 in [17])

Eosinophils Are Recruited to Necrotic Sites in Cancer

Neoplastic tissues undergoing necrosis activate Eos and induce 

their migration in vitro [21, 103] and in vivo [103, 104]. A quanti-

tative assessment of Eos recruitment/accumulation in solid tumors 

showed that the tissue eosinophilia is apparently mediated by one 

or more factors released directly from necrotic tissues within the 

tumor [79, 105]. Studies linking Eos recruitment and activations 

with cell death and necrosis abound. In particular, Stenfeldt and 

colleagues [103] discovered that damaged epithelial cell lines (e.g., 

genital (HeLa), respiratory (HEp-2), and intestinal (HT29) cells) 

induce Eos migration, the release of putative tissue-damaging fac-

tors such as Eos secondary granule proteins, and secretion of Eos-

derived pro-fibrotic factors such as fibroblast growth factors 

(FGF-1 and -2) and TGF-β1. In a B16-F10 melanoma murine 

model, eosinophilic infiltration of tumors occurred from the ear-

liest palpable stages with significant accumulation only within the 

necrotic center and the outer capsular regions [105]. Tumor-asso-

ciated tissue eosinophilia or blood eosinophilia of patients with 

gastrointestinal cancers is a highly significant and favorable prog-

nostic factor [17, 106–110]. 

The two most dominant effector functions ascribed to Eos re-

sults from the production of ROS (due to their oxidative burst) and 

the release of cationic granule proteins (following degranulation). 

Indeed, DAMPs not only promote Eos’ survival but also induce 

their degranulation (release of MBP and EPO) and their oxidative 

burst in a dose-dependent manner [21]. Interestingly the oxidative 

burst of Eos is the most sensitive detectable response to necrosis-

associated factors (DAMPs) regardless of the origin/neoplastic 

transformation of necrotic cells [21].

Compared with other leukocytes, Eos have the highest capacity 

to produce ROS with their capacity being 10- to 100-fold greater 

than neutrophils [111–113]. The stimulatory effect of necrotic ma-

terial is abolished following oxidation [21, 22] suggesting a possible 

role for Eos capable of oxidizing necrotic cell debris. Dose-depend-

ent release of MBP (degranulation) follows stimulation of Eos with 

necrotic material [21]. MBP also induces neutrophil O2 production 

[114, 115] which may also contribute to oxidation of necrotic mate-

rial. MBP serves as a factor amplifying [79] local ‘danger signals’ 

released from stressed cells. Additionally, we assessed the dose-de-

pendent release of EPO following stimulation with DAMPs [21]. 

EPO acts as an enzyme catalyzing the oxidation of chloride, bro-

mide, and thiocyanate to their respective hypohalous acids with 

even higher oxidative capacity than peroxide itself, which is consist-

ent with the oxidative role of Eos within stressed/necrotic tissues.

We propose that the response to necrotic material is a funda-

mental mechanism that promotes eosinophil trafficking into 

stressed/necrotic tissues such as that found in cancer and in 

chronic inflammatory diseases including asthma or ulcerative coli-

tis. Production of ROS by Eos encountering necrotic/stressed cells 

induces oxidation and thus inactivation of DAMPs.

Eos are not only able to eliminate effete and damaged tissue but 

are also attracted and activated by stressed and damaged cells. It is 

likely that stressed cells attract and activate Eos by expression of 

molecules such as MHC class I chain-related A (MIC-A), MIC-B, 

Letal [116] as well as UL16 binding proteins (ULBP). These stress-

associated molecules serve as ligands for NKG2D, described first 

on NK cells [117] and subsequently on eotaxin-activated Eos [118] 

and T cells [119]. Thus, tumor-associated Eos appear to have at 

least two dominant non-overlapping activities: i) destructive effec-

tor functions which may limit tumor growth and cause recruit-

ment and activation of other leukocytes and ii) immune regulative 

and remodeling activities which suppress immune response and 

release of cytokines, promoting wound healing and resultant 

tumor proliferation.

Consistent with the hypothesis that DAMPs initiate innate im-

mune cell activation when encountering microbes or parasites 

[30], Eos are often first responders to tissue damage and likely me-

diate some aspects of tissue remodeling and repair. Interestingly, 

Eos infiltration is used by some groups as a poor prognostic factor 

associated with transplant rejection [120, 121]. 

Eosinophils Are Sentinels of Effective Tumor Immunotherapy 

Eos are frequently observed within regressing tumors in the set-

ting of immunotherapy with IL-2 [122, 123], IL-4 [124, 125], GM-

CSF [126], and antibodies to CTLA-4, but their appearance has 

been an interesting sidenote the significance of which has remained 

largely unknown. In particular, the anti-tumor effects of successful 

cytokine therapy of cancer with IL-2 had been associated with the 

identification of degranulating Eos within the tumor [122, 123], 

suggesting that Eos effector functions (e.g., direct [122] or anti-

body-dependent [127] tumor cell lysis or the immune regulative 

capacity of Eos modulating the local tumor microenvironment) 

may play a role in the anti-cancer activities mediated by systemic 

IL-2 administration. However, despite the promises of these poten-

tial Eos-mediated anti-tumor activities, the presence of Eos has not 

been found to be prognostically important for high-dose IL-2-

treated patients.
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Murine studies suggesting a link between Eos and the therapeu-

tic value of the anti-tumor responses associated with IL-4 adminis-

tration [125, 128] have also led to clinical trials evaluating these re-

sponses in cancer patients. In a phase I clinical trial of IL-4 admin-

istered to cancer patients, Sosman and colleagues [124] showed 

that IL-4 therapy induced systemic Eos degranulation with in-

creases in serum and urine MBP levels. The increase in serum MBP 

was IL-4 dose-dependent. Unfortunately, the linkage of anti-tumor 

activities in these patients to Eos is only correlative, and – similar 

to the observations in patients following IL-2 administration – no 

definitive conclusions as to if and how Eos modulate tumor growth 

could be made so far. 

Efforts to demonstrate experimentally a role for Eos in tumor 

immunity have also been fraught with complicating variables that 

yielded qualified interpretations. Most notably, considerable ex-

citement was generated by data from the studies of Tepper and col-

leagues [125, 129, 130] which demonstrated in athymic nude mice 

that malignant cell lines transfected for constitutive expression of 

IL-4 elicited a tumor-associated macrophage and Eos infiltrate that 

led to the attenuation of tumor growth. This provoked a series of 

studies, all done with transplantable tumors (see for example [131, 

132]), in an attempt to define the cellular and molecular mecha-

nisms of this apparent IL-4-mediated anti-tumor effect. Although 

these studies have shown that even spontaneous tumors evidenced 

tumor regression associated with tumor infiltrating Eos [132], 

none of these studies has resolved the role(s) of Eos in tumor rejec-

tion reactions. 

Regulatory T Cells

Biology of Tregs

Tregs represent 4–5% of the CD4+ T cells and have a potent 

 immune regulatory capacity. They were first described in 1995 by 

Sakaguchi and colleagues [133]. Tregs comprise several subsets of 

phenotypically similar cells able to inhibit immune response to self- 

and non-self antigens through distinct mechanisms [134]. To date 

at least two Treg subsets have been recognized in humans. Natu-

rally occurring Tregs (nTregs), which originate in the thymus, me-

diate suppression via cell contact-dependent mechanisms involving 

the granzyme B/perforin or Fas/FasL pathways and con stitute a 

major Treg subset for maintaining peripheral tolerance [135]. The 

phenotypic characteristics are still a matter of debate. nTregs were 

commonly characterized by expression IL-2 receptor alpha chain 

(CD25), which is expressed on the cell surface. However, only 

CD4+ CD25high T cells are considered immunosuppressive Tregs 

[136], because this marker is also expressed on activated CD4+ T 

cells (tumor effector T cells; Teffs) at a medium expression level. 

But defining the cut-off level of CD25 expression density on Tregs 

based on the mean fluorescence intensity has not been entirely 

 reliable. Other approaches to identify and isolate nTregs are the 

 absence of Treg markers such as the IL-7 receptor, CD127, and an 

integrin-αsubunit, CD49d, that are expressed on conventional T 

cells, which have been utilized for nTregs isolation from PBMC by 

negative selection [137, 138]. The most prominent marker for iden-

tifying Tregs is the intracellular marker FOXP3, the transcription 

factor forkhead box P3, which belongs to the forkhead/winged-he-

lix family [139]. The development of nTregs  depends on FOXP3, 

and its expression is required for the ability of CD4+ T-cell popula-

tions to mediate immune suppression by  inhibiting proliferation 

and IL-2 production in Teffs. The absence of FOXP3+ nTregs re-

sults in autoimmune disease [140]. FOXP3 is expressed in other 

 immune cells including activated CD4+ lymphocytes and even in 

cancer cells [141]. Stable expression of FOXP3 in nTregs depends 

on the demethylation status of the foxp3 gene. The relevant se-

quence of the foxp3 gene is called ‘Treg-specific demethylated re-

gion’ (TSDR), which allows discriminating Tregs from activated T 

cells by sequencing [142, 143]. Nevertheless, intracellular localiza-

tion of FOXP3 in nTregs makes it unsuitable for their viable isola-

tion. Other surface molecules expressed on nTregs have been con-

sidered as cell markers able to reliably identify Tregs and allow for 

their isolation. The cytotoxic T lymphocyte antigen-4 (CTLA-4, 

CD152), the glucocorticoid-induced tumor necrosis factor 

receptor(GITR)-related protein [144]) and ICOS (CD278, inducible 

T-cell co-stimulator, CD28 superfamily co-stimulatory molecule) as 

well as Programmed-death-1 (PD-1) are all expressed on human 

Tregs, but neither is specific for nTregs [145–147].

The other major subtype of Tregs is the group of inducible or 

adaptive Tregs (iTreg), also referred to as type 1 Tregs (Tr1), which 

are induced in the periphery in response to environmental signals, 

including tumor-derived antigens, cytokines or other soluble fac-

tors, and mediate powerful suppression of Teff functions by a vari-

ety of mechanisms [148]. Tr1 mediate suppression by contact-in-

dependent mechanisms through the production of TGF-β, IL-10 

and other immunosuppressive factors. Further, iTregs can assume 

functions that either favor tumor growth by down-regulating activ-

ity of anti-tumor immune cells or inhibit tumor progression by 

suppressing inflammation, which is thought to contribute to can-

cer development [149]. Therefore, the consequences of iTreg pres-

ence and activity in cancer and precancerous inflammatory lesions 

may be profound. Their depletion may or may not be beneficial to 

cancer patients, depending on the environmental context [96].

Necrosis Promotes Treg Persistence in Cancer

The tumor orchestrates its surrounding microenvironment by 

secreting several soluble factors, including adenosine [150, 151], 

TGF-β [152], prostaglandins [153, 154], kynurenine [155, 156] and 

HMGB1 as well as other DAMPs. Tumor-induced immune toler-

ance in this environment is sustainably mediated by Tregs, which 

are strongly affected by DAMPs [157], Tumor-induced dysfunc-

tion extends to tumor antigen-specific T cells as well as innate im-

munity components such as natural killer (NK) cells and mac-

rophages [158]. The profile and severity of immune dysfunction in 

immune cells of different patients with cancer can vary and ap-

pears to be dependent on the ability of each tumor to create a 

unique immune inhibitory environment and to engineer an escape 

from immune control [159]. Furthermore, H2O2 at low concentra-

tions of about 20 μmol/l within the tumor microenvironment is 
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considered part of the immunosuppressive tumor microenviron-

ment with lymphocytes exhibiting aberrant function upon expo-

sure [160]. 

Tregs also strongly interact with other immune cells present in 

the tumor microenvironment and mediate inhibition of the respec-

tive immune cell functions [161]. In particular, several soluble fac-

tors released by Tregs (e.g., galectin-1, PGE2) may directly sup-

press [162, 163] or induce cell death (e.g., perforin, granzyme) of 

Teffs and NK cells [164]. Ectoenzymes located on the cell mem-

brane of Tregs (e.g., CD39, CD73) mediate the metabolization of 

ATP to adenosine, a potential suppressant of T cells [165]. APCs 

are functionally modulated (e.g., by IL-10, soluble TGF-β) contrib-

uting to a tolerogenic tumor milieu. TGF-β is activated by oxida-

tion and inactivated by free thiols, demonstrating the need for the 

appropriate redox microenvironment for its function [166, 167]. 

Cell-to-cell contact between Tregs and immune cells is obligatory 

for certain direct and indirect suppressive pathways. CTLA-4 and 

LAG-3 surface molecules constitutively expressed on nTregs con-

tribute to the cell-to-cell-dependent suppressive mechanisms via 

interactions with CD80 and CD86 on APCs [168]. Tregs limit Teff 

and NK cell responses by membrane-bound TGF-β as well as 

cAMP release [169]. Close interaction with APCs (e.g. via LAG-3, 

galectin) reduces their immune stimulatory capacity through at-

tenuation of co-stimulation and antigen presentation, while in-

creases their tolerizing potential [170, 171], especially by a CTLA-

4-mediated up-regulation of the enzyme IDO [172]. IDO activity 

leads to a depletion of tryptophan accompanied by an accumula-

tion of kynurenine, both with a negative impact on T cells. Tregs 

induce IDO in DCs, which catalyzes the oxidative catabolism of 

tryptophan [173]. They require IL-2 for proper function, which is 

produced by conventional T cells. Accordingly, nTregs express in-

creased levels of the high-affinity heterotrimeric receptor for IL-2 

composed of CD25, CD122, and CD132. Competitive depletion of 

available IL-2 by Tregs and the resultant starvation of activated, di-

viding T cells has been proposed as a minor suppressive mecha-

nism at minimum within the tumor microenvironment [174]. 

Lastly, Tregs alter the redox balance of T cells by inhibition of their 

supply of thiols provided by APCs mainly in form of cysteines, 

which are obligatory for sustained activation. The proliferating re-

sponse of activated T cells require glutathione (GSH), an abundant 

intracellular antioxidant [175]. The synthesis of GSH is limited by 

the availability of cysteine, and Teffs are inefficient at transporting 

cysteine [176], the predominate form of this amino acid in the ex-

tracellular milieu. Therefore, the cysteine/cystine redox couple is a 

quantitative significant determinant of the extracellular redox po-

tential, which plays a critical regulatory role in cell proliferation, 

differentiation, and apoptosis. Exhaustion of free thiol groups by a 

process similar to cytokine depletion can also produce a negative 

effect on activated T cells [177]. DCs provide molecular cysteine to 

the T cells [178], enabling a reducing microenvironment within the 

immune synapse. Tregs interfere with this process with one very 

likely mechanism being competitive consumption of thiols includ-

ing cysteine, as Tregs exhibit increased levels of intra- and extracel-

lular thiols [179].

Cancer is associated with oxidative stress mediated through en-

hanced ROS production. Malignant cells and, more importantly, 

cells recruited or induced by tumor cells within the microenviron-

ment, such as tumor-associated macrophages, activated granulo-

cytes, and myeloid-derived suppressor cells, produce significant 

amounts of ROS [180, 181]. The detrimental effect of ROS such as 

H2O2 and reactive nitrogen species such as NO on NK and T cells 

is well established and described in malignant and chronic inflam-

matory diseases [160, 182–184]. Further immature myeloid cells 

(ImC) from tumor-bearing mice are able to inhibit the Ag-specific 

response of CD8+ T cells. Inhibition of ROS in ImC completed 

 abrogated the inhibitory effect of these cells on T cells, indicating a 

ROS-dependent mechanism of suppression of cytotoxic T cells. 

Paradoxically, Treg levels can be increased in this hostile (for lym-

phocytes) milieu, indicating that Tregs can persist in this environ-

ment of oxidative stress leading to a selective enrichment of Tregs 

in the tumor microenvironment. nTregs are more resistant to oxi-

dative stress-mediated cell death compared to conventional CD4+ 

T cells from healthy individuals [185]. Tregs maintain their sup-

pressive activity even at H2O2 levels that are lethal for half of the 

conventional effector CD4+ CD25low/– T-cell population. Greater 

expression levels of surface thiols and a stronger intracellular 

 antioxidative capacity observed in Tregs may contribute to their 

reduced sensitivity to oxidative stress. 

The prototypic DAMP, HMGB1, is passively released from 

stressed and necrotic cells and is actively secreted by inflammatory 

cells. Released HMGB1 mediates the response to infection and in-

jury by binding with high affinity to several receptors, including the 

receptor for advanced glycation end products (RAGE) and TLR-2, 

TLR-4 and TLR-9, thereby promoting inflammation. The patho-

genic role of HMGB1 has been identified during inflammation-asso-

ciated cell necrosis [186] or as a means by which acute immune re-

sponses are initiated against tumor cells undergoing chemotherapy-

induced necrosis [187]. HMGB1 is a critical regulator of autophagy 

in cancer cells. Autophagy allows tumor cells to survive bioenergetic 

stress by clearing damaged cell organelles or mutant or unfolded 

proteins and generating glycolic substrates [188]. We have shown 

that HMGB1 release is associated with sustained autophagy. Moreo-

ver, the redox state of HMGB1 is critical, as exogenous delivery of 

reduced HMGB1 protein promotes autophagy while oxidized 

HMGB1 promotes apoptosis in cancer cells [189]. Oxidative stress 

occurs when the generation of ROS in a system exceeds its ability to 

neutralize and eliminate them. Compared with normal cells, both 

ROS and autophagy are altered in cancer cells. On the one hand, 

ROS can induce autophagy through several distinct mechanisms in-

volving ATG4, catalase and the mitochondrial electron transport 

chain. On the other hand, defective autophagy can increase oxida-

tive stress in tumor cells. This suggests that autophagy defects may 

increase oxidized HMGB1. Tregs, especially in cancer patients, ex-

press both HMGB1-recognizing receptors TLR4 and RAGE [190]. 

HMGB1 increased secretion of IL-10 and the suppressive capacity in 

Tregs in a RAGE-dependent manner. Furthermore, our studies re-

vealed that HMGB1 inhibited IFN-γ secretion in Teff. In summary, 

HMGB1 directly enhanced immune regulatory functions of Tregs 



Until Death Do Us Part: Necrosis and Oxidation  

Promote the Tumor Microenvironment

Transfus Med Hemother 2016;43:120–132 127

and impairs effector function of Teffs [191]. Further, we have dem-

onstrated that HMGB1 is greatly expressed in cancer cells in patients 

with head and neck cancer and with elevated HMGB1 serum levels 

[192]. HMGB1 is integral to oxidative stress and downstream apop-

tosis or survival within the tumor microenvironment. There is a 

clear association between the release of oxidized HMGB1 and in-

creased ROS production in tumor cells [36] with a subsequent acti-

vation of autophagy. Thus, ROS production in tumors not only puts 

them in a state of apoptotic resistance/autophagy but also sustains 

tolerance promoting release of HMGB1 and Tregs. 

Summary and Perspective

The inflammatory response mediated by innate effectors are 

quite sensitive to ‘internalized’ stress and unscheduled cell death, 

characteristic of cancer. In some instances, indeed the adaptive 

 immune response to tumor can enhance tumor progression by 

promoting non-apoptotic, non-autophagic (i.e. necrotic) cell death 

and subsequent release of DAMPs. In case of dysplastic transfor-

mation of cells, it could be reasonable to modify the local microen-

vironment that would limit inflammation using immunosuppres-

sion, anti-angiogenic agents and apoptosis-inducing drugs, since 

phagocytosis of apoptotic cells triggers powerful anti-inflammatory 

signals [193, 194]. The hypothesis of necrosis-associated tumori-

genesis and tumor proliferation is based on the capacity of released 

DAMPs to induce tissue proliferation, and most recently to limit 

apoptosis [20]. Eosinophils may be capable of breaking this vicious 

circle by limiting tumor cells with release of highly cytotoxic 

 granules and – at the same time – inducing an oxidative milieu in-

activating factors released from necrotic cells. DAP10- or DAP12-

associated receptors as well as ST2, the receptor for IL-33 are can-

didate molecules regulating recruitment of inflammatory cells such 

as eosinophils and the wound healing phenotype within tissues 

[195, 196]. Even in the setting of metastasis, the ability of tumor-

derived factors such as DAMPs to promote ‘metastatic’ inflam-

mation has been overlooked [195–197]. Inflammation associated 

with chronic allergic respiratory provocation and substantial local 

eosinophil accumulation is also capable of significantly enhancing 

metastasis to the lung in a murine tumor model [198]. The tumor 

microenvironment is characterized by reducing and hypoxic con-

ditions protecting DAMPs from oxidation. Hypoxia-inducible fac-

tor-1 alpha (HIF-1α), upreg ulation and stabilization, normally 

 degraded by proteasomal ubiquitination under normoxic condi-

tions is observed in tumors. Under hypoxic conditions, the ubiqui-

tination system for HIF-1α is inhibited. Hypoxia and accumulation 

of HIF-1α in solid tumor tissues is associated with resistance to 

chemotherapy, radiotherapy, and immunotherapy and poor prog-

Fig. 1. The tumor microenvironment is disordered and characterized by necrosis, redox stress, and DAMPs. 

Autophagy within the tumor can be promoted by several endogenous (hypoxia, nutrient deprivation, genomic instability, ER stress) and exogenous (chemotherapy, radia-

tion, hormonal therapy) stressors. Most of the current treatment strategies for cancer promote (DAMP molecule release (HMGB1, HSP, histones, DNA etc.) following 

therapy-induced  unscheduled tumor death (often by necroptosis and necrosis). Solely apoptotic cell death in the tumor, intrinsic and driven by p53 pathways, extrinsic, 

promoted by tissue macrophages and other immune cells expressing TNF family members, is a rare finding. Immunotherapy promoting NK and Teff function can also 

lead to cytolytic (Perforin/GrzB) mediated apoptosis in the tumor.

Therapy promoted DAMP release leads to recruitment of myeloid cells (monocytes, DCs, and granulocytes), as well as MSCs. They belong to the early immigrants in 

 response to unscheduled cell death, initiating and modulating the subsequent inflammatory response. MSCs as well as DCs respond to DAMPs by promoting an immuno-

suppressive milieu, while eosinophils induce oxidative conditions limiting the biologic activity of DAMPs over time and distance. Tregs are strongly affected by pattern 

recognition receptor signaling in the tumor microenvironment and limit immune reactivity coordinately with myeloid-derived suppressor cells.
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nosis. An increase in VEGF levels induces HIF-1α accumulation 

and promotes tumor metastasis by enhancing angiogenesis [199]. 

The impact of H2O2 within inflammatory tissue (including tumor 

tissue) is still controversial. H2O2 at low levels acts as an important 

‘second messenger’ during lymphocyte activation [200]. It has both 

proliferative and apoptotic effects on T cells through various sig-

nalling pathways [201–203]. Human NK cells can be subdivided 

into two subsets based on their level of CD56 expression. CD56dim 

NK cells are potent cytotoxic cells, expressing high levels of gran-

zymes and perforin, and can mediate Ab-dependent cellular cyto-

toxicity through the FcR CD16. CD56bright NK cells, on the other 

hand, represent about 5–10% of the NK cells in peripheral blood 

and, following stimulation with IL-12, IL-15, and IL-18, produce 

high levels of inflammatory cytokines like IFNγ [204, 205]. Inter-

estingly, CD56bright NK cells are very resistant to oxidative stress 

whereas their counterparts CD56dim NK cells undergo cell death 

when exposed to ROS. 

Tregs also are resistant to oxidative stress and insensitive to 

ROS, thiols and cystine, enabling immune selection within the 

tumor microenvironment which eventually results in increased 

numbers of these cells with high capacity of mediating immune 

tolerance against the tumor. IL-2 administration at high doses was 

perhaps the first means to enable overcoming Treg effects [206].

Oxidizing conditions should be considered for therapeutic ap-

proaches targeting the tumor microenvironment. In particular, 

adoptive transfer of eosinophils or induction of eosinophilia in 

 patients with tumor may be helpful considering that these cells are 

attracted into necrotic areas of tumor and respond to DAMPs by 

oxidizing them (fig. 1).
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