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The specific interactions between RNA-binding proteins and their target RNAs are an essential level to control
gene expression. By combining ultra-violet cross-linking and immunoprecipitation (CLIP) and massive SoliD se-
quencingwe identified the RNAs bound by the RNA-binding protein CELF1, in humanHeLa cells. The CELF1 bind-
ing sites deduced from the sequence data allow characterizing specific features of CELF1-RNA association. We
present therefore the first map of CELF1 binding sites in human cells.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Direct link to deposited data

http://www.ebi.ac.uk/ena/data/view/PRJEB12208.
2. Introduction

Regulatory RNA binding proteins play a role in the processing of the
RNA molecules by controlling the many steps that follow transcription.
This includes but is not limited to nuclear splicing, cleavage and
polyadenylation, nuclear export and cytoplasmic localization of the
mRNA, cytoplasmic deadenylation, RNA degradation and translational
control of messenger RNA.

CELF1 (CUGBP, Elav-like family member 1, also named CUGBP1) is a
conserved RNA binding protein that controls alternative splicing in the
nucleus and cytoplasmic deadenylation, mRNA stability and translation
in the cytoplasm [5]. It has been implicated in several pathological con-
ditions. CELF1 is over-expressed in Myotonic Dystrophy, type I (DM1),
and several animal models revealed that this overexpression is an im-
portant trigger of DM1 symptoms [2]. CELF1 was also found to be
deregulated in several human cancers, andmay contribute to cell trans-
formation [12,19,31]. Finally, genome-wide studies revealed an
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association between CELF1 locus and Alzheimer disease [15,17] sug-
gesting putative relationships between CELF1 and neurodegeneration.

These findings highlight the need for the systematic identification of
the repertoire of RNAs associatedwith CELF1 in human cells. Analysis of
known CELF1 RNA ligands and of in-vitro selection experiments identi-
fied UGU-rich motifs as required for CELF1 binding [14,18,20,24,26].
However, this information is not discriminative enough to allow for
the identification of CELF1 binding sites in transcripts solely based on
their sequence. A widely used method for mapping protein-RNA inter-
actions in-vivo relies on UV cross-linking and immunoprecipitation
(CLIP) of RNA-binding proteins [29] followed by deep sequencing
(seq) of the co-purified RNAs. We describe here the results of CLIP-seq
experiments to identify the RNA binding sites of CELF1 in human HeLa
cells.

3. Results and discussion

3.1. CLIP-seq

CELF1 (CUGBP, Elav-like family member 1, also named CUGBP1) is a
founding member of the CELF family of RNA-binding proteins [1].
Among the CELF members, CELF2 is the closest paralogue of CELF1,
with which it shares extensive sequence conservation. We were there-
fore concerned about the possibility that the anti-CELF1monoclonal an-
tibody used in ourwork (3B1) could reactwith CELF2. Indeed, the signal
obtained in aWestern experiment with this antibody was reinforced in
cells transfectedwith an expression vector directing a strong expression
of CELF2 (Fig. 1A), indicating that, in our hands, the 3B1 antibody recog-
nizes CELF2. However, we detected no signal with an antibody against
CELF2 (1H2) in HeLa cells, even on an overexposed blot, unless the
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. CELF1 CLIP-seq A) Western blots of HeLa cells transfected with a CELF2 expression plasmid (+) or a mock plasmid (−). The antibodies reveal CELF1 + 2 (3B1), CELF2 (1H2) or
ACTA1. B) Biochemical protocol of CLIP and library preparation.
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cells were transfected with the CELF2 expression vector (Fig. 1A, upper
panel), showing that CELF2 is not expressed in these cells. This reveals
that only RNAs associatedwith CELF1 can be retrieved from CLIP exper-
iments run in these cells.

The CLIP-seq protocol is presented in Fig. 1B. HeLa cells grown at 30%
confluence were UV-irradiated (254 nm) to create covalent bonds be-
tween nucleic acids and associated proteins in-vivo. Cells were rapidly
collected and lysed. The cell extractswere treatedwith RNAse T1 to gen-
erate small ribonucleic complexes (Fig. 1B(a)) that were specifically
immunoprecipitated using magnetic beads coupled to anti-CELF1 anti-
body. The immunoprecipitated RNA/protein complexes were radio-
labeled with 32P-ATP and T4 Polynucleotide Kinase (Fig. 1B(b)). The
RNA/protein complexes were depleted of free RNAs by electrophoresis
on a polyacrylamide gel and transfer to nitrocellulose (Fig. 1B(c)). The
CELF1/RNA complexes were size-selected and proteins were digested
by Proteinase K (Fig. 1B(d)). The RNAs isolated from these complexes
were used as templates to generate a stranded library by using the
Small RNA expression Kit (SREK, SoliD) (Fig. 1B(e)) for SoliD
sequencing.
Fig. 2. CLIP-seq data A) Treatment of CLIP-seq data for the identification of CELF1 binding sites.
libraries. “Total” is the total number of reads, “Trimmed” and “Filtered” the number of reads aft
uniquelymapped reads to the humangenome. “Merged” is the sumof theuniquelymapped rea
reads remaining after removal of strictly identical reads.
3.2. Sequence data and treatment

Two different libraries of CELF1 CLIP-seq (libA and libB) were se-
quenced in 3 different runs. As a reference, an mRNA-seq library was
generated following a protocol as similar as possible to the CLIP library
protocol. Briefly, oligo(dT)-selected RNAs were fragmented with
RNAse T1, phosphorylated on the 5′end with T4 PNK and a library pre-
pared with the SREK (SoliD). This mRNA-seq library was sequenced in
one run.

The sequential processing steps are depicted in Fig. 2A. A total of
173million readswere obtained for libA, 180million for libB and 71mil-
lion for the mRNA-seq (libC) (Fig. 2B). SREK adapters were removed
with cutadapt [21] and reads with uncalled bases in the first 30 nucleo-
tides of the sequence were discarded. The reads were then mapped to
the hg19 human genome with SHRIMP2 [25]. Only uniquely mapped
reads were collected. We obtained 10 million of uniquely mapped
reads for libA, 4.5 million for libB and 11 million for the mRNA-seq
(Fig. 2B). Mapped reads from each sequencing run were grouped as
one file per library. Because read duplications may arise from PCR
B) Table summarizing the number of reads obtained with the CLIP-seq and themRNA-seq
er adapter removal and quality filtering, respectively. “Uniquelymapped” is the number of
ds arising from independent sequencing runsof the same library. “Unique” is thenumber of
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during library preparation, we chose to keep only one copy of each du-
plicated read per library. Therefore, cluster identification was per-
formed on unique reads that were uniquely mapped and
corresponded to 1.6 millions reads for libA, 0.6 million reads for libB
and 3.1 million reads for the mRNA-seq (Fig. 2B). Mapped reads visual-
izationwas done on IGV [27], see Fig. 4).We next defined clusters as the
genomic regions covered by at least three overlapping reads, and the
height of each cluster as the highest number of overlapping reads at a
given genomic position within the cluster. A differential analysis using
FindPeaks (V4.0, [10]) and the R script “FindPeaksAnalysis.R”, identified
Fig. 3. CELF1 binding clusters A) A differential analysis using mRNA-seq data as a reference
respectively. We classified a cluster from a library as “cross-validated” when it overlaps a clust
cross-validated and non cross-validated clusters for each library. B) For the 2972 libA cluste
between exonic and intronic clusters for genic clusters, then the number of exonic clusters in
the type of gene. D) For the 2972 libA clusters, we plot the observed frequency of each possi
dimer. The TGT-containing clusters are in red, and the sequences of the TGT-containing enr
target genes identified in this work and in [18,22,24] based on Ensembl gene ID. Number b
clusters in exonic regions in our analysis.
the clusters of reads higher in either CLIP-seq library, comparedwith the
mRNA-seq library.

Respectively, 10,067 and 4331 clusterswere considered significantly
higher in libA and libB (Supplementary Tables 1 and 2). These numbers
are consistent with the deeper sequencing of libA (see Fig. 2B). Impor-
tantly, about three fourths (3167/4331) of the libB clusters overlap clus-
ters identified in libA (Fig. 3A, Supplementary Table 2), demonstrating
the reproducibility of the CLIP replicates. We next focused on the 2972
clusters found in libA and confirmed by libB (Supplementary Table 1),
which we termed CELF1-binding clusters. We annotated them based
identified 10,067 and 4331 CELF-binding clusters from libA and libB sequencing data,
er identified in the other library by at least one nucleotide. We show here the number of
rs cross-validated by libB, we show the number of genic clusters, then the distribution
untranslated regions. C) For the 2737 libA genic clusters cross-validated by libB, we show
ble hexamer against its expected frequency calculated from the real frequencies of each
iched are shown. E) Unweighted Venn diagram illustrating the overlap between CELF1
etween parentheses correspond to the comparison with gene harboring CELF1 binding
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on the Gencode annotation (Release 19 (GRCh37.p13)). More than 90%
(2737/2972) of the CELF1-binding clusters are located in genes (Fig.
3B). There are about twice asmany intronic clusters than exonic clusters
(1753 and 953 intronic and exonic clusters, respectively), which reveals
an enrichment of exonic clusters when the relative lengths of introns
and exons are taken into account. The exonic clusters aremainly located
in the untranslated regions (UTR, Fig. 3B).We also investigated the type
of genomic objects with CELF1-binding clusters. A large majority of
them (2564/2737) are protein-coding genes (Fig. 3C), yet a number of
CELF1 binding clusters are located in lincRNA (139) or in antisense tran-
scripts (39) (Fig. 3C).

Because CELF1 is known to preferentially associatewithUGU repeats
on RNAs, we next looked whether specific hexamers were overrepre-
sented in our data sets using RSAT oligo-analysis [23]. As shown in Fig.
3D, TGT-containing hexamers are clearly favored in the DNA sequences
identified in the CLIP-seq experiment, in agreementwith CELF1 binding
to UGU-rich motifs [8].

CELF1 is an evolutionary conserved RNA-binding protein. We there-
fore compared the overall overlap between its RNA targets identified by
RIP-chip or CLIPseq in C2C12 cells ( [18,22] respectively) and by RIP-
chip in HeLa cells [24]. Supplementary Table 3 presents the full list of
CELF1 targets and their presence in the tested datasets. As shown in
Fig. 3E, About 20% (344/1232 + 344) of the CELF1 target genes identi-
fied by our CLIP-seq protocols are present in at least one list of previ-
ously published CELF1 targets identified in different cell types or using
different techniques. A core set of 69 genes are identified in at least 2
other datasets and 4 genes (TBL1X, LNPEP, PRPF38B and TUBA1C) are
common to all four datasets. If we take into account only the genes for
which an exonic binding site is detected in our experiments (numbers
in the parentheses), the percentage of CELF1 targets identified in at
least one list of previously published CELF1 targets increases to about
33% (257/257 + 567).
3.3. CELF1 binding sites

Fig. 4 illustrates the different transcriptomic objects bound to CELF1
(intron, UTR, lincRNA and antisense RNA). CELF1 binds downstream to
the first exon of the BAG1 gene (Fig. 4A), which encodes an anti-
apoptotic BCL2-associated protein involved in the maintenance of dif-
ferentiating hematopoietic and neuronal cells [13]. This CELF1 binding
sites is located close to an alternative 5′ splice site. Further experiments
are needed to test if the interaction of CELF1within BAG1 intron 1 influ-
ences 5′ splice site selection, with a consequence on the sequence of the
encoded protein and possibly its function. Similarly, we identified two
CELF1 binding clusters upstreamof the PKMexon 9 (Supplementary Ta-
bles 1 and 2, and data not shown) in the HeLa cellular context where
this exon is mainly skipped. As CELF1 over-expression force the usage
of PKM exon 10 in C2C12 cells [11], it is tempting to postulate that
CELF1 can directly regulate this splicing event in human cells. However,
this regulation of PKM splicing may be redundantly controlled by other
RNA binding proteins as it was shown that the hnRNP proteins A1, A2
and PTB are critically involved in this process [4].

The binding of CELF1 in UTRs is illustrated in Fig. 4B. There, one libA
cluster overlaps two libB clusters in the 3′UTR of the TGOLN2 transcript.
This interaction may impact the stability and/or translation of TGOLN2
mRNA. CELF1 binding is also clearly identified on the two lincRNA
NEAT1 and NEAT2/MALAT1 (Fig. 4C) that are localized to nuclear
paraspeckles and SC35nuclear subdomains [16]. There is noobvious hy-
pothetical function for this interaction. While CELF1 might control
lincRNA biology, the lincRNA might reciprocally serve as “CELF1
sponges”, as suggested for miRNA sponges [7], and hence regulate
CELF1 function or availability. Finally, an example of CELF1-binding
cluster in an antisense RNA is shown in Fig. 4D. The use of a strand-spe-
cific protocol for the CLIP-seq library preparation enables us to observe
that the CELF1 protein binds to an RNA in the antisense orientation in
between the SIX5 and DMPK loci, and more precisely on the comple-
mentary strand of SIX5 5′UTR and DMPK 3′UTR.

This antisense RNA is absent from our mRNA-seq data, suggesting
that it is a poorly or non-adenylated RNA, or a nuclear RNA remaining
in an insoluble fraction during RNA extraction. Careful examination of
ENCODE [9] RNASeq data (GSM765403/wgEncodeEH000172) shows
that a transcript extending beyond the CELF1 binding sites and poten-
tially overlapping the DMPK 3′UTR is present in the nucleus of HeLa
S3 and other cells. This result is particularly interesting if we consider
the involvement of CELF1 inmyotonic dystrophy, type I (DM1). This ge-
netic disease is caused by a CTG repeat expansion in the 3′UTR of the
DMPK gene. The transcribed RNA containing the CUG repeat expansion
causes formation of ribonuclear foci that sequester MBNL1 and up-
regulates CELF1 by incompletely understoodmechanisms. The resulting
imbalance between these two RNA-binding proteins is a major cause of
DM1 symptoms [2]. It is therefore intriguing to find a CELF1-binding
cluster in an antisense RNA very close toDMPK3′UTR, but additional ex-
periments are required to understand if it is a simple coincidence or if it
has a significance for DM1 etiology.

3.4. Conclusions

CELF1 is a largely studied RNA-binding protein, probably due to its
involvement in myotonic dystrophy, type I [2] and its relatively high
abundance. CLIP-seq experiments have been carried out that aim at
identifying in an unbiased manner the RNAs associated with CELF1 in
mouse, including murine brains [6], murine skeletal muscle and heart
[30] or themurine cell line C2C12 [22]. The present work complements
these findings by identifying the RNA ligands of CELF1 in human cells.
We provide a list of CELF1 binding clusters identified from two CLIP-
seq libraries (Supplementary Tables 1 and 2). The cross-validated clus-
ters are high-confidence regions of interactionwith CELF1, and the high
proportion of libB clusters validated in libA demonstrates the specificity
and reproducibility of the CLIP-seq libraries (see Fig. 2A). In addition, a
large number of clusters identified in libA are not validated in libB, and
we think that a main reason for this is the lower sequencing depths of
libB. Accordingly, most non cross-validated libA clusters are probably
bona fide CELF1-binding clusters. For example, the LMO4 3′UTR harbors
a prominent CELF1 binding cluster in libA that is not identified as signif-
icant in libB. However, the reads in libA overlap an accumulation of
reads in libB revealing CELF1 binding to LMO4 3′UTR, consistent with
published literature [3]. Hence, our data provide a robust resource
that will help characterizing genome-wide the functions of CELF1 in
human.

4. Materials and methods

4.1. Cell extract, western blot and antibodies

HeLa-Kyoto Cells were grown at 5% CO2, 37 °C in DMEM (GIBCO
BRL) complemented with 10% FCS, 100 U/ml penicillin and 100 μg/ml
streptomycin (Invitrogen). Proteins were detected in western blots
using anti-CELF1-2 (SantaCruz, 3B1, sc-20003), anti-CELF2 (1H2, sc-
57731) and anti-ACTIN (Sigma-Aldrich, A5060).

4.2. CLIP-seq, mRNA-seq

We made CLIP experiments from untreated cells essentially as de-
scribed [29] with some modifications in the library preparation. Briefly,
we washed Hela-Kyoto cells twice with PBS (no Ca2+, noMg2+), UV ir-
radiated them 3 times at 4000 μJ/cm2 and 254 nm on ice, recovered
themby scrapping and stored them at−80 °C.We immunoprecipitated
CELF1/RNA complexes from resuspended cell pellets as described [28],
except that we incubated the cell lysates with 5 U RNase T1 for
10 min at 37 °C. We washed the beads 5 times with (Tris-HCl 50 mM,
pH 7.4; NaCl 1 M; IGEPAL CA-630 0.5%; sodium deoxycholate 1%; SDS



Fig. 4. Examples of genes with CELF1 binding clusters. A) An intronic cluster in BAG1 gene (a protein-coding gene). B) An exonic cluster in TGOLN2 (a protein-coding gene) 3′UTR. C)
Clusters in two lincRNAs, NEAT1 and MALAT1/NEAT2. D) A cluster in an antisense RNA. Note that the SIX5 and DMPK genes have the same orientation, and that the CLIP-seq cluster is in
an antisense orientation relative to these two genes. In all panels, the sense reads are in red and the antisense reads in blue. The CELF binding clusters are in dark blue, with their
orientations indicated by arrowheads.
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0.1%; urea 2 M) and then 3 times with T4PNK+ buffer (Tris-Cl 20 mM,
pH 7.4; MgCl2 5 mM; IGEPAL CA-630 0.5%). We treated the beads for
35 min at 37 °C in T4 PNK+ buffer in the presence of 40 UT4 PNK
(Fermentas) and 50 μCi of ATP-gamma 32P to visualize RNA-protein
complexes, or 1 mM unlabelled ATP to prepare the libraries. We eluted
the RNA/protein complexes in NuPAGE 1× loading buffer and fraction-
ated them by PAGE in a neutral NuPAGE 4–12% bis-tris gel run in 1×
MOPS (Invitrogen). The complexes were transferred onto nitrocellulose
membrane (protran BA-85) and the CELF1 complexes were cut out.
RNAs were recovered following proteinase K digestion in PK buffer
(Tris-HCl 100 mM, pH 7.4; NaCl 50 mM; EDTA 10 mM; proteinase K
(Sigma) 2 mg/ml) for 30 min at 37 °C. The digestion was pursued in
PK buffer with urea (7 M) for 30 min at 60 °C. Proteins were then ex-
tracted by phenol/CHCl3 and RNA precipitated with ammonium acetate
and isopropanol using glycogen as carrier. RNAs were washed twice
with 80% ethanol, dried and resuspended in water. For cloning and se-
quencing, radioactive experiments were run in parallel with
nonradiolabeled experiments and nonradioactive samples were further
used for cloning and sequencing. The RNA fragments were ligated to
adapters, reverse transcribed and amplified by PCR following manufac-
turer instruction using the Small RNA expression kit (Ambion #
4397682).

For mRNA-seq, total RNAs were extracted from growing Hela-Kyoto
cells using RNAeasy columns (Qiagen). Poly(A) + RNAs were selected
on oligo-dT (Promega) and partially fragmented using RNAse T1. The
size of the fragments was controlled using a bioanalyzer. We con-
structed a cDNA library for deep sequencing followingmanufacturer in-
structions using the Small RNA expression kit as described above. One
RNASeq library was prepared and sequenced.

SOLiD sequencingwas performed at the Genoscope on a SoliD 3 sys-
tem. Two different CLIP-seq libraries and one mRNA-seq library were
sequenced for 50 cycles following manufacturer recommendations.

4.3. Sequence data analysis

The detailed procedure and the R script are available as supplemen-
tary materials.

4.3.1. Filtering and trimming
Raw sequencing data were collected as colorfasta (.csfasta) and

quality files (.qual). Sequence data were trimmed with cutadapt [21]
to remove SoliD adapters (CGCCTTGGCCGTACAGCA); reads kept were
requested to have a minimal size of 30 nucleotides. Based on sequence
quality analysis, we discarded any sequences harboring an uncalled
base in the first 29 nucleotides.

4.3.2. Mapping to hg19
The resulting sequence files weremappedwith SHRIMP 2 [25] to the

human genome (hg19) after converting the genome to colorspace. The
resulting bam files were merged by library to obtain the 2 CLIPSeq
datasets, libA and libB and the RNASeq dataset libC. After mapping, in
each library reads considered as duplicated based on the flag, chr, start
and CIGAR fields were removed to keep only one read.

4.3.3. Identification of enriched clusters
Read cluster identification was conducted in parallel on the two li-

braries using FindPeaks 4.0 [10] using the RNASeq as a comparison
file. Only reads enriched in the CLIPSeq libraries were kept for further
analysis.

4.3.4. Annotation of enriched clusters
Cluster strandwas defined based onmapped read strand. The anno-

tation of the cluster based on their genomic location was conducted
usingR script and theGENCODEannotation (Release 19 (GRCh37.p13)).
4.3.5. Comparison with previously identified CELF1 target
Binding data for CELF1 targets were obtained from CLIPSeq and RIP-

Chip experiments published in [18,22,24] and gene identifiers were
converted to human Ensembl gene ID for comparison purpose.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2016.04.009.
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