
Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4)

activity and/or structure homologue (DASH) proteins

L. Wagner,*¶ C. Klemann,†‡

M. Stephan§ and S. von H€orsten¶

*Deutschsprachige Selbsthilfegruppe f€ur

Alkaptonurie (DSAKU) e.V., Stuttgart, †Centre

of Paediatric Surgery, ‡Centre for Paediatrics

and Adolescent Medicine, §Clinic for

Psychosomatics and Psychotherapy, Hannover

Medical School, Hannover, and ¶Department

for Experimental Therapy, Friedrich-Alexander-

Universit€at Erlangen-N€urnberg, Erlangen,

Germany

Accepted for publication 14 December 2015

Correspondence: L. Wagner, Deutschsprachige

Selbsthilfegruppe f€ur Alkaptonurie (DSAKU)

e.V., Traubenstrasse 14, 70176 Stuttgart,

Germany; S. von H€orsten, Department of

Experimental Therapy, Preclinical

Experimental Centre, Universit€atsklinikum

Erlangen, Palmsanlage 5, 91054 Erlangen,

Germany.

E-mail: leona.wagner@dsaku.de;

Stephan.v.Hoersten@uk-erlangen.de

Summary

Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein

involved in T cell activation by co-stimulation via its association with

adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-

phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C

motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also

modulates the bioactivity of several chemokines. However, a number of

enzymes displaying either DPP4-like activities or representing structural

homologues have been discovered in the past two decades and are referred

to as DPP4 activity and/or structure homologue (DASH) proteins. Apart

from DPP4, DASH proteins include fibroblast activation protein alpha

(FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S),

DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and

structurally unrelated enzyme DPP2, displaying DPP4-like activity. In

contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH

proteins play important roles in the immune system involving quiescence

(DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-

stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4,

DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling

(DPP4, FAP). Thus, they are involved in many pathophysiological processes

and have therefore been proposed for potential biomarkers or even drug

targets in various cancers (DPP4 and FAP) and inflammatory diseases

(DPP4, DPP8/DPP9). However, they also pose the challenge of drug

selectivity concerning other DASH members for better efficacy and/or

avoidance of unwanted side effects. Therefore, this review unravels the

complex roles of DASH proteins in immunology.
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The dipeptidyl peptidase (DPP)4 family of DPP4
activity and/or structure homologue (DASH) proteins

Within the last two decades a number of enzymes have

been discovered to also display DPP4-like activity or are

structural homologues to DPP4. These enzymes/proteins

are referred to as DPP4 activity and/or structure homo-

logue (DASH) proteins, and can be grouped into the DPP4

gene family and non-related DPP4-like enzymes.

DPP4 gene family

DPP4 belongs to the serine peptidase clan SC, subfamily

9b. Peptidases of the SC clan have a unique catalytic triad

in the order of Ser, Asp and His located in an a/b-hydro-

lase fold compared to the chymotrypsin catalytic triad of

His, Asp and Ser. Currently, six members have been identi-

fied as belonging to the dipeptidyl peptidase subfamily 9b,

including DPP4, fibroblast activation protein alpha (FAP)

[1], DPP8 [2], DPP9 [3], DPP4-like protein 1 (DPL1,

DPP6, DPPX L, DPPX S) [4] and DPP4-like protein 2 [5].

Except for DPL1 and DPL2, all members display DPP4-like

activity with neutral to basic pH optima and similar inhibi-

tion profiles [6,7].

DPP4 (CD26). DPP4 (CD26) is the best-known DASH

protein and has been described in detail elsewhere [7–9].
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DPP4 is a multi-functional protein involved in T cell acti-

vation by co-stimulation via its association with adenosine

deaminase (ADA), caveolin-1, CARMA-1, CD45, man-

nose26-phosphate/insulin growth factor-II receptor (M6P/

IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The

proline-specific DPP4 also modulates the bioactivity of sev-

eral chemokines, as well as neuropeptides and peptide hor-

mones such as neuropeptide Y (NPY), substance P (SP),

glucagon-like peptide (GLP)21, GIP and glucagon.

Indeed, several DPP4 inhibitors (gliptins) are currently on

the market as anti-diabetic drugs [8–10]. Thus it is

involved in glucose homeostasis, food uptake, anxiety,

stress, cardiovascular, nociception and chemotaxis. The

enzyme comprises 766 amino acids and is a type II trans-

membrane glycoprotein that has also a soluble-shedded

form in serum. It has a molecular weight of 110 kDa and is

active as a homodimer. It is distributed ubiquitously, with

the highest expression in kidney, lung, liver and small intes-

tine, whereas low expression is found in brain, heart and

skeletal muscle. According to kinetic analysis, DPP4 has the

highest selectivity for NPY and PYY. The human gene loca-

tion of DPP4 is 2q24.2 [8,11,12].

Fibroblast activation protein alpha (FAP). FAP, also

referred to as seprase, has the highest sequence identity to

DPP4 and is believed to arise from gene duplication due to

its gene proximity being at 2q23 [6]. FAP is a transmem-

brane protein type II. It consists of 760 amino acids and

forms a 170 kDa homodimer. Like DPP4, the monomeric,

N-glycosylated 97 kDa subunits are proteolytically inactive,

thus their proteolytic activities are dependent upon subunit

association. Furthermore, FAP can form a heterodimeric

membrane-bound proteinase complex with DPP4 [6,7,13].

FAP has been shown to readily hydrolyse NPY, BNP, sub-

stance P and PYY as well as to a lower-rate GLP-1 and GIP,

whereas chemokines were not readily truncated or at a

much slower rates by FAP [14]. In addition to DPP4 activ-

ity, FAP also exhibits gelatinase and collagenase activity,

which is collagen type I specific. Furthermore, a-2-anti-

plasmin is a natural substrate of serum-FAP, cleaved at

. . .Gly11-Pro12-+-Asn13. . ., confirming that its endopepti-

dase activity requires the sequence Xaa-Gly-Pro-Yaa. . .

[15–18]. The crystal structure of FAP has been elucidated,

and comparison with the crystal structure of DPP4 points

to a lower anchoring of substrates by Glu203–Glu204 due to

shielding effects of surrounding hydrophobic residues and

lack of Asp663. This, in turn, results in a lower exopeptidase

activity and enables its endopeptidase activity as confirmed

by site-directed mutagenesis with subsequent kinetic

studies [19]. Although FAP expression is restricted to reac-

tive stromal fibroblasts of epithelial cancers, subsets of

bone and soft tissue sarcomas, activated stellate cells,

arthritic chondrocytes, granulation tissue of healing

wounds as well as de-differentiated adipocytes, co-

expression of DPP4 and FAP in these cells results in the for-

mation of a heteromeric complex [6,7,20,21]. The DPP4

activity is maintained by both enzymes in the complex as

well as gelatine degradation by FAP [22]. In tumorigenic

cells and wounds, this heteromeric complex is localised on

the advancing portion of invadopodia that is believed to

play an important role in tumour invasion, spreading of

metastasis, angiogenesis and wound-healing, respectively

[6,7,13,22]. Thus, to identify it as a pharmaceutical target,

the expression of FAP has been investigated as potential

biomarker in several types of cancers [6,7,13,23–25]. Inter-

estingly, it was shown that stromal FAP is more prominent

in early-stage colorectal cancer and smaller tumour xeno-

grafts, with increased expression of FAP being an adverse

prognostic indicator in patients with advanced metastatic

disease [26]. In contrast, prolonged survival of patients

with breast cancer was associated with high FAP expres-

sion, whereas in cervical cancer FAP was correlated with

increased dysplasia and carcinoma development, suggesting

FAP being an invasion marker [7,13,26]. Co-localization of

FAP and urokinase-type plasminogen activator receptor

was detected in malignant melanoma by fluorescence reso-

nance energy transfer (FRET), and the complex appeared

to be dependent upon both cytoskeleton and integrins

[27]. Knock-out mice of FAP confirmed its role in wound-

healing; however, no change of phenotype was observed

with regard to cancer [28]. Expression of FAP was found to

be up-regulated by interleukin (IL)-1 and oncostatin M in

arthritic chondrocytes from patients with osteoarthritis,

while it was down-regulated in patients with systemic lupus

erythematosus [21]. Recently, the role FAP in cartilage deg-

radation could be elucidated in FAP-knock-out of tumour

necrosis factor (TNF)-a transgenic mice [FAP(–/–) human

TNF transgenic (hTNFtg) mice], as these animals revealed

less cartilage degradation, but similar inflammation and

bone erosion compared to wild-type hTNFtg mice [29].

Cleavage of a2-anti-plasmin by soluble serum-FAP yields a

more active form, thereby promoting fibrosis and scar for-

mation [17,18]. Thus, FAP has an opposite physiological

role compared to DPP4 that enhances fibrinolysis and scar

resolution by activation of plasmin from plasminogen via a

quintary complex of ADA, plasminogen 2, DPP4, urinary

plasminogen activator (uPA/tPA) and plasminogen-recep-

tor (Plg-R) [7]. In addition, FAP has been proposed to play

a role in neutropenia and anaemia [30].

DPP8. DPP8 consists of 882 amino acids, and its homo-

dimer has a molecular weight of 200 kDa [2,31]. So far, it

has been suggested to be located in the cytoplasm as a solu-

ble protein, and until now there has been no evidence for

any secretion [2,6,7,13]. Recent proteomic screening has

revealed phosphorylation of p-ephrin-B1 antibody (Tyr331)

and mitogen-activated protein kinase-activated protein

kinase-2 (MAPK-APK-2) (Thr334) [32]. Using several chro-

mogenic substrates, DPP8 was shown to display DPP4-like

activity similar to DPP4 [2,31]. Hydrolysis of NPY, GLP-1,

GLP-2, peptide YY (PYY), interferon (IFN)-induced T cell

alpha chemoattractant (ITAC), IFN-induced protein 10

L. Wagner et al.

266 VC 2016 British Society for Immunology, Clinical and Experimental Immunology, 184: 265–283



(IP-10), stromal cell-derived factor (SDF)-1a and SDF-1b,

but not of IFN-g-induced monokine (MIG), growth-

regulated protein b (Grob) and eotaxin could be demon-

strated in vitro, although the rate of cleavage was slower

compared to DPP4, in particular for PYY [31,33,34]. Recent

systematic degradomic analysis identified several in-vivo

substrates involved in antigen presentation, signal transduc-

tion, cellular energy and nucleotide metabolism [34]. DPP8

mRNA is distributed ubiquitously, with its highest expres-

sion in testis, prostates, ovaries, placenta and brain

[2,5,12,35]. Furthermore, it is up-regulated in activated

lymphocytes [2]. However, its physiological function is cur-

rently unknown and still awaits further studies. The human

gene localization is 15q22 [6].

DPP9. DPP9 has two variants comprised of 863 and 892

amino acids, respectively [6,36]. The longer DPP9 was

found to be enzymatically active as a homodimer with an

estimated molecular weight above 200 kDa. DPP9 lacks a

transmembrane domain and is found intracellularly near

the Golgi apparatus, although secretion from transfected

cells has not yet been observed [3,6,12,36]. Recently, DPP9

was shown to be associated with mitochondria and to co-

localize strongly with microtubules. Furthermore, DPP9

redistributed towards the ruffling plasma membrane upon

stimulation with either phorbol 12-myristate 13-acetate or

epidermal growth factor. DPP9 was also seen at the leading

edge of migrating cells and co-localised with the focal

adhesion proteins, integrin-1 and talin, resulting subse-

quently in phosphorylation of focal adhesion kinase and

paxillin. This implicates DPP9 to be involved in tissue and

tumour growth as well as metastasis [37]. A nuclear local-

ization signal was identified at the extended N-terminal in

an alternative spliced variant of long DPP9, targeting it to

the nucleus [38]. Using several chromogenic substrates,

DPP9 exhibited DPP4-like activity similar to DPP4, and

was shown to truncate NPY, GLP-1, GLP2 and, to a far

lesser extent, for PYY in vitro [6,12,31]. However, the cyto-

plasmic proteasome-derived antigenic peptide RU134–42,

CXCL10, IL-1RA, S100-A10, SET nuclear proto-oncogene

(SET) and human nucleobindin 1 (NUCB1) could be iden-

tified as natural substrates of DPP9, suggesting DPP9 to

play an important role in peptide turnover and antigen

presentation and inflammation [39,40]. Intriguingly, DPP9

was only able to hydrolyse the deglycosylated IL-1RA iso-

form. Furthermore, DPP9 was also shown to cleave enzy-

matically an as-yet unknown substrate involved in the

phosphorylation of protein kinase B (Akt), thereby inter-

fering with epidermal growth factor (EGF) signalling [41].

Its binding to Harvey rat sarcoma viral oncogene homo-

logue (H-RAS) and small ubiquitin-like modifier

(SUMO)1 also confirmed the involvement of DPP9 in sig-

nal transduction [42]. Recent systematic degradomic analy-

sis and two-dimensional difference gel electrophoresis (2D

DIGE) identified several substrates involved in antigen pre-

sentation, signal transduction, cellular energy and nucleo-

tide metabolism [34,40]. Together with DPP4, and

contrary to DPP8, DPP9 has a high specificity for the Val–

Ala motif, as shown with substrate CSN8 [40]. DPP9 con-

tains an Arg–Gly–Asp cell attachment motif and two

potential glycosylation sites, although deglycosylation

revealed no mass differences [3,5,36]. Like DPP4 and

DPP8, DPP9 mRNA is distributed ubiquitously, with its

highest expression in liver, heart and skeletal muscle and

testis [3,6,35,36]. Its physiological function has not yet

been elucidated, although an up-regulation of DPP9

mRNA was detected in human testicular tumour [35].

Gene knock-out in mice with inactive DPP9 turned out to

be neonatal-lethal [43]. The gene is located on chromo-

some 19p13.3 [6,7,12,36].

So far, one cannot differentiate between DPP8 and

DPP9 enzymatic activity due to the lack of selective inhibi-

tors; however, DPP8/DPP9 activity could be detected in

human leucocytes, rat brain, lung and testis, bovine testis,

murine brain, organs of the immune system such as thy-

mus, spleen, lymph nodes and peripheral blood mononu-

clear cells (PBMC), testis, skeletal and uterine muscles as

well as colon [12,35,36,44–47]. Nevertheless, brain and tes-

tis have been the only organs in which DPP8/DPP9 activ-

ities precede over DPP4 activity [12,35,45,46]. Association

of DPP8 and DPP9 with H-Ras suggests a functional role

in signal transduction [41]. Furthermore, DPP8/DPP9

appears to be involved in T cell proliferation, thereby

releasing IL-2 as well as macrophage activation causing

activation of caspase 1 and induction of IL-1b [45,47–51].

However, the suggested cytotoxicity of DPP8/DPP9 inhibi-

tion is currently discussed controversially [52–56]. An

increase of DPP8/DPP9 activity has been associated with

asthma [44]. Extra-enzymatic functions of DPP8/DPP9

include cell adhesion, migration and apoptosis [57]. Inter-

estingly, DPP8 and DPP9 are inactivated reversibly by

H2O2 oxidation involving two cysteines in each monomer

[58]. To date, there are no crystal structures of DPP8 and

DPP9 available. Nevertheless, molecular modelling based

on DPP4 and FAP crystal structures indicate similar overall

structures comprised of b-propeller and a/b-hydrolase

domains, with the active site being located at the interphase

of the two domains. However, two loops and one helix of

the propeller domain extending to the interphase cavity

appear to play a role at the active site, thereby influencing

substrate specificity and inhibitor binding [59,60]. Due to

the shortest gene sizes, the lowest numbers of exons, the

active site being located on one exon and their closest phy-

logenetic relationship with respect to prokaryotic members

of the family, DPP8 and DPP9 are believed to be the ances-

tral genes of the DPP4 gene family [6].

DPP-like protein 1 (DPL1) and DPP-like protein 2

(DPL2). DPP-like protein 1 (DPL1) and DPP-like protein 2

(DPL2) lack DPP4-like activity because of mutations at

their active sites. Both of them are type II membrane-

bound glycoproteins, suggested to interact with the

Immunological roles of DPP4 and DASH
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voltage-gated potassium channel Kv4 [4–6,61–63]. While

DPL1 is expressed exclusively in the brain as two variants,

i.e. a short and a long form, DPL2 is found in brain, pan-

creas and adrenal gland [5,62]. The long form DPL1-L is

an 859 amino acid protein with a molecular weight of 97

kDa, whereas the short form, DPL1-S, consists of 803

amino acids with a reported molecular weight of 91 kDa

[4,6]. The human gene localization is 7q36.1–q36.2. DPL1

is associated with amyotrophic lateral sclerosis, familial idi-

opathic ventricular fibrillation, spinal muscular atrophy

and neuroleptic-induced tardive dyskinesia, whereas DPL2

is linked with asthma [44,61,64–68]. The crystal structures

of DPL1 and DPL2, respectively, resemble that of DPP4

[63,69]. DPL2, better known as DPP10, is a type II mem-

brane protein with a dimeric structure, comprised of alter-

native splice variants. The long form is expressed as a 796

amino acid protein with a molecular weight of 97 kDa. The

human gene localization is 2q14.1 [5]. Table 1 summarises

the properties of the DPP4 gene family members.

Non-related DPP4-like enzymes

In addition, enzymes structurally unrelated to the DPP4

gene family have been reported to display DPP4 activity

[70]. These include DPP2, EC3.4.14.2 of SC clan 28, attrac-

tin and N-acetyl alpha-linked acidic dipeptidases (NAALA-

Dases I, NAALADases II and NAALADases L) from the

metalloprotease clan MH, family M28B [70]. However,

detailed kinetic analysis of expressed and purified NAALA-

Dase I did not reveal any DPP4-like activity [71]. Similarly,

the DPP4-like activity of attractin in the serum had been

discussed controversially for several years, but was later dis-

proved [72–74].

DPP2, was found to be identical with quiescent proline

cell dipeptidase (QPP) and dipeptidyl peptidase 7 (DPP7),

based on genetic homology and kinetic parameters [75,76].

The soluble serine protease contains a proform and has a

length of 492 amino acids with a molecular weight of 58

kDa [77,78]. Glycosylation and dimerization are required

for the catalytic activity and the latter occurs via a leucine

zipper motif, which is novel for proteases [79]. The homo-

dimer is located in cellular vesicles that are distinct from

lysosomes and secretion is regulated by an increased Ca21

flux [77]. Using chromogenic substrates, DPP2 displays

post-proline dipeptidyl aminopeptidase activity similar to

DPP4, however, over a broad pH range with an acidic to

neutral pH optimum [76,78,80]. While DPP2 hydrolyses

tripeptides readily, its activity decreases rapidly with

increasing chain length of peptide. Thus, it was shown to

cleave only fragments of substance P1–4, bradykinin1–3 or

bradykinin1–5; however, we and others found none of the

DPP4 substrates to be cleaved by DPP2 [12,80,81]. DPP2

has been reported to be involved in apoptosis, as a decrease

of DPP2 activity caused cells to exit their G0-phase in qui-

escent lymphocytes and fibroblasts, resulting in an induc-

tion of apoptosis by up-regulation of p53 and c-Myc as

well as a down-regulation of Blc-2 [77,82]. Furthermore,

DPP2 was found to be essential for maintaining the cell

quiescence of lymphocytes, in which the transcription fac-

tors Kruppel-like factor (KLF2) and transducer of ERBB2,

1 (TOB1) regulate the expression of DPP2 [83]. Neverthe-

less, another study reports participation in necrosis rather

than apoptosis [84]. DPP2 is distributed ubiquitously, with

high expression in kidney, brain, testis, heart, resting lym-

phocytes and differentiated macrophages [75,78,84,85]. As

it was thought previously to be a lysosomal enzyme, its

physiological function to date is unknown. However,

altered serum activities of DPP2 have been associated with

various pathogenic conditions, such as Sj€ogren syndrome,

rheumatoid arthritis (RA), lupus erythematosus, various

cancers and Parkinson disease [78]. DPP2–/– and constitu-

tive DPP2 knock-down (kd) are embryonic-lethal; how-

ever, conditional neurogenin 3-specific DPP2 knockdown

mice revealed a phenotype with impaired glucose tolerance,

insulin resistance and visceral obesity [86]. NGN3 is

expressed in all precursors of the enteroendocrine cells and

in the pancreas as well as discrete regions of the hypothala-

mus and brain stem [86]. Interestingly, ADA was discov-

ered to also bind to DPP2, although with an order of

magnitude lower compared to DPP4 [77]. The human

gene localization is 9q34.3. As DPP2 also belongs to the SC

clan, its order of catalytic residues is Ser, Asp and His,

located in an a/b hydrolase fold, as summarized in Table 1.

Recently, the crystal structure of DPP2 was deposited in the

Protein Data Bank as pdb 3JYH, revealing an a/b-hydro-

lase domain as well as a novel helical structural domain

(SKS) domain, comprised of 5 a-helices arranged in a helix

bundle fold, capping the active site [87]. An insertion from

the SKS domain to the active site results in steric hindrance

of larger substrates and contains Asp334 for anchoring the

N-terminus of the peptide substrate. Prolycarboxy pepti-

dase, also belonging to the S28 family, displays a similar

overall structure, whereas the members of the DPP4 gene

family are made up of a propeller and an a/b-hydrolase

domain. The propeller has an open architecture and con-

tains eight blades, each made up of four anti-parallel b-

sheets [87].

Although all these enzymes described above display

DPP4-like activity or are structural homologues (Table 1),

they exhibit distinct features with respect to cellular com-

partmentation and glycosylation, as illustrated in Fig. 1.

Furthermore, DPP4 also internalizes upon association with

binding partners such as CXCR 4 and M6P/IGFII, recycling

of terminal carbohydrates and assembled to lipid rafts [8,9]

DASH proteins in immune cells

In addition to DPP4, DPP8, DPP9 and DPP2 were also

found to be expressed on leucocytes, yet fulfilling different

functions, as illustrated in Fig. 2 [35,47,48,51,82,88,89].
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DPP2 plays a vital role in quiescence of resting lymphocytes

and its inhibition leads to apoptosis [82,90]. The activity of

DPP8 and DPP9 is required for T cell proliferation and is

IL-2-dependent [40,48,49,52,90]. DPP8 is up-regulated

upon T cell activation, whereas DPP9 plays a role in anti-

gen trimming for antigen presentation [2,39,40]. DPP4/

CD26 is involved in T cell activation, T cell signalling and

T cell differentiation due to its interactions with ADA,

CD45, caveolin-1, CARMA-1 and M6P/IGFII-R [9]. These

processes are regulated by the cytokines IL-2, IL-6, IL-10,

IL-12, IL-17, IL-29, IFN-g and TGF-b, as well as compart-

mentation of DPP4/CD26 to either lipid rafts or internal-

ization [8,9,48,88,89,91–93]. Furthermore, post-translation

modification of DPP4/CD26 such as sialylation also

appears to influence compartmentation and/or the interac-

tions with its binding partners [9,86,87,90]. Generally,

expression of DPP4/CD26 is up-regulated in T helper type

1 (Th1) and Th17 cells, but not in Th2 cells. However,

comparing CD28 versus CD26 co-stimulation of CD3

mediated T cell activation, CD26 co-stimulation was found

to induce production of IL-10 preferentially in human

CD41 T cells mediated via nuclear factor of activated

T cells (NFAT) and rapidly accelerated fibrosarcoma–

mitogen-activated protein kinase–extracellular signal-

regulated kinase (Raf–MEK–ERK) pathways, as well as

high levels of early growth response 2 (EGR2) mediated

possibly via NFAT and activator protein 1 (AP-1)-signal-

ling. Furthermore, CD26-mediated co-stimulation of

CD41 T cells induced greater lymphocyte-activation gene 3

(LAG3) expression than CD28-mediated co-stimulation

[92]. Whether or not the other DASH proteins contribute

to the overall DPP4-like activity in Th2 cells such DPP8

still needs to be investigated [2,7,13,51,88,94,95]. In addi-

tion, DPP4/CD26 is expressed highly on the CD45RO1

CD291 memory T helper subset CD26bright CD41, which

responds to recall antigens, induces B cell immunoglobulin

(Ig)G synthesis and activates cytotoxic T cells

[7,8,13,51,94,96]. CD26/DPP4 also plays a role in chronic

pulmonary graft-versus-host disease with up-regulation of

IL-26, involving CD26 and caveolin-1 interactions [91].

Furthermore, DPP4 is up-regulated in activated natural

killer (NK) cells, B cells, eosinophils and macrophages

[9,13,44,45,51,94]. None the less, DPP8, DPP9 and DPP2

are also expressed on macrophages and DPP2 has been

detected additionally on mast cells [13,35,40,47,51,78,85].

These differentiated leucocytes regulate the expression of

the DASH proteins in/on endothelial, fibroblast and epithelial

cells via their cytokines, thereby influencing physiological and

pathophysiological processes such as vasoconstrictions, vaso-

dilation, angiogenesis, transendothelial migration of lympho-

cytes, hypothalamic–pituitary–adrenal (HPA) stress axis,

wound-healing, arthritis, cirrhosis, cancer, colitis, inflamma-

tory bowel disease (IBD) and asthma, as illustrated in Fig. 2

[6,7,9,13,21,29,35,40,44,51,94,97–100]. Substrates of DPP4

and/or DPP8/DPP9 may also be involved in these scenarios,

such as the chemokines regulated upon activation normal T

cell expressed and secreted (RANTES), SDF-a and eotaxin,

the neuropeptides NPY, SP, vasoactive intestinal peptide (VIP)

and pituitary adenylate cyclase-activating polypeptide

(PACAP), as well as the peptide hormones GLP-2 and GLP-1

[7–9,11,12,14,20,24,31,33,34,40,51,100].

Knock-out, deficient and transgenic DPP4-like
animal models

DPP4-knock-out, -deficient and -transgenic animal models

have been useful to elucidate the physiological role of

DPP4-like enzymes and in-vivo substrates. The phenotypes

of such animal models are summarised in Table 2. Thus,

DPP4(–/–) mice have provided evidence regarding the impor-

tant role of DPP4 in the incretin metabolism of the insulino-

trophic peptides GLP-1 and GIP. Additional increased

energy expenditure and decreased food intake make DPP4

inhibitors a favourite pharmaceutical target compared to

other known anti-diabetic drugs [101,102]. Furthermore,

behavioural studies point to a possible negative involvement

of DPP4 in stress-related behaviour, due probably to the

modulation and/or inactivation of neuropeptide substrates,

therefore identifying DPP4 as a potential pharmaceutical tar-

get in stress-related diseases [102]. Intriguingly, DPP4(–/–)

seemed to be vital with normal immune responses, although

they showed altered cytokine secretion and antibody pro-

duction upon mitogen stimulation in serum, a down-

regulation of CD41 T cells as well as up-regulation of NK

cells in the spleen and a marked decrease of peripheral blood

CD41 NK T cells [103]. Two substrains of Fischer 344 rats,

the F344/Crl(Ger/DPP4–) and F344/CuCrj(Jpn/DPP4–)

lack endogenous DPP4 at protein levels, while F344/Crl

Fig. 1. Cellular compartmentation of dipeptidyl peptidase (DPP)4-

like enzymes. DPP4 and fibroblast activation protein alpha (FAP) are

located either as homodimers or heteromeric complex on the plasma

membrane or shedded into the serum. DPP2, a homodimer, is

distributed as a zymogen in secretory vesicles or lysosome. DPP8

and DPP9 are also homodimers and located cytosolically. ,

glycosylation.
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(USA/DPP41) represents the wild-type [104]. Studies on

these animals confirm the in-vivo role of DPP4 in diabetes,

intestinotrophic peptide GLP-2 and stress-related behaviour,

whereas isolated PMBC from mutant rats could be activated

with mitogens similarly to the wild-type [105–109]. DPP4-

deficient Fischer rats are used commonly as host animals for

the transplantation of hepatocytes or stem cells obtained

from wild-type animals, as DPP4 is a hepatic differentiation

marker, and to distinguish between transplanted cells from

the host cells [110]. Interestingly, mutant and wild-type

F344 displayed the same phenotype with regard to arthritis,

and non-selective DPP4-like inhibitors were able to suppress

induced arthritis in both subspecies, implying the involve-

ment of a DPP4-like enzyme other than DPP4, such as FAP

[7,21,28,29,111]. Similarly, stimulation of neutrophils and

erythrocytes from haematopoietic progenitor cells by a non-

selective DPP4-like inhibitor was observed in both the

mutant and wild-type F344 subspecies, again suggesting an

involvement of another DPP4-like enzyme such as FAP,

DPP8 or DPP9 [112]. A novel congenic DPP4-deficient

DA.F344-Dpp4m/SvH rat model confirmed the physiological

role of DPP4 in glucose metabolism, immunology and

stress-related diseases [113,114]. Like the DPP4-knock-out

and -deficient animal models, transgenic mice with human

CD26 displayed a normal immunological phenotype,

although thymocyte proliferation as well as CD41 and

CD81 T cell differentiation and viability was impaired, sug-

gesting an important role of DPP4 in the T lymphocyte

homeostasis in peripheral blood [115].

Intriguingly, FAP–/– mice displayed a phenotype with

delayed wound-healing, but no increased susceptibility

towards cancer [28]. However, FAP(–/–) hTNFtg mice revealed

Fig. 2. Involvement of dipeptidyl peptidase

(DP)4-like enzymes in T cell effector response.

(a) Naive CD4 T cells are protected by DP2.

Antigen-presenting cells (APC) stimulate and

activate naive CD4 T cells. (b) Secretion of

interleukin (IL)-2 results in clonal expansion,

yielding T helper type 0 (Th0) cells. Enzymatic

activities of DP8 and DP9 are required for this

process. (c) Secretion of IL-12 and IL-4 results in

the differentiation of Th1 and Th2 effector cells,

respectively. Differentiation into Th1 cells

initiates the up-regulation of DP4 expression. A

small subset of CD26bright memory T cells already

expresses high amounts of CD26. Upon antigen

stimulation, CD26bright memory T cells augment

the Th1 and Th2 response by secreting interferon

(IFN)-g, IL-12, IL-4, IL-5 and IL-10, respectively.

Differentiation into Th2 cells results in only a

slight up-regulation of CD26. The DP4 activity is

equal in both T effector cells, due probably to

specific DP4 isoforms or DP8 and/or DP9. (d)

Differentiated T effector cells secrete specific

cytokines that induce differentiation of

leucocytes, resulting in cellular response by Th1

and humoral by Th2 effector cells. Leucocytes

expressing DP4, DP2 or DP8/9 are indicated.

Green arrow 5 stimulation; red

arrow 5 suppression.

[16,17,28,31,39–41,77–87,102,104].
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Table 2. Summary of phenotypes obtained from DPP4-knock-out (k.o.), DPP4-deficient and DPP4-transgenic animal models as well as FAP–/–

k.o., DPP9S729A/S729A gki., DPL1–/– k.o. and DPP2–/– k.o.mice [7,9,28,43,86,101–104,107,108,110–116,141–145].

Model Investigation Phenotype

DPP4 (–/–) mice Protection from

obesity 1 insulin resistance

* Energy expenditure, * serum GLP-1, leptin, insulin,

* Glucose tolerance + food intake

DPP4(–/–) � DPP4-inhibition 6¼DPP4(1/1) ) DPP4 5 target enzyme

Immunology Spleen: + CD41 T cells, * NK cells, stimulation (PWM): + IL-4,* IL-10, IFN-g

Peripheral blood: + CD41 NK T lymphocytes

After immunization (PWM): + IgG, IgG1, IgG2a, IgE, + IL-4, IL-2 1 delayed IFN-g

DPP4(–/–) � DPP4(1/1) ) non-selective 1 DPP8/DPP9 inhibitors + T cell proliferation

) DPP8/DPP9 involved

Nociception * Plasma substance P, delayed pain response

Cancer DPP4(–/–) � DPP4(1/1) ) DPP4-like inhibitor + tumour cells

Behaviour + Depression-like behaviour according to tail suspension and forced swim test

DPP4Mut 6¼DPP4WT ) DPP4 5 target enzyme

Disease Experimental colitis: DPP4(–/–) � DPP4(1/1) ) DPP4-like inhibitor ) intestinal

adaptation

Autoimmunity MS: + TGF-b1, + Th1 immunity * clinical experimental autoimmune

encephalomyelitis

Arthritis: * serum SDF-a * arthritic inflammation

F344/Crl (Ger/DPP4–)

rats or

F344/DuCrji (DPP4–) rats

Protection from obesity

1insulin resistance

Serum: * * GLP-1* * GIP, * * glucose tolerance, * * insulin after high fat- or glucose-

diet, + GLP-113–36, + insulin resistance, + food intake after high fat diet, + weight gain

DPP4Mut � DPP4-inhibition 6¼DPP4WT ) DPP4 5 target enzyme

Satiety DPP4Mut: * food intake 1 weight gain, � postprandial [PYY] after 24 h fast due to

PYY1–36

DPP4WT: peripheral administered PYY1-36 and PYY3-36: + food intake but not in

DPP4Mut

Short term DPP4-like inhibition: no anorectic effect of peripheral administered PYY1–36

Diseases Asthma: peritracheal oedema: * oedema due to ACE inhibitors

Glomerulonephritis: DPP4Mut 5 resistant to experimental induced glomerulonephritis

Cholestasis: * serum DPP4-activity after induction of cholestasis in DPP4WT rats, no

serum DPP4 activity in DPP4Mut

Cancer: + DPP4Mut expression ) + metastasis 1 cell adhesion

Arthritis: DPP4Mut � DPP4WT ) + arthritic inflammation with DPP4 -like inhibitors

) other DPP4-like enzymes involved in arthritis

Immunology Isolated PMBC from DPP4WT and DPP4Mut are able to be activated after mitogen acti-

vation ) DPP4 may be involved but not necessary for T cell activation in rats

Isolated splenic leucocytes from DPP4WT and DPP4Mut have the same proliferative

response of in-vitro stimulation by T cells (Con A), B cells (LPS) and T 1 B cell

(PWM) mitogens ) DPP4 may be involved but not necessary for lymphocyte prolifer-

ation in rats. Altered age dependent leucocyte subset 1 thymic emigration pattern in

DPP4Mut

Asthma: DPP4WT: * CD41/CD261/CD251 T cells recruitment in asthma induced

lungs of rats * CD261: CD26– TCR cells ) * IgE

DPP4Mut: + CD41 T cells + IgE, * recruitment of eosinophils, + recruitment of T cells

Cancer: + NK cytotoxicity in DPP4Mut rats ) DPP4 activity sustains NK cytotoxicity

Haematopoiesis: DPP4Mut � DPP4WT) DPP4-like inhibitor * neutro-

phils 1 erythrocytes from progenitor stem cells via G-CSF)DPP4-like enzyme involved

in neutropenia and acute anaemia

Nociception * Sensitivity to non-habiturated pain stimuly and/or reduced stress-induced analgaesia

Behaviour + Stress response in OF, SI, passive avoidance 1 EPM + motor activity

DPP4Mut 6¼DPP4WT ) DPP4 5 target enzyme

Small intestine DPP4Mut � DPP4-inhibition )* GLP-2 1* bowel weight 1 resistance to gastrointesti-

nal damage

Assimilation of

Pro in kidney

1 small intestine

* Excretion proline containing peptides in urine; + weight in DPP4Mut after fed with

gliadin

Isolated brush border membranes from small intestines 1 kidney unable to hydrolyse

proline containing peptides

Immunological roles of DPP4 and DASH
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less cartilage degradation, but similar inflammation and bone

erosion compared to wild-type hTNFtg mice [29].

DPL1–/– and DPP2–/– were found to be lethal, whereas

DPL1–/1 exhibited pigmentation defects and neurogenin-3

induced DPP2–/–, a phenotype opposed to DPP4–/– with

increased hyperinsulaemia, glucose intolerance, insulin

resistance and liver steatosis [86,116]. Furthermore, mutant

mice with knock-down of DPP2 in resting T cells (lck-

DPP2 kd) led to differentiation into IL-17 releasing

Th17 cells after in-vivo priming and in-vitro antigen-

specific stimulation [117]. Homozygote gene knock-down

DPP9S729A/S729A mice die shortly after birth, while heterozy-

gote DPP9wt/S729A mice were morphologically indistinguishable

from the wild-type. The results imply, on one hand, that enzy-

matic activity of DPP9 is essential for survival, and on the other

hand that no other DASH protein is able to take over the role

of DPP9, as none of them were up-regulated [43]. The physio-

logical and pathophysiological role of DPP9 has been eluci-

dated only recently, being involved in antigen presenting and

the EGF signalling pathway [38–40]. This suggests that DPP9

plays a role in inflammation as well as cell proliferation and

apoptosis [40,41].

DASH proteins as therapeutic targets

History and development of DPP inhibitors as well as
modulators of DASH proteins

The first generation of DPP4 inhibitors were developed prior

to the discovery of DPP8 and DPP9, and these include P32/

98 (Ile-Thia), Lys[Z(NO2)]-pyrrolidine, Lys[Z(NO2)]-thia-

zolidide, Lys[Z(NO2)]-piperidide, LAF-237 (vildagliptin),

NVP-DP728, L-Pro-L-boroPro, Pro-Pro-diphenyl phospho-

nate esters, aminoacyl-pyrrolidine-2-nitriles, aminoacylpyr-

rolidides and aminoacyl-thiazolidides [7,8,118]. At this

stage, data concerning selectivity were available only for

DPP4 and DPP2. In retrospect, the importance of DPP4

selectivity over DPP2 has been elucidated by the opposing

pathological roles of DPP2 in diabetes compared to DPP4

[86]. However, toxicological studies of the first-generation

inhibitor P32/98 resulted in high toxicity with bloody diar-

rhoea, emesis and tenesmus in dogs and alopecia, thrombo-

cytopenia, anaemia, enlarged spleen, multiple histological

pathologies and mortality in rats. Subsequently, selective

inhibitors were developed, and investigation of the above

cytotoxic effects revealed the inhibition of DPP8 and DPP9 to

Table 2. Continued

Model Investigation Phenotype

Transplantation Used as a model of stem cells/hepatocyte transplantation to distinguish between donor

and recipient, DPP4 5 HAM.4 5 differentiation marker of hepatocytes

Da.F344-Dpp4m/SvH Protection from obesity

1insulin resistance

Serum: * GLP-1 * Glucose tolerance * insulin after OGT + weight gain after high-

calorie diet + islet size )
DPP4Mut 6¼DPP4WT ) DPP4 5 target enzyme

Lipid metabolism * Leptin signalling * bound leptin in plasma + free leptin in liver + triglycerides +
alkaline phosphatase + aminotransferases

Kidney 1 small intestine Impaired assimilation of Pro in kidney and small intestine + weight in DPP4Mut after

fed with gliadin

Immunology + Lymphocytes + eosinophils * NK cells * B cells + NK cytoxicity + T cell prolifera-

tion + IL-6

Soluble DPP4 derived partially from bone marrow and not kidney according to trans-

plantation studies

Behaviour + ACTH + corticosterone + stress-induced hyperthermia + stress-induced analgaesia, *
fear extinction, * NPY in CNS + stress response in hole board test, SI 1 EPM )
DPP4Mut 6¼DPP4WT ) DPP4 5 target enzyme

huCD26tg mice Immunology + Age-related thymus cellularity with impaired thymocyte proliferation

+ peripheral T cell pool with * apoptosis in CD41 and CD81 subpopulations

FAP(–/–) mice General Delayed wound-healing

FAP(–/–)hTNFtg mice Arthritis Ameliorates cartilage destruction in inflammatory destructive arthritis

DPP9S729A/S729A General GKI-DPP9S729A/S729A mice with inactive DP9 ) neonatal lethal, DPP9wt/S729A ) indis-

tinguishable from wild-type

DPL1(–/–) mice General DPL 1(–/–) ) embryonic lethal, DPL1(1/–) ) pigmentation defect

DPP2–/– General Lethal

NGN3-specific

DPP2(–/–) mice

Metabolism * Hyperinsulaemia, * glucose intolerance, * insulin resistance, * liver steatosis, * adi-

pocytes resulting in visceral obesity

OP, open field test; SI, social-interaction test; EPM, elevated plus maze.

Red text: DPP4 inhibition results similar phenotype as DPP42/2 and both are different to wild-type DPP1/1, confirming DPP4 as pharma-

ceutical target; green text: no differences between DPP–/– and DPP1/1, but inhibition with non-selective DPP4-inhibitor shows pharmaceutical

efficacy indicating that DASH-protein other than DPP4 is involved.

L. Wagner et al.

274 VC 2016 British Society for Immunology, Clinical and Experimental Immunology, 184: 265–283



be responsible for the side effects [52]. Therefore, the second

generation of anti-diabetic DPP4 inhibitors focused on the

selectivity of the various DPP4-like enzymes [52,119–122].

Conversely, the requirement of selectivity is currently debated

controversially, as some of the selective inhibitors against

DPP8/9 were unable to enter the cell, suggesting that the

cytotoxic effects observed were not due to inhibition of these

cytosolic enzymes [53–56]. Given that DPP4, FAP, DPP8,

DPP9 and even DPP2 have their highest sequence and struc-

ture similarities at the catalytic domain [6], uncompetitive

inhibition at the propeller domain may be more specific for a

particular DPP4-like enzyme. Molecular modelling of DPP8

and DPP9 revealed a P2-loop at the propeller domain, con-

taining F357 and R358, that seems to be unique to DPP8 and

DPP9 and is suggested to influence substrate and inhibitor

binding to the P2-pocket [60].

In addition, administration of DPP4 inhibitors or anti-

DPP4-monoclonal antibodies (mAb) have been demon-

strated to improve additional disease conditions in various

animal models, cell cultures or interfering with the interac-

tion of binding partners, as summarised in Table 3 [123].

For example, a non-selective DPP4-like inhibitor, PT-100,

had been in clinical trials II-III for various types of cancers

based on its dual inhibitory action against FAP as well as

DPP8 and/or DPP9, although it was discontinued in 2007

[30,49]. Dual inhibitor IP10.C8 against DPP4 and APN are

currently being investigated for the treatment of auto-

immune diseases such as psoriasis, multiple sclerosis (MS)

and IBD [48,124]. Intriguingly, DPP4 and DPP2 again

appear to have opposing roles regarding Th17. While DPP4

inhibition was shown to suppress the development of Th17

cell differentiation, knock-down of DPP2 in resting T cells

of mutant mice led to differentiation into IL-17-releasing

Th17 cells [48,125,126]. In fact, inhibition of DPP4 has

been proposed for the treatment of the autoimmune dis-

ease diabetes type 1 by suppressing the pathogenic effects

of Th1 and Th17 cells and up-regulating Th2 cells [127].

DPP2 selective inhibitor AX8819 was designed for a prog-

nostic marker of B cell chronic leucocytic leukaemia, as

well as a potential drug target to induce apoptosis in malig-

nant B cells [126]. DASH inhibitors Lys[Z(NO2)]-Thia,

Lys[Z(NO2)]-Pyr, TMC-2A, TSL-225, as well as FAP-

specific inhibitor L-glutamyl L-boroproline, have been

implemented for the treatment of arthritis

[7,13,97,111,121,128]. FAP inhibitors have been developed

to promote fibrinolysis [21]. Radioactive labelled anti-FAP-

monoclonal antibodies have been applied for targeting

tumour cells [129]. Furthermore, Pentostatin, an ADA

inhibitor admitted by the Food and Drug Administration

(FDA), was shown to reduce CD261 T lymphocytes prefer-

entially [130]. Chronic administration of haloperidol

increased the gene expression of DPL1 in mouse brains.

Latter findings indicated an altered response of Kv4/DPP6

to long-term neuroleptic administration [66].

Role of DASH proteins in diseases

Cancer

DPP4 has been proposed as a biomarker for a variety of

cancers, such as thyroid, colon, breast, prostate and malig-

nant pleural mesothelioma as well as lymphoma, b cell

chronic leucocytic leukaemia and T cell lymphoid malig-

nancies [7–9,22,23,130,131]. In addition, expression of

FAP has been investigated in several types of cancers as

potential biomarkers for epithelial colon, gastric, intestinal,

oesophageal, undifferentiated thyroid, lung, breast, ovarian

and cervical cancers, meningioma, glioma and cutaneous

melanoma, as well as aggressive fibromatosus [7,12,15,17].

In cancers and capillaries where DPP4 and FAP co-localize,

they form a heteromeric complex with both enzymes still

maintaining their activities. This complex protrudes at

invadopodia, where gelatin is binding to DPP4 and being

degraded by FAP, respectively. Truncation of NPY by DPP4

results in angiogenesis, whereas chemokines such as SDF-a

are involved for migration and invasion. Thus, by means of

their associations and substrate specificities, the DPP4/FAP

heteromeric complex is responsible for tumour invasion,

migration, metastasis and angiogenesis [6,7,13,22–24].

Furthermore, potential roles of DPP8 and DPP9 have

been suggested in breast and ovarian cancer and an up-

regulation of DPP9 has been detected in testicular tumours

[35,94,132]. In addition, DPP9 was found to regulate cell

survival and proliferation by inhibiting Akt activation

involving the EGF signalling pathway. Moreover, DPP9 and

DPP8 associate with H-Ras, a key signal molecule of the

EGF receptor signalling pathway [41]. DPP8 and DPP9

have also been proposed to play a role in cell adhesion,

migration and apoptosis [57].

Finally, DPP2 appears to be a prognostic biomarker and

drug target for B cell chronic leucocytic leukaemia [126].

Asthma

Investigating the effects of airway inflammation in wild-

type and DPP4-deficient rats, a significant increase of

DPP4 enzymatic activity was found in the lung paren-

chyma as well as DPP8/DPP9 enzymatic activity in the

bronchial epithelium. Furthermore, these enzymes also dis-

played elevated activities in bronchoalveolar lavage fluid. In

addition, strong immunohistochemical staining was

detected in bronchial epithelium and trachea for DPP8,

DPP9 and DPL2, respectively. These results were also con-

firmed by elevated mRNA levels of DPP8, DPP9 and DPL2

in bronchial epithelium and trachea of asthmatic lungs. In

contrast, increased staining of DPP4 and T cells was found

in asthmatic lung parenchyma. Thus, the results revealed

differential and site-specific expression of DASH proteins

in lung as well as their up-regulation and functions in

asthma [44]. In fact, DPL2 has been proposed for asthma

susceptibility [133].

Immunological roles of DPP4 and DASH
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Arthritis

Expression and activity of DPP4 in arthritis is up-regulated

in peripheral blood T lymphocytes and reduced in serum

and synoviocytes, respectively [134]. SDF-a, one of the best

substrates of DPP4, plays an important role in the pathoge-

nesis of arthritis. However, the regulatory mechanism of

DPP4 and SDF-a in arthritis appears to be somewhat com-

plex and has not yet been elucidated [8,134]. Different

results were obtained from clinical and epidemiological

studies with anti-diabetic DPP4 inhibitors regarding

increased or lower risks of polyarthropathy and auto-

immune diseases such as RA in patients with type 2 diabetes

mellitus (T2DM) [135,136]. Implementing differential diag-

nostics of polyarthropathy other than RA, osteoarthritis and

crystal-associated arthritis, as well as analysing various cyto-

kines and chemokines, higher incidences of polyarthropathy,

were found in patients treated with DPP4 inhibitors. Intri-

guingly, the polyarthropathy was associated with reduced

levels of SDF-a in plasma from T2DM patients receiving

DPP4 inhibitors. Following cessation of DPP4 inhibitors,

the clinical symptoms of polyarthropathy resolved within 3

months and the plasma levels of SDF-a were restored [135].

In contrast, the risks of developing an autoimmune disease

such as RA seems to be lower upon treatment with DPP4

inhibitors, according to epidemiological studies [136]. A sin-

gle nucleotide polymorphism (SNP) within an intron of

DPP4 has been identified recently as a novel risk locus of RA

[137]. However, in-vivo studies with three different DASH

inhibitors ameliorated disease symptoms in both wild-type

as well as DPP4-deficient F344 rats, implying the involve-

ment of additional DPP4-like enzymes [111]. Although FAP

was found to be up-regulated in chondrocytes and myofi-

broblasts of synoviocyte-like cells from patients with osteo-

arthritis and RA, specific inhibition of FAP and DPP4

resulted in increased invasion of activated synoviocytes due

to elevated SDF-a levels, ruling out at least DPP4 and FAP

as pharmacological targets against arthritis [21,98,128]. In

contrast, synovial fibroblasts (SF) of FAP(–/–) hTNFtg mice

had a reduced cartilage adhesion capacity compared to

hTNFtg SF in vitro. This indicates an unknown role of the

FAP protein, but not its enzymatic activity in the attachment

of SF to cartilage, promoting proteoglycan loss and subse-

quently cartilage degradation in chronic inflammatory

arthritis [29]. Investigations of FAP expression in SF from

patients with RA and osteoarthritis (OA) revealed elevated

FAP levels in RA, thereby confirming FAP being involved in

chronic inflammatory arthritis [29].

In contrast to the activity of DPP4 in serum and synovial

fluids, DPP2 activity was found to be increased, although

its function has not yet been elucidated [78,138].

IBD

IBD includes Crohn’s disease and ulcerative colitis [9]. The

involvement of DASH proteins has been elucidated based

on DPP–/– mice and DPP4/DPP4-like inhibitors. In

Crohn’s disease, pharmacological inhibition of DPP4 by

two different inhibitors reduced disease activity signifi-

cantly due to elevated GLP-2, indicating DPP4 to be a

pharmaceutical target in Crohn’s disease. However, in coli-

tis DPP4 inhibitors and DPP4–/– mice were less effective,

suggesting the involvement of other DASH proteins such as

DPP8 and DPP2 [97].

Conclusion

Taken together, DASH proteins play important roles in the

immune system involving quiescence, proliferation,

antigen-presenting, co-stimulation, T cell activation, signal

transduction, differentiation and tissue modelling. Thus,

they are involved in many pathophysiological processes

and have therefore been proposed for potential biomarkers

or even drug targets in various cancers and inflammatory

diseases. However, they also pose the challenge of drug

selectivity concerning other DASH members for better effi-

cacy and/or avoidance of unwanted side effects. Hence,

more knowledge is needed to disentangle the complex roles

of DASH proteins in immunology.
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