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Use of machine learning for behavioral distinction of autism
and ADHD
M Duda1,2, R Ma1,2, N Haber1,2 and DP Wall1,2

Although autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) continue to rise in prevalence,
together affecting 410% of today’s pediatric population, the methods of diagnosis remain subjective, cumbersome and time
intensive. With gaps upward of a year between initial suspicion and diagnosis, valuable time where treatments and behavioral
interventions could be applied is lost as these disorders remain undetected. Methods to quickly and accurately assess risk for these,
and other, developmental disorders are necessary to streamline the process of diagnosis and provide families access to much-
needed therapies sooner. Using forward feature selection, as well as undersampling and 10-fold cross-validation, we trained and
tested six machine learning models on complete 65-item Social Responsiveness Scale score sheets from 2925 individuals with
either ASD (n= 2775) or ADHD (n= 150). We found that five of the 65 behaviors measured by this screening tool were sufficient to
distinguish ASD from ADHD with high accuracy (area under the curve = 0.965). These results support the hypotheses that (1)
machine learning can be used to discern between autism and ADHD with high accuracy and (2) this distinction can be made using
a small number of commonly measured behaviors. Our findings show promise for use as an electronically administered, caregiver-
directed resource for preliminary risk evaluation and/or pre-clinical screening and triage that could help to speed the diagnosis of
these disorders.
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INTRODUCTION
Autism spectrum disorder (ASD) and attention deficit hyperactivity
disorder (ADHD) are among the most common childhood
disorders, with the most recent prevalence estimates by the
Centers for Disease Control at 1.5% and 9.5%, respectively.1,2 ASD
and ADHD have considerable behavioral overlaps, including
impulsivity and trouble with social interactions.3 However, these
behavioral overlaps can complicate differential diagnosis for
clinicians. For example, a child with predominant ADHD might
struggle with social interactions, but this may stem from
inattention to the speaker or interrupting due to impulsivity,
rather than a fundamental misunderstanding of social cues, which
more strongly aligns to a child with autism.
This is not to say that autism and ADHD are mutually exclusive.

In fact, the most recent Diagnostic and Statistical Manual (DSM-V)4

has recognized the frequency of co-occurrence of ASD and ADHD
symptoms and has altered its diagnostic criteria, which previously
precluded a dual-diagnosis under DSM-IV, to clinically formalize
the autism-ADHD comorbidity.
Both ASD and ADHD are identified through extensive examina-

tion, including evaluation by a team of behavioral pediatricians
and child psychologists as well as administration of a number of
diagnostic assessments by certified professionals. These rigorous
diagnostic examinations often last multiple hours, and the ever-
increasing demand for these appointments far exceeds the
maximum capacity for developmental pediatrics clinics across
the country. This bottleneck translates to wait times of up to
13 months from initial concern to diagnosis,5 or even longer if
from a minority group or lower socio-economic status,6 contribut-
ing to the average ages of diagnosis of 4.5 years for ASD and 7

years for ADHD, despite the fact that a majority of parents identify
developmental concerns before 36 months.1,2

In previous work, we applied machine learning to score sheets
of two commonly used autism diagnostic tools, the Autism
Diagnostic Observation Schedule7 and Autism Diagnostic Inter-
view-Revised,8 to develop abbreviated classification algorithms
that distinguish ASD from non-ASD with high accuracy.9–12 Using
analogous methods, we hypothesized that we could achieve
similar success in differentiating ASD from ADHD. On surveying
the data available in archived research records, the Social
Responsiveness Scale (SRS)13 provided the largest sample size of
ADHD subjects for our analysis. The SRS is a parent-directed
questionnaire that consists of 65 questions, and is commonly used
to assess severity of autistic traits. Here, we train and test six
different machine learning algorithms on SRS data from 2925
subjects, implementing forward feature selection methods that
are tailored to each algorithm to reduce the original set of 65
features to ⩽ 9 in every case with no statistical decrease in
performance as measured against the best estimate clinical
diagnosis provided by both the physician and parent. The
resulting classifiers show promise for use as pre-clinical screening
tools for the evaluation of ASD/ADHD risk.

MATERIALS AND METHODS
Data sample
We aggregated complete item-level score sheets of the SRS from the
Simons Simplex Collection version 15, Boston Autism Consortium and
Autism Genetic Resource Exchange for a total of 2775 subjects with autism
and 150 subjects with ADHD (Table 1). The SRS consists of 65 parent-
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directed items concerning their child’s behavior that are answered using a
choice of 'Not True', 'Sometimes True', 'Often True', 'Always True', that
corresponds to a numerical scale of 1–4, respectively. For our analyses,
missing answers were coded as 0’s, and we limited our data set to score
sheets with o5 total missing answers.
Classification of ASD was provided as physician-reported clinical

diagnosis and classification of ADHD was provided as parent-reported
clinical diagnosis. The ASD subjects selected had no documented ADHD
comorbidity, and the ADHD subjects selected did not have any
documented diagnosis of autism. The ADHD group consisted mainly of
siblings of the autism probands that reported a prior clinical diagnosis of
ADHD. The ASD group was 83.9% male and 15.6% female (0.5% unknown).
The ADHD group was 62% male and 37.3% female (0.7% unknown).

Machine learning
We tested the performance of six machine learning algorithms on our data,
using the 65 items in the SRS as features and the diagnosis of either ASD or
ADHD as the prediction class. We initialized our machine learning pipeline
by splitting the entire data set into 10 stratified folds, where each fold
consisted of 10% of both the ASD data (n=2775) and ADHD data (n=150).
We used these folds to perform 10-fold cross-validation, where each trial
dedicated nine folds for training data and the remaining one fold for
testing. For each cross-validation trial, feature ranking was performed on
the nine folds in the training set. All 65 features were ranked based on
mutual information, calculated from the minimal-redundancy-maximal-
relevance (mRMR) criterion described by Peng et al.14 The mRMR score is a
metric to quantify the contribution of a feature to a model, calculated by
subtracting the predictive power of the feature (maximal-relevance) from
its similarity to other features already in the model (minimal-redundancy).
After feature ranking on the training data was complete, we performed

10 random undersamplings on the ASD majority group in both the training
and testing sets to achieve a ratio of 1.5:1 ASD to ADHD in each set. This
subsampling technique was used to ameliorate the issue of significantly
unbalanced classes, as well as to safeguard against any age or gender
biases that may be inherent to the data. For each sampling, we
implemented forward feature selection using the previously obtained
feature rankings to train and test our six machine learning algorithms,
recording the performance of each model with default parameters, as well
as with parameter tuning for each choice of features. This process was
repeated for each of the 10 cross-validation trials, resulting in an average
area under the receiver operating characteristic (ROC) curve (AUC) for each
model calculated over 100 trials. All machine learning analyses were
performed in Python using the package Scikit-learn.15 The Support Vector
Classification (SVC) model was implemented using the linear kernel,
Categorical Lasso was implemented as Logistic Regression with l1
regularization and our other Logistic Regression model (referred to here
as Logistic Regression) was implemented with l2 regularization.

RESULTS
For each trial in the 10-fold cross-validation, mutual information
feature ranking was performed on the nine folds designated as
the training set. In each of these 10 trials, the same 6 features were

consistently identified as the top ranked features, and variation in
feature order was not seen until rank 7 and beyond. The behaviors
associated with the top six features can be found in Table 2.
Supplementary Table 1 provides the average Mutual Information
Rank across the 10 trials, as well as response breakdowns for both
the ASD and ADHD groups and Χ2-values comparing these
distributions, for all 65 SRS items.
Figure 1 illustrates the results of our forward feature selection

process for each of our six algorithms, both with and without
parameter tuning. To select the optimal number of features for
each algorithm, we identified the point at which there was no
considerable gain in accuracy, as measured by the AUC, when
more features were added to the model. We found that five of the
six algorithms performed close to the optimum using five features
or less (Table 3). Most algorithms exhibited a gradual decline in
performance as more features were added to the model
(Figure 1a), which could often be corrected back to the baseline
with heavier regularization, as evidenced by our parameter tuning
results (Figure 1b). The heavier regularization prevented
over-fitting on the training data, which was more likely to occur
when less relevant (lower ranked) features were considered.
Four of our algorithms (SVC, LDA, Categorical Lasso and Logistic

Regression) performed with comparable accuracy (0.962–0.965)
utilizing the same five items, and represent the best models for
this classification task. We compared ROC curves of these four
classifiers applied to a subsample of our data using stratified
10-fold cross-validation (Figure 2), as well as the distributions of
probability scores (Figure 3).

DISCUSSION
Behavioral diagnosis of both ASD and ADHD is a time-intensive
process that can be complicated by the overlaps in symptomatol-
ogy. Due to the high demand for the multi-hour clinical
assessments necessary for diagnosis, many children are waitlisted
for over a year, delaying their diagnosis and thereby delaying the
start of behavioral and/or pharmaceutical interventions. Currently,
there is no diagnostic instrument that can directly distinguish
autism from ADHD, nor does there exist a screening tool that is
expressly designed to distinguish risk between the two disorders
with high accuracy. We have previously utilized machine learning
techniques to successfully detect ASD from non-ASD9–12 using a
fraction of the behaviors that are traditionally measured, and
others have performed similar analyses for detection of ADHD.16

Here, we sought to expand on these previous studies to test
whether a limited set of behaviors derived from the SRS could be
used to distinguish ASD from ADHD, thereby enabling increased
specificity when confronted with clinically challenging cases.
Using stratified 10-fold cross-validation, we implemented mutual
information-based feature ranking and forward feature selection
on six machine learning algorithms to develop classifiers that
accurately separated these clinical populations using only a small
number of features.

Table 1. Sample description

SSC AGRE AC

ASD ADHD ASD ADHD ASD ADHD

Sample size 2394 133 400 17 4 0

Age
Q1 70.75 109.5 99.69 103.56 58 0
Median 97 134.5 129.36 133.4 64.5 0
Q2 132 163.5 163.08 156.36 71 0
IQR 61.25 54 63.69 52.8 13 0

Abbreviations: AC, Boston Autism Consortium; ADHD, attention deficit
hyperactivity disorder; AGRE, autism genetic resource exchange; ASD,
autism spectrum disorder; IQR, inter-quartile range; Q1, first quartile; Q3,
third quartile; SSC, Simons Simplex Collection. All ages are in months.

Table 2. Feature rankings

Rank SRS question

1 35. Trouble with the flow of normal conversation
2 24. Difficulty with changes in routine
3 22. Appropriate play with peers
4 37. Difficulty relating to peers
5 16. Atypical or inconsistent eye contact
6 29. Regarded by other children as 'odd'

Abbreviation: SRS, Social Responsiveness Scale. Top-ranking behavioral
features as identified by the minimal-redundancy-maximal-relevance
(mRMR) criterion.
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Machine learning automates part of the process of model
building. Conventional methods use probabilistic assumptions to
evaluate the validity of classification schemes that often amount
to human-crafted thresholding of features. The various machine
learning methods we employed allowed us to construct models
optimized on the observed data, discovering new classification
criteria. These methods have beneficial properties that are
generally orthogonal to the typical probabilistic assumptions used
in more conventional statistical tests (often relying on distribution
assumptions of the population of interest). For instance, Logistic
Regression with l1 regularization is a discriminative model that
enforces sparsity, guarding against the use of irrelevant features.
Support vector machines do not admit a simple Bayesian
interpretation and build a model based on extreme examples—
data points near where a decision boundary should be. These
properties allow us to automatically build models with potentially
very different and more effective properties than conventional
analyses might yield.
Our results showed that the tree-based algorithms, Decision

Tree and Random Forest, were not well-suited to the classification
task at hand. In Figure 1, a notable drop in the performance of the
Decision Tree model can be seen in both the default and
parameter-tuned experiments. This is not entirely unexpected,
considering the simplistic nature of this algorithm, and the limited
safeguards it has against over-fitting. The Random Forest
model exhibited sufficient classification performance but required
nearly twice as many features as the other four models. This

outcome is expected considering that the Random Forest
algorithm relies on multiple Decision Trees to achieve a 'majority
rules' classification model.
Conversely, we found that four of our six algorithms (SVC, LDA,

Categorical Lasso and Logistic Regression) all performed with high
accuracy (AUC40.96) and utilized only five behaviors, represent-
ing a 492% reduction in the number of behaviors measured with
the standard SRS. It is important to note that these five features
were always chosen as the top-ranking features using the mRMR
criterion in our 10 cross-validation trials, indicating that they are
valuable for distinguishing between the two disorders. In fact,
many of these features overlap with the behaviors that are
measured in several of our previously created behavioral
classifiers, including eye contact, reciprocal communication and
peer play.9,10,12 These models proved to be optimal for our
classification task, not only due to their low error rate, but also due
to their probabilistic qualities. Since they provide a probability
score in addition to a classification decision, these models provide
the ability to interpret their output in terms of confidence in the
classification and subsequently in terms of risk level for either
disorder (Figure 3).
Our results suggest the possibilty that one of these classifiers,

used singly or in conjunction with our previously created
behavioral classifiers explicitly focused on differentiating autism
from a more encompassing non-autism category, could act as a
useful pre-clinical screening and triage tool to assess risk of ADHD
and autism. Though the SRS is indicated for use in children aged
4–18 years, the behaviors that are measured by this tool are highly
adaptable to younger ages, as is evidenced by the SRS-Preschool
screening instrument, which implements a relatively small number
of wording changes to make the 65 questions suitable for children
as young as 3 years. This suggests the possibility that our classifier
could be similarly adapted to this age group, and perhaps even
younger. Given that the average age of diagnosis is currently 4.5
years for ASD and 7 years for ADHD and that roughly 90% of
parents identify developmental concerns before 36 months,1,2

there is strong impetus to focus energy on developing faster and
mobilized systems for risk detection. Our results support the
hypothesis that detection of ASD/ADHD risk earlier than these
national averages is possible. However, further testing and
validation must be done to confirm the accuracy in independent
replicate samples.

0.84

0.88

0.92

0.96

0 20 40 60

Number of Features

A
U

C

Model

CategoricalLasso

DecisionTree

LDA

LogisticRegressionL2

RandomForest

SVC

Forward Feature Selection w/Parameter Tuning

0.84

0.88

0.92

0.96

0 20 40 60

Number of Features

A
U

C

Model

CategoricalLasso

DecisionTree

LDA

LogisticRegressionL2

RandomForest

SVC

Forward Feature Selection w/o Parameter Tuning

Figure 1. Forward feature selection results with and without parameter tuning. Using forward feature selection methods, we tested the
performance of six machine learning algorithms at each feature addition, both with parameter tuning (a) and without (b). All of the six
algorithms performed with peak AUC⩾ 0.93; five of these only required five features. AUC, area under the receiver operating characteristic
curve; LDA, linear discriminant analysis; SVC, support vector classification.

Table 3. Accuracy of machine learning algorithms

Algorithm AUC Features used

Decision tree 0.933 2/65
Random forest 0.952 9/65
Support Vector Classification 0.965 5/65
Logistic Regression 0.962 5/65
Categorical lasso 0.962 5/65
Linear discriminant analysis 0.964 5/65

Using mutual information feature selection methods. Categorical Lasso
was implemented as a Logistic Regression model with l1 regularization and
our Logistic Regression model utilized l2 regularization. Support Vector
Classification was applied using the linear kernel.
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Furthermore, the caregiver-directed nature of our classifier
coupled with the brevity of the question set, stresses a novel
opportunity to create a mobile screening platform that
could have broad access in terms of both geographic location
and socio-economic status. By delivering this screening system
via a mobile app, parents with developmental concerns
about their child could receive an accurate assessment of their
child’s risk for ASD/ADHD more quickly than what is possible
today. Moreover, if adapted by developmental medicine clinics,
such a mobilized screening platform could prove useful for patient
triage, enabling higher throughput and improved waitlist
management.
Further evaluation of this classification system is needed,

including validation on a larger population of ADHD subjects, as
well as broadening the classifiers to handle multi-label classifica-
tion of individuals that have both ASD and ADHD. However, these
preliminary results support the possibility that machine learning
classifiers can be used as a short, comprehensible, caregiver-
directed screening measure that, on a mobile platform, could
provide a quick and streamlined assessment of risk.

Limitations
In this analysis of archival data, we were limited by the content of
the data sets available. Given that these data stemmed from
primarily autism-based collections, there was a large imbalance in
favor of the ASD class (Table 1). The 150 ADHD subjects we were
able to identify were unaffected siblings of ASD probands that had
reported a previous diagnosis of ADHD. We were able to
circumvent this class imbalance through stratified 10-fold cross-
validation and repeated random undersampling, allowing the
classifiers to be trained on 90% of the data and tested on the
remaining 10% of the data independently. Our constrained
sample size prevented us from devoting a portion of our data
exclusively to validation; however, our models were trained and
tested on 100 unique combinations of ASD and ADHD subjects (10
cross-validation trials × 10 samplings per trial). While this
methodology allowed us to utilize as much of the data as
possible and provides a robust estimate of the performance of our
algorithms on new data, a subsequent validation study with a
larger ADHD cohort is needed, and currently underway, to further
assess the performance of these classifiers.

Figure 2. ROC curves of subsampled 10-fold cross-validation of top-performing algorithms. Using a random subsampling of the ASD set, we
plotted the receiver operating characteristic (ROC) curves for each fold of our cross-validation, as well as the mean over all folds, for each of
our four top-performing algorithms; Categorical Lasso (a), Logistic Regression (b), Support Vector Classification (c) and linear discriminant
analysis (d). ASD, autism spectrum disorder.
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Figure 3. Distribution of probability scores of top-performing algorithms over 100 training/testing trials. These distributions show clear
separation of the ASD and ADHD populations. The probabilistic nature of these models is beneficial, as prediction scores can be interpreted as
confidence measures. ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; LDA, linear discriminant analysis; SVC,
support vector classification.
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