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We present here raw trajectories of molecular dynamics simula-
tions for nucleosome with linker DNA strands as well as mini-
malistic nucleosome core particle model. The simulations were
done in explicit solvent using CHARMM36 force field. We used this
data in the research article Shaytan et al., 2016 [1]. The trajectory
files are supplemented by TCL scripts providing advanced visuali-
zation capabilities.
Published by Elsevier Inc. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Value of the data

� Provides an atomic level data about nucleosome dynamics at microsecond timescale.
� Allows understanding the DNA dynamics in nucleosomes and nucleosome core particles.
� Shows interaction patterns of flexible histone tails with the DNA molecule.
� Can serve as a benchmark for further molecular dynamics (MD) simulations of nucleosomes.
1. Data

This data article presents microsecond molecular dynamics simulation trajectories which were
analyzed in detail in Ref. [1]. Table 1 lists the simulated system names, short description and cor-
responding subfolder names under which the data was archived at the following URL ftp://ftp.ncbi.
nih.gov/pub/panch/Nucleosome/MD. The trajectory files are presented in DCD file format, a corre-
sponding topology PSF file and PDB file with the coordinates of the starting nucleosome structure are
provided, as well as a TCL script to visualize the trajectory in VMD. Table 2 lists files with the short
descriptions. Water molecules and ions are not included in the trajectory files. Each trajectory file
contains 10,000 frames spanning one microsecond simulation time. Trajectories can be conveniently
viewed in VMD by using the following command: vmd –e view.tcl.
2. Experimental design, materials and methods

2.1. Initial model construction

As a starting point we used high resolution (1.9 Å) X-ray crystal structure of nucleosome core
particle formed by recombinant variants of X. laevis canonical core histones and modified human
α-satellite DNA (PDB ID 1kx5 [2]). To create a full nucleosome (FN) model with the linker DNA seg-
ments, a straight 20 bp long B-DNA duplex (AGTC)5 was constructed using the NAB software [3].
folder names.

System description Sub-folder name

Full nucleosome together with lin-
ker DNA and full-length histone tails
at physiological ionic strength

FN_model

Minimalistic NCP model: no linker
DNA, truncated histone tails

NCPm_model

http://ftp://ftp.ncbi.nih.gov/pub/panch/Nucleosome/MD
http://ftp://ftp.ncbi.nih.gov/pub/panch/Nucleosome/MD
http://ftp://ftp.ncbi.nih.gov/pub/panch/Nucleosome/MD
http://ftp://ftp.ncbi.nih.gov/pub/panch/Nucleosome/MD


Table 2
Data files provided for every simulation.

File name Description

only_nucl_init.pdb Initial conformation of nucleosome before equilibration
and simulations

only_nucl_init.psf psf topology file
md.dcd 1 μs MD trajectory saved every 100 ps
view.tcl TCL script for VMD that can be used to view the trajectory
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The linker DNA sequence is balanced in the number of flexible and rigid base pair steps [4]. It was
attached to the core DNA at both ends of NCP. One of the H3 histone tails was slightly rotated to avoid
steric clashes with the linker DNA (ψ angle of Lys36 was set to �35°). The minimalistic model of NCP
(NCPm) was obtained from the same crystal structure by clipping histone tails at the sites specified in
Figure 2 of Ref. [1] by triangles. All models were explicitly solvated in a rectangular box with a
minimum distance between the solute and the box boundaries of 20 Å. Sodium ions were added to
the system for neutralization, and then additional sodium and chloride ions were added at a con-
centration of 150 mM with respect to the volume of water. Crystallographic water molecules were
retained in the system, while all crystallographic ions were removed. Protonation states of amino
acids were assigned based on their solution pK values at neutral pH, histidine residues were con-
sidered neutral and protonated on ε-nitrogens.
2.2. Simulation protocols

The CHARMM36 force field was used for DNA and protein [5,6], TIP3P parameters for water
molecules and adjusted ion parameters from Luo and Roux [7]. See detailed discussion of force field
parameters in Ref. [1].

The simulation systems were prepared with the VMD program [8] and MD simulations were
performed with the NAMD 2.9 package [9]. Langevin dynamics with 2 fs integration step, damping
parameter of 0.5 ps�1 and T¼310 K were used as means to perform constant temperature simula-
tions. Pressure coupling was implemented via Langevin piston method and set to 1 atm. Simulations
were performed with the rigid covalent bonds and Van der Waals interactions were gradually
switched off over the distance between 10 and 12 Å. Electrostatic calculations employed PME method
with grid spacing of 1 Å, cubic interpolation, 12 Å real space cutoff and direct space tolerance of 10�6.
Periodic boundary conditions were used. To remove the nucleosome diffusion, slight constraints of
0.003 kcal/mol/A2 were applied to C-α atoms of H3 histone folds (residue numbers 64-78, 86-114,
121-131). To avoid base pair fraying at DNA ends in NCPm simulation a restricting artificial wall
potential was used to keep the distance between the centers of mass of bases in the terminal base
pairs within 120% of the initial.

All systems were initially subjected to energy minimization and initial equilibration via the fol-
lowing protocol: (i) 1000 steps of energy minimization with all protein molecules, DNA and crys-
tallographic waters fixed, (ii) 10,000 minimization steps without atom fixation, (iii) four rounds of
200 ps simulations with elastic constraints on C-alpha atoms of protein and N1, N9 atoms of DNA
bases which are gradually relaxed as follows: 300-4150-430-40.9 kcal/mol/A2.

The production simulations were then performed up to the simulation time of 1 ms. The trajectory
frames were saved every 100 ps. We run simulations in parallel on high performance computer
clusters/supercomputers using effective parallelization available in NAMD. The simulation speed
varied depending on the simulated system, number of CPUs and machine architecture. As a reference,
the FN model systemwas simulated in parallel on 384 CPU cores for 120 days progressing at a pace of
�8 ns/day.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2016.04.073.
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