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Abstract

In survival analysis, quantile regression has become a useful approach to account for covariate 

effects on the distribution of an event time of interest. In this paper, we discuss how quantile 

regression can be extended to model counting processes, and thus lead to a broader regression 

framework for survival data. We specifically investigate the proposed modeling of counting 

processes for recurrent events data. We show that the new recurrent events model retains the 

desirable features of quantile regression such as easy interpretation and good model flexibility, 

while accommodating various observation schemes encountered in observational studies. We 

develop a general theoretical and inferential framework for the new counting process model, 

which unifies with an existing method for censored quantile regression. As another useful 

contribution of this work, we propose a sample-based covariance estimation procedure, which 

provides a useful complement to the prevailing bootstrapping approach. We demonstrate the utility 

of our proposals via simulation studies and an application to a dataset from the US Cystic Fibrosis 

Foundation Patient Registry (CFFPR).
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1. INTRODUCTION

Quantile regression (Koenker and Bassett 1978) has gained increasing popularity in survival 

analysis for its easy interpretation and flexibility in exploring the dynamic relationship 

between a time-to-event outcome and covariates (Powell 1984; Ying, Jung, and Wei 1995; 

Yang 1999; Portnoy 2003; Neocleous, Vanden Branden, and Portnoy 2006; Peng and Huang 

2008; Portnoy and Lin 2010; Huang 2010, among others). For a time-to-event response T , a 

quantile regression model may assume that

(1)

where QT (τ|Z) inf{t : Pr(T ≤ t|Z) ≥ τ denotes the τ-th quantile of T given the p × 1 covariate 

vector Z, X = (1, ZT)T, and  is a (p + 1) × 1 vector of regression coefficients. By 

formulating covariate effects on different quantiles of T , model (1) enables a comprehensive 

examination of covariates’ impact on the distribution of a time-to-event outcome. Unless 

otherwise specified, this article is confined to regression settings with only time-independent 

covariates.

In this paper, we consider extending quantile regression to model counting processes, a more 

general notion for describing outcomes observed in survival studies as compared to the time-

to-event formulation adopted by model (1). In the traditional setting concerning only one 

event time, the survival information can be characterized by a counting process with a single 

jump at the observed event time. In recurrent events settings, where the event of interest (e.g. 

infection, hospitalization) can occur repeatedly, a single event time usually fails to fully 

capture the event history information of interest. In contrast, the counting process of 

recurrent events, which allows for multiple jumps, can well depict the trajectory of event 

occurrence and thus capture event history in full.

Many traditional survival models have been studied for their extensions for counting 

processes. Examples include the Cox's regression model to counting processes by Andersen 

and Gill (1982), the accelerated failure time model for counting processes by Lin, Wei, and 

Ying (1998), and more recently, transformation models for counting processes by Zeng and 

Lin (2006). As quantile regression has emerged as a valuable regression tool for survival 

data, studying its generalization for counting processes constitutes a sensible effort that can 

lead to two-fold benefits. First, the new counting process model is expected to handle 

additional types of survival data that cannot be straightforwardly covered by quantile 

regression model (1), such as recurrent events data. Second, as will be explained below, 

counting process based modeling generally facilitates the accommodation of various 

incomplete follow-up scenarios, a task that can be more difficult when a time-to-event 

formulation is adopted, as in quantile regression model (1).

Overall, this work bears a general goal of developing new counting process models extended 

from quantile regression modeling of a time-to-event response. We shall expound the main 

ideas in a recurrent events setting that arises from our motivating study. The presented 

strategies for estimation and inference are readily adaptable to other survival settings where 

data can be meaningfully captured by counting processes.

Sun et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2016 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. THE PROPOSED COUNTING PROCESS MODEL

We begin with a review of Andersen and Gill (1982)'s counting process formulation of the 

Cox proportional hazards model (Cox 1972). Let T and C denote time to an event of interest 

and time to censoring, respectively. With T subject to right censoring by C, observables 

include  and δ ≡ I(T ≤ C), where ∧ is the minimum operator. When there are 

only time-independent covariates, the counting process formulation of the Cox model can be 

given by

(2)

where Nnr(t) = I(T̃ ≤ t, δ = 1), and Ynr(t) = I(T̃ ≥ t), representing the observed counting 

process and the at-risk process for the event of interest, respectively. Here λ0(s) stands for 

the baseline hazard function, Z denotes a p × 1 covariate vector, and b denotes the vector of 

regression coefficients. Model (2) formulates proportional covariate effects on E{dNnr(t)|
Y nr(t), Z}, which corresponds to the intensity process for the counting process Nnr(t) given 

Z. As shown by Andersen and Gill (1982), the counting process formulation of the Cox 

model not only facilitates a rigorous development of asymptotic theory, but also renders a 

broadened regression framework that can well accommodate recurrent events data.

Through a re-examination of the work by Peng and Huang (2008), we can derive a counting 

process formulation of censored quantile regression model (1). That is, when T is subject to 

random censoring by C, which is independent of T given Z, it holds under model (1) that

(3)

In terms of the intensity process, (3) can be rewritten as

(4)

By (4), the intensity for Nnr(t) equals  at time , where 

 denotes the derivative of  with regard to τ. This shows that censored quantile 

regression does not imply a simple relationship between event intensity process and 

covariates, unlike the Cox model (2). Nevertheless, there exists an analogy between (2) and 

(4) in the sense that both models incorporate covariate effects via specifying the link 

between the counting process Nnr(·) and the at-risk process Y nr(·). Such a view implicates a 

general strategy for modeling a counting process, which is not limited to formulating 

covariate effects on its intensity process.

Following this general modeling strategy, we propose a new counting process model that 

takes the form,
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(5)

where N(·) is a counting process of interest, Y (·) is an at-risk process appropriately specified 

according to N(·), g(·) is a known positive and continuous function, β0(·) is a (p + 1) × 1 

vector of unknown regression coefficient functions, and U is a positive constant. Note that 

the at-risk process Y (·) is only required to be left continuous, and thus it can be well defined 

in many incomplete follow-up scenarios (e.g. window observations of recurrent events). This 

indicates the flexibility of model (5) to accommodate realistic data observation schemes in 

survival studies.

The proposed model (5) is motivated by the counting process model (3) implied by the 

quantile regression model (1). In the standard survival setting with N(·) = Nnr(·), Y (·) = 

Y nr(·), and g(u) = 1/(1 − u), model (5) becomes model (3). Proposition A1 of the 

Supplementary Materials shows that model (3) is equivalent to a weaker version of model 

(1) with τ ∈ (0, 1) replaced by τ ∈ (0, τU], where τU is a positive constant less than 1. This 

result reflects the connection between censored quantile regression and the proposed 

counting process model.

In model (5), a general function g(u) is adopted in place of the function 1/(1 − u) in (3). The 

specification of g(·) determines the scale in which covariate effects are formulated. For 

example, in the standard random censoring case concerning a single event time T , 

specifying g(u) ≡ 1, rather than 1/(1 − u), would yield a model that formulates covariate 

effects on the inverse cumulative hazard function, namely inf{t : ΛT (t|Z) ≥u}, rather than the 

conditional quantile function, where ΛT (t|Z) denotes the cumulative hazard function of T 
given Z. At the same time, we can show that allowing g(·) to take a general form in the 

proposed model generally does not incur extra complications in inference and computation.

3. THE APPLICATION TO RECURRENT EVENTS DATA

We shall illustrate the major methodological ideas by applying the proposed counting 

process model to recurrent events data.

Recurrent events data is an important type of survival data, which is frequently encountered 

in clinical and epidemiological studies. There has been a vast literature on recurrent events 

data analysis. For example, well-known methods include modeling the intensity process of 

recurrent events (Prentice, Williams, and Peterson 1981; Andersen and Gill 1982; Chang and 

Wang 1999, among others) and modeling the marginal hazard of each recurrent event (Wei, 

Lin, and Weissfeld 1989; Cai and Prentice 1995, 1997; Spiekerman and Lin 1998, among 

others) or the gap time between recurrent events (Huang and Chen 2003; Schaubel and Cai 

2004; Sun, Park, and Sun 2006, among others). In addition, Hougaard (2000) provided a 

detailed account of how recurrent events problems can be fit into the paradigm of multi-state 

models, for which transition probability or transition intensity between states can be 

estimated to characterize event progression. Shared frailty models were also proposed to 

explicitly model intra-subject correlations (Liang, Self, Nanndeen-Roche, and Zeger 1995; 

Wei and Glidden 1997; Hougaard 2000, among others). Adopting frailty models can provide 
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additional information on the dependency among the event time components of recurrent 

events data.

Another popular approach for recurrent events data is to specify covariate effects on mean or 

rate functions of recurrent events (Pepe and Cai 1993; Lawless and Nadeau 1995; Lin, Wei, 

Yang, and Ying 2000; Schaubel, Zeng, and Cai 2006; Huang and Peng 2009; Sun and Guo 

2011, among others). This type of approach is attractive because mean or rate functions are 

more intuitive to interpret than intensity or hazard functions. Modeling these quantities can 

avoid assumptions about the dependency of recurrent events, which are difficult to verify but 

are required by intensity models, multi-state models or shared frailty models.

3.1 The proposed recurrent events model

We consider a general data situation, where the observation of recurrent events is subject to 

an observation window specified as a time interval (L, R] (Nelson 2003). As a result, the 

counting process for the observed recurrent events is given by 

, where T(j) denotes the jth recurrent event time (j = 1, 

2, . . .), and the at-risk process is given by Yre (t) = I (L < t ≤ R). The observed recurrent 

events data include n i.i.d. replicates of Nre(·), Z, L, and R, denoted by 

.

Take the U.S. Cystic Fibrosis (CF) Foundation Patient Registry (CFFPR) data for example. 

Pseudomonas aeruginosa (PA) is a common and major pathogen in cystic fibrosis (CF) 

lungs, often resulting in chronic infections. Since no record of PA infections is available 

before registry entry, the observation window for PA infections is from the age at the first 

registry visit (L) to the age at the last follow-up before data collection cut-off date (R).

It is worth mentioning that nonzero lower bounds of observation windows have traditionally 

been paid less attention in recurrent events data analyses as compared to upper bounds. 

However, they are commonly encountered in observational studies. In CFFPR, a large 

proportion of subjects did not enter the registry right after birth due to delayed CF diagnosis 

or other reasons, resulting in many nonzero Li's. As implied by our numerical studies, 

naively treating them as zeros can considerably bias the inference regarding PA infection 

recurrence times.

The proposed counting process model (5) offers a natural way to model recurrent events 

subject to window observation. With N(·) and Y (·) specified as Nre(·) and Y re(·) 
respectively, model (5) gives rise to a new recurrent events model,

(6)

Assume (L, R) is independent of Ñ(·) given Z. Proposition A2 of the Supplementary 

Materials shows that (6) is equivalent to
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where μZ(t) is the so-called mean function of recurrent events, defined as μZ(t) = E{Ñ(t)|Z 

with . The mean function (or expected frequency) of recurrent 

events reflects the cumulative rate of counting process Nre(t), in contrast to the intensity 

function, which characterizes the instantaneous rate of events conditional on past history 

(Lin et al. 2000).

Therefore, an alternative representation of model (6) is given by

(7)

where τZ(u) = inf{t ≥ 0 : μZ(t) ≥ u}. The quantity τZ(u) was termed time to expected 

frequency u by Huang and Peng (2009). When the event of interest can occur only once and 

thus frequency u is restricted to the range of [0, 1], τZ(u) becomes the conditional quantile of 

T (1) given Z. By model representation (7), the non-intercept coefficients in β0(u) capture the 

covariate effects on time to expected frequency at G(u).

When g(u) = 1 (and thus G(u) = u), model (7) becomes the accelerated recurrence time 

(ART) model (Huang and Peng 2009), which is known to include the accelerated failure 

time model for recurrent events (Lin et al. 1998) as a special case. On the other hand, 

equation (6) provides information on how the observed counting process and the at-risk 

process are related under the ART model. One may choose g(u) as a positive continuous 

function other than g(u) = 1. The essential difference of the resulting model from the ART 

model would be the coefficient function rescaled from β0(·) to β0(G−1(·)), the result of 

formulating covariate effects on τZ(G(u)) instead of τZ(u). Given that (7) implies (6), we 

shall refer to model (6) as the generalized accelerated recurrence time (GART) model.

The proposed recurrent events model has considerable practical appeal. It models time to 

expected frequency, τZ(u), which may be viewed as the inverse of the mean function of 

recurrent events. Consequently, like means/rates based recurrent events models, the proposed 

model is intuitive to interpret and does not require specification of dependency through event 

history. While current means/rates based models mostly target the frequency scale of the 

mean function, the proposed model formulates covariate effects on the time scale of the 

mean function, and thus permits “direct physical interpretations” (Reid 1994). Such a feature 

may be preferred by many practitioners.

Furthermore, as elaborated in Sections 3.2–3.4, we uncover a general theoretical and 

inferential framework that can unify the studies of the GART model with recurrent events 

data and the quantile regression model (1) with randomly censored nonrecurrent event data. 

Thus, it is highly feasible that current software for censored quantile regression may be 

extended to carry out the proposed method for recurrent events data.

As another useful contribution of this work, based on our theoretical studies, we present in 

Section 3.4 a sample-based procedure to estimate the asymptotic covariance of the proposed 

estimator. According to our simulations, the new covariance estimation procedure can save 

two-to-three fold computation time as compared to the prevailing bootstrapping-based 
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inference. This feature is particularly attractive for analyzing large datasets, such as the 

registry data from CFFPR.

3.2 The proposed estimation procedure

In the special case where Li = 0 (i = 1, . . . , n) and G(u) = u, Huang and Peng (2009) 

proposed an estimator of β0(u) as the minimizer of the following objective function:

This estimator is a generalization of Powell (1984, 1986)'s estimator for censored quantile 

regression when the censoring time is always known. It is easy to see that the objective 

function, Ψ(β; u), is not convex. Huang and Peng (2009) developed an algorithm which is 

guaranteed to find a local strict minimizer that is asymptotically equivalent to the global 

minimizer of the proposed objective function.

While it is rather intuitive to modify Powell (1984, 1986)'s estimator to handle double 

censoring to an event time (Fitzenberger 1997) based on the equivariance property of 

quantiles (Koenker 2005), it is quite challenging to apply the same strategy to extend Huang 

and Peng (2009)'s method to window observed recurrent events data with nonzero Li's. This 

is because the presence of nonzero Li's can greatly increase the amount of missing 

information on the underlying counting process of recurrent events,Ñi(t). When Li = 0,  is 

observed if ; otherwise  is known to be greater than or equal to Ri. This 

meansÑi(t) is partially observable. However, with Li > 0, some recurrent events may have 

occurred before time Li, but when such events have occurred, and how many are generally 

unknown. Therefore, one always lacks definitive information on , and a similar 

ambiguity exists for any T(j) with j ≥ 2. As a result, Ñi(t) is never observable when Li > 0. 

Such a significant information loss onÑi(t) given Li > 0 is the main factor that prevents a 

straightforward adaptation of Huang and Peng (2009)'s method to handle window-observed 

recurrent events data.

Our estimating equation for β0(u) is directly motivated by the counting process based model 

representation (6). Specifically, by (6), we can readily identify an observable stochastic 

process, , such that E{M(u)|X} = 0 for u 
> 0. Here and hereafter, N(·) and Y (·) stand for the counting process and the at-risk process 

adopted in our recurrent events setting, namely Nre(·) and Y re(·) respectively. Note that 

M(u) is not a martingale in general but possesses the same utility as a martingale to construct 

an estimating equation for β0(·).

More specifically, we propose to estimate β0(u) based on the estimating equation:

(8)

where
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In the traditional nonrecurrent event setting with Ni(·) and Yi(·) replaced by  and 

 respectively, equation (8) boils down to the estimating equation proposed in Peng 

and Huang (2008) for censored quantile regression. This connection shows that equation (8) 

unifies the existing estimation for censored quantile regression and the proposed estimation 

for the new recurrent events model (6).

We can adopt a grid-based algorithm for estimating β0(·) based on equation (8). More 

specifically, define a grid, SL(n) = {0 = u0 < u1 < . . . < uL(n) = U}. The size of SL(n) is 

denoted by ∥SL(n)∥ ≡ maxj=1,...,L | uj − uj−1|. Our proposed estimator, , is a right-

continuous piecewise-constant function that jumps only at the grid SL(n). Given that τZ(0) = 

exp{XT β0(0)} = 0, we set  for all i. We propose to obtain , k - 1, 

2, ..., L(n), by sequentially solving the estimating equation,

(9)

for β(uk).

Note that equation (9) is not continuous; thus an exact solution that makes (9) strictly hold 

may not exist. Therefore,  is defined as a generalized solution to equation (9) 

(Fygenson and Ritov 1994). Because equation (9) is monotone, the set of generalized 

solutions is convex of diameter O(n−1) (Fygenson and Ritov 1994). To find a generalized 

solution to equation (9), an equivalent alternative approach is to locate the minimizer of the 

L1-type convex function,

where R* is a very large number and j = 1, . . . , L(n). Following arguments similar to those 

in the Appendix of Peng and Fine (2009), we can show that ∂lk(β(uk))/∂β (uk) equals 2 times 

the estimating function in (9) when R* is chosen large enough to bound 

 and 
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. This to equation then 

justifies the use of the minimizer of lk(h) as a generalized solution(9).

One can solve the minimization of lk(h) by using standard statistical software–for example, 

the l1fit() function in S-PLUS or the rq() function in R package quantreg. As shown in our 

theoretical studies, a grid size of order o(n−1/2) would be su cient for our grid-based 

estimator to have desirable asymptotic properties, including uniform consistency and weak 

convergence to a Gaussian process. In our numerical studies, our choice of ∥SL(n)∥ is of 

order O(n−1), by which we achieve good empirical results on both estimation accuracy and 

computational feasibility. A grid-free algorithm may be developed by adapting the strategy 

of Huang (2010).

3.3 Asymptotic properties

We establish the uniform consistency and weak convergence of the proposed estimator . 

Define A(b) = E{XN(exp(XTb))}, B(b) = dA(b)/dbT, Ã b) = E{XY (exp(XTb))}, J(b) = dÃ 

(b)/dbT, , , and . For a vector 

v, define . We let  and  denote the conditional density functions of L 

and R given Z respectively. Simple algebra can show that 

and .

We assume the following regularity conditions:

C1: Z and N(R) are bounded.

C2: Each component of A(β0(u)) is a Lipschitz function of u.

C3: (a) gZ(exp(XTb)) > 0 for any  and , (b)  is positive 

definite, and (c) each component of J(b)B(b)−1 is uniformly bounded in , 

where  is a neighborhood containing , defined in Supplement 

B of the Supplementary Materials.

C4: infu∈[v,U] eigminB(β0(u)) > 0 for any v 2 (0, U], where eigmin(·) denotes the 

minimum eigenvalue of a matrix.

Condition C1 assumes bounded covariates and a bounded total number of events observed 

during follow-up, and condition C2 implies the smoothness of β0(u). Condition C3 asserts 

additional mild assumptions, such as positive rate function of Ñ(t) and positive definite 

. Condition C4 is a key technical assumption which ensures the consistency of the 

proposed estimator. By the definition of B(b), condition C4 implies gz (exp{XT 0(u)}) > 0 

for 0 < u < U. This means the recurrent event should have a positive rate of being observed 

throughout the time interval (0, τZ(U)) under the random window observation scheme. This 

would generally require that the lower bound of the support of  equals 0 and the upper 

bound of the support of  exceeds τZ(U).
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We can establish the following theorems:

Theorem 1. Under conditions C1-C4, if limn→∞ ∥SL(n)∥ = 0, then 

, where 0 < v < U.

Theorem 2. Under conditions C1-C4, if limn→∞ n1/2∥SL(n)∥ = 0, then 

converges weakly to a Gaussian process for u ∈ [v, U], where 0 < v < U.

The proofs of Theorems 1–2 follow the same set of lines that Peng and Huang (2008) 

adopted for censored quantile regression. This is because of the uniformity in the estimation 

framework demonstrated in Section 3.2; both estimation methods are closely tied to a 

Volterra integral equation, which, in this work, takes the form,

The proposed sequential estimation procedure is essentially the first-order Euler scheme to 

the numerical solution to the above equation. The proofs are relegated to Supplement B of 

the Supplementary Materials.

3.4 Inference

To make inference on β0(u), bootstrapping procedures can be used. For example, one may 

adopt a resampling procedure along the lines of Jin, Ying, and Wei (2001) by considering a 

perturbed estimating equation,

where  are i.i.d. variates from a nonnegative distribution of unit mean and unit 

variance, such as an exponential distribution of unit rate. The above stochastic integral 

equation can be solved via a procedure similar to that proposed for equation (8). Denote the 

resulting solution by . It can be shown that the distribution of 

conditionally on the observed data and the unconditional distribution of 

 have the same limiting distribution. By repeatedly generating , 

one may obtain a large number of realizations of , the empirical 

distribution of which can be used to give a covariance estimate for  or a confidence 

interval for β0(u).

We develop a sample-based approach for covariance estimation that does not involve 

bootstrapping and thus can save considerable computation time. The key idea is to find 

consistent estimates for B(β0(τ)) and J(β0(τ)) and then plug them into the closed form 

derived for the asymptotic covariance matrix of ; see equation (B.6) in 

Supplement B of the Supplementary Materials. However, directly evaluating B(β0(τ)) and 
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J(β0(τ)) based on their definitions would involve density estimation, which may not be 

stable nor efficient with small to moderate sample sizes.

To avoid density estimation, we propose a novel adaptation of the technique of Huang 

(2002) and Peng and Fine (2009). Note that neither Huang (2002) nor Peng and Fine (2009) 

handles stochastic integral estimating equations that are involved in our estimation setting. 

For the proposed estimator, we need to properly design working estimating equations so that 

they can be theoretically justified and stably solved.

Define , , 

, and . The procedure for estimating 

B(β0(u)) and J(β0(u)) follows.

1. Find a symmetric and nonsingular (p+1)×(p+1) matrix En(u) {en,1(u), . . . , 
en,p+1(u)} such that Ωn(u) = {En(u)}2.

2. Solve the equation,

(10)

for b, and denote the solution by bn,j(u) (j = 1, . . . , p + 1).

3.
Calculate , and 

.

4. Compute n−1/2En(u)Dn (u)−1 and n−1/2 Ên(u)Dn(u)
−1, which provide consistent 

estimates for B(β0(u)) and J(β0(u)), respectively.

In Step 2, we adopt a working estimating equation, , which is 

monotone and can be solved via L1–minimization. The key motivation for considering this 

estimating equation is the asymptotic linearity associated with Ln(b) in the neighborhood of 

β0(u), which can give , 

where ≈ denotes asymptotic equivalence uniformly in u ∈ [v, U]. Likewise, we have 

. These results are key for 

justifying the proposed estimation of B(β0(u)) and J(β0(u)). More detailed justifications are 

given in Supplement C of the Supplementary Materials.

Remark 1. The proposed procedure for obtaining en,j(u) ensures that en,j(u) (j = 1, . . . , p 
+ 1) have the desired asymptotic order. The working estimating equation (10) would remain 

valid when one replaces en,j(u) by γc · en,j(u), where γc is a constant. This fact adds 

flexibility to the implementation of the proposed covariance estimation procedure.

Denote the estimators of B(β0(u)) and J(β0(u)) by B̂(u) and Ĵ(u) respectively. A consistent 

sample-based covariance estimator may be given by
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where  is the plug-in estimate for the operator ϕ(·) defined in 

Supplement B of the Supplementary Materials, and

Our simulation studies suggest that the proposed sample-based covariance estimator works 

quite well with small to moderate sample sizes.

3.5 Second-stage inference

One practical benefit of using the GART model to analyze recurrent events data is that it 

allows for accommodating and exploring varying covariate effects. Second-stage inference 

can be employed to serve this need. Given  for a range of τ's, it is often of interest to 

summarize the information provided by these estimators to help understand the underlying 

effect mechanism, and to determine whether some covariates have constant effects, so that a 

simpler model may be considered.

A summary of covariate effects can be generally formulated as some functional of β0(·), 

denoted by (Ψ0). A natural estimator of (Ψ0) is . This estimator may be justified by 

using the functional delta method provided that Ψ(·) is compactly differentiable at β0 

(Andersen, Borgan, Gill, and Keiding 1998). The detailed inference on Ψ(β0) can follow the 

discussions in Section 2.4 of Peng and Fine (2009).

To test the constancy of a covariate effect, it is equivalent to consider the null hypothesis that 

takes the form, , where the superscript (j) indicates the jth 

component of a vector, and ρ0 is an unspecified constant (j = 2, . . . , or p + 1). Appropriate 

test statistics for H0,j can be developed along similar lines of Peng and Huang (2008) and 

Peng and Fine (2009). Accepting H0,j for all j ∈ {2, . . . , p + 1} may indicate the adequacy 

of a constant effect model. Therefore, such a procedure may be used to test the goodness-of-

fit of an accelerated failure time model for recurrent events.

4. SIMULATION STUDIES

We conducted Monte Carlo simulations to assess the finite-sample performance of the 

proposed method. Like in Huang and Peng (2009), a Gamma frailty on a standard 

homogeneous Poisson process was applied to generate recurrent event times. Two 

covariates, Z1 and Z2, were considered, following the distributions, Bernoulli(0.5) and 

Unif(−0.5, 0.5), respectively. The recurrent event time sequence was generated by
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where {T * (j), j = 1, 2, . . .} was a recurrent event sequence from a standard homogeneous 

Poisson process and the frailty γ followed a Gamma distribution. The variance of γ, denoted 

by σ2, determines the level of intra-individual correlation, and was chosen to be 0 or 0.5. It 

can be shown that, under our simulation setup,

Covariate Z2 has a constant effect on τZ(u), while the effect of Z1 increases with expected 

frequency. We generated L from ω · Unif(0, 1) and R from Unif(L, 12), where ω was a 

Bernoulli(0.8) variate. Under these simulation set-ups, the average number of observed 

recurrent events per subject was about 4.0. With each selection of σ2, we generated 500 

datasets of sample size n = 100. For bootstrapping-based inference, the resampling size of 

100 was chosen. We set g(u) = 1 and adopted an equally spaced grid on u ∈ (0, 3] with step 

size, 0.02.

In Figures 1 and 2, we present the simulation results from the set-up with σ2 = 0 and the set-

up with σ2 = 0.5, respectively. In the first row, we plot the empirical bias of the proposed 

estimator  (solid lines) and the empirical bias of Huang and Peng (2009)'s estimator 

(dashed lines), which naively assumes L = 0, versus expected frequency u. It is shown that 

our estimates have small bias except for those corresponding to small u's. Treating all L's as 

0 clearly produces very biased coefficient estimation. The plots in the second row depict the 

empirical mean squared errors (MSE) versus expected frequency u. The empirical MSEs 

indicate reasonable efficiency of the proposed estimator with n = 100. In addition, the 

empirical MSE follows a similar pattern to the empirical bias. The observation of large bias 

and MSE at small u's is consistent with our theoretical results, which suggest substantial 

variability in estimating β0(u) as u is close to zero.

The last row of Figures 1 and 2 presents the coverage probabilities of 95% confidence 

intervals (CI) obtained from the proposed sample-based covariate estimates (solid lines) and 

those from bootstrapping (dashed lines). It shows that the bootstrapping-based procedure 

and the sample-based procedure have quite comparable performance. The resulting 95% CIs 

are slightly under-covered and yet have coverage probabilities fairly close to the nominal 

value. We examined the simulation results with a larger sample size, n = 200 (not reported 

here). We observe that the empirical bias and MSE decrease as the sample size increases. 

The coverage probabilities from either bootstrapping or sample-based procedure are much 

closer to the nominal value as compared to those with n = 100. We also evaluated the 

computation time taken to construct confidence intervals in each simulation setup. The 

computation time ratio of the sample-based approach to the bootstrapping procedure ranges 

from 0.16 to 0.47 with mean=0.24 and median=0.24, suggesting a significant saving in 

computation time by using the proposed sample-based procedure.
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We also compared the estimation efficiency between the proposed estimator and Huang and 

Peng (2009)'s estimator when observation windows always start from 0. In these 

simulations, we set L = 0 while keeping (T(j), R, Z) generated the same way. In Figure 3, we 

plot the relative efficiency of  to Huang and Peng (2009)'s estimator. It is shown that 

our estimator for the ART model is always more efficient than the method of Huang and 

Peng (2009). The efficiency gain seems to increase with the expected frequency and can be 

over 100% at some large u's. Such results may be explained by the fact that Huang and Peng 

(2009)'s estimator only employs the accelerated recurrence time assumption, (7), at a single 

u. Therefore, though Huang and Peng (2009)'s estimator is more robust than the proposed 

estimator, it does not make a full use of the global accelerated recurrence time assumption as 

the proposed estimator does, and thus is less efficient. The results in Figure 3 are consistent 

with Koenker (2008)'s findings from comparing the efficiency between Peng and Huang 

(2008)'s and Powell (1984, 1986)'s methods on censored quantile regression.

We also investigated a special case in which both the Cox regression model (Andersen and 

Gill 1982) and the GART model hold. Specifically, we generated a recurrent events dataset 

based on an GART model by letting T(j) = exp(Z1 + Z2)T*(j). Here T* (j) , (Z1, Z2), and (L, 
R) are defined in the same way as those for the other simulations. In this case, the true 

intensity process is given by exp(−Z1−Z2), and the time to expected frequency u equals 

exp(Z1 + Z2)u. Figure 4 compares the estimates for τZ(u) with Z = (0, 0) based on the Cox 

regression model with those based on the GART model with g(u) = 1. The 95% pointwise 

confidence intervals are also presented. It is shown by Figure 4 that the estimates for time to 

expected frequency based on both models are quite similar; both curves are close to the true 

line of τZ(u). The confidence intervals derived based on the Cox regression model are 

generally tighter Ψ(β0) than those based on the GART model. The difference in confidence 

interval width is evident at small u's but gradually diminishes as u increases.

The observations from Figure 4 well match our expectation given the following facts: (a) the 

Cox regression model imposes the constancy assumption for each coefficient function, and 

thus its estimation can make good use of all observations; (b) the GART model allows for 

varying covariate effects, and the proposed estimation of β0(u) essentially utilizes only 

observations from time 0 to τZ(u). The stronger modeling assumption of Cox regression may 

contribute to the tighter confidence intervals. Since τZ(u) is increasing with u, the proposed 

estimates for τZ(u) under the GART model can use fuller data information at larger u's and 

then become more comparable to those obtained from the Cox regression model. This may 

explain the observed smaller differences in estimation accuracy at larger u's.

5. AN APPLICATION TO A CYSTIC FIBROSIS DATASET

Cystic Fibrosis (CF) is a life-limiting genetic disorder with an incidence of 1:3400 in 

Caucasians (Boat and Acton 2007). Pseudomonas aeruginosa (PA) is the most important 

pathogen that shortens the survival of CF patients. According to Cystic Fibrosis Foundation 

(CFF) 2011 annual report, it infects more than half of CF patients and often leads to chronic 

conditions. Characterizing the timing of PA infections and assessing how it is influenced by 

potential risk factors can help improve treatment decisions and are thus of scientific interest. 

To address these questions, we utilized the data from 2875 children documented in 
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1986-2008 CFF Patient Registry (CFFPR), who were born in or after 1998, had at least one 

F508del mutation, and had 5 or more years of follow-up in the registry.

We applied the proposed method to this CFFPR dataset, with the recurrent event time T(j) 

being the age of a CF child when he or she had the jth PA infection. While some CF children 

entered the registry right after birth given the availability of early diagnosis by newborn 

screening, others had delayed CFFPR entries due to later diagnosis of CF or other reasons. 

Observation of PA infections started from the first CFFPR visit, and thus the time from birth 

to registry entry constitutes the L in our method framework. In this dataset, age at the first 

CFFPR visit ranges from 0 to 5.7 years with mean=0.7 years and median=0.4 years. The 

number of positive PA cultures at CFFPR visits ranges from 0 to 50; the mean and median 

number of PA infections are 3.9 and 2.0, respectively. We considered risk factors including 

sex, patient's CFTR genotype (I=F508del homozygous, II=F508del heterozygous), 

meconium ileus (MI)status , and pancreatic su ciency status (defined as never on pancreatic 

enzymes). The covariates for a subject are coded as Female, 1 if the subject was female and 

0 otherwise; F 508/Other, 1 if the subject was F508del heterozygous and 0 otherwise; MI, 1 

if the subject was diagnosed by MI and 0 otherwise; and Pancreat, 1 if the subject was 

pancreatic sufficient and 0 otherwise.

We fit the proposed model to the CFFPR dataset with the covariates described above, setting 

g(u) = 1. In Figure 5, we plot the estimated coefficients along with the 95% point-wise 

confidence intervals. The intercept coefficient estimates (panel A of Figure 5) represent the 

estimated log time to expected frequency of PA infection for the reference group, which 

consisted of CF boys with homozygous F508del mutations who had no MI and were 

pancreatic insufficient. For example, the time from birth to expected PA infection frequency 

of 1.0 is approximately 1.7 years. An alternative interpretation of this result is that, at age of 

1.7 years old, CF patients in the reference group are expected to have acquired one PA 

infection on average. Figure 5 (panel A) also suggests that the time to expected PA infection 

frequencies of 2.0 in the reference group is about 4.3 years.

The non-intercept coefficient estimates in Figure 5 (panels B–E) depict the estimated effects 

of covariates, which are allowed to be frequency-varying. Negative coefficient estimates 

indicate more rapid progression to recurrence of PA infections. To better summarize the 

varying covariate effect estimates, we present in Table 1 the average covariate effects in the 

frequency intervals (0.4, 1.4], (1.4, 2.4], and (0.4, 2.4] respectively, along with estimated 

standard errors and p values. The results in Table 1 suggest a strong disadvantage to CF 

children with pancreatic insu ciency, who tend to experience recurrent PA infections at 

earlier ages. Girls with CF appear to have marginal increased risk of recurrent PA infections 

only in the frequency interval (1.4, 2.4], which indicates later recurrence of PA infections. 

The average effect estimates for MI demonstrate a cross-over pattern, changing from −0.37 

to 0.74, though not reaching statistical significance in either frequency interval. From Table 

1, we find little difference in time to expected frequency between the F508del homozygous 

group and the F508del heterozygous group. This is consistent with literature that reported 

relatively weak associations between genotype and pulmonary phenotype in CF patients. We 

also conducted constancy tests for each covariate effect. The results given in Table 1 indicate 
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that MI had a frequency-dependent effect on the timing of PA recurrence, while other 

covariates displayed fairly constant effects over the frequency of PA infections.

In Figure 5, we also plot the coefficient estimates obtained from applying Huang and Peng 

(2009)'s method (dash dotted lines). Huang and Peng (2009)'s estimator, which assumes that 

the PA observation window always starts from zero, may suggest a smaller difference caused 

by pancreatic insufficiency in time to expected frequency less than 1.0. Such a discrepancy 

may be expected because, when the lower bound of PA observation window is ignored, the 

frequency of PA infection before registry entry is naively taken as 0, though it may be 

positive. Intuitively, this would result in a frequency-lag in the estimated effect as a function 

of frequency. We also note that the intercepts estimated by Huang and Peng (2009)'s method 

are significantly larger than those from the proposed method. This observation conforms to 

the intuition that naively treating PA infection frequency before registry entry as 0 would 

lead to over-optimistic estimates for time to expected frequency.

6. REMARKS

In this work, we propose a new approach to model counting processes that are naturally 

embedded in event history data. The new counting process model can be transformed to a 

quantile regression model in the traditional survival setting with random censoring or a 

generalized accelerated recurrence time (GART) model in the recurrent events setting with 

random observation windows. We are able to generalize the current methodological 

framework for censored quantile regression (Peng and Huang 2008) to serve the broader 

class of survival regression models implied by the proposed counting process model. We 

expect that the existing software for censored quantile regression can be extended to 

implement proposed regression methods for recurrent events data.

Our proposals for the GART model offer a useful and flexible alternative to current 

approaches for analyzing recurrent events data. The new method is easy to interpret and 

implement. It is also straightforward to adapt the proposed recurrent events method to 

accommodate the realistic on-and-off observation scheme of recurrent events, corresponding 

to observation windows that take the form as a union of multiple disjoint time intervals, say 

. In this case, the at-risk process needs to be specified as 

.

As mentioned in Section 2, the specification of g(·) is tied to the scale in which the covariate 

effects are formulated. In practice, we anticipate that the preferable forms of g(·) would be 

the ones that make model (5) easily interpretable. For example, with the standard set-up for 

randomly censored data, popular choices of g(·) may include g(u) = 1/(1 − u) and g(u) = 1, 

which lead to quantile regression modeling and modeling of the inverse cumulative hazard 

function, respectively. In the recurrent events setting, the most compelling choice of g(·) for 

model (6) may be g(u) = 1. Given the common stochastic structure implied by censored 

quantile regression model (1) and the proposed counting process model (5), we anticipate 

that model diagnostics for model (5) with a specified g(·) can be developed along the lines of 

Peng and Huang (2008).
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The proposed method for window observed recurrent events implies an alterative quantile 

regression approach for doubly censored data that include n i.i.d. replicates of η ≡ I(L < T ≤ 

R), W ≡ Tη , L and R, denoted by . In this data setting, both left and right 

censoring variables, L and R, are always observed, and T is the event time of interest 

assumed to follow quantile regression model (1). To estimate model (1), one may use the 

proposed estimating equation (8) with Ni(t) and Yi(t) replaced by I(Wi ≤ t, ηi = 1) and I(Li < 
t ≤ Ri), respectively. Inference procedures may be carried out by adapting the lines in 

Section 3.
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Figure 1. 
Simulation results with sample size n = 100 for the set-up with Gamma frailty of variance 0
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Figure 2. 
Simulation results with sample size n = 100 for the set-up with Gamma frailty of 0.5
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Figure 3. 
Simulation results on the efficiency of the proposed estimator relative to Huang and Peng 

(2009)'s estimator.
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Figure 4. 
Estimated τZ(u) curves with Z = (0, 0) based on Cox regression model (bolded dashed lines) 

and GART model (bolded solid lines) along with 95% pointwise confidence intervals based 

on Cox regression model (bolded dotted lines) and GART model (shaded area) when both 

Cox regression model and GART model hold. The true curve is presented in unbolded solid 

line.
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Figure 5. 
CFFPR data example: coefficient estimates (solid lines) and 95% pointwise confidence 

intervals (dashed lines) from the proposed method and the coefficient estimates from Huang 

and Peng (2009)'s method (dash dotted lines).
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Table 1

The CFFPR example: average covariate effect estimates along with standard errors (SE) and the corresponding 

p values, and the p values from constancy tests.

Average Covariate Effect Estimates

Frequency Interval Sex F508/Other MI Pancreat

(0.4,1.4] Estimate –0.06 –0.17 –0.04 0.74

SE 0.10 0.12 0.09 0.29

P value 0.55 0.15 0.69 0.01

(1.4, 2.4] Estimate –0.11 –0.10 0.07 0.86

SE 0.06 0.07 0.06 0.21

P value 0.05 0.19 0.21 < 0.001

(0.4, 2.4] Estimate –0.09 –0.13 0.02 0.80

SE 0.08 0.09 0.08 0.24

P value 0.28 0.16 0.81 < 0. 001

Constancy Tests

Constancy tests P value 0.32 0.26 0.06 0.50
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