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Abstract
The stem cells in the shoot apical meristem (SAM) are the origin of all above ground tis-

sues in plants. In Arabidopsis thaliana, shoot meristem stem cells are maintained by the

homeobox transcription factor geneWUS (WUSCHEL) that is expressed in cells of the

organizing center underneath the stem cells. In order to identify factors that operate

together withWUS in stem cell maintenance, we performed an EMS mutant screen for

modifiers of the hypomorphic wus-6 allele. We isolated the oberon3-2 (obe3-2) mutant

that enhances stem cell defects inwus-6, but does not affect the putative null allelewus-
1. The OBE3 gene encodes a PHD (Plant Homeo Domain) protein that is thought to func-

tion in chromatin regulation. Single mutants of OBE3 or its closest homolog OBE4 do not

display any defects, whereas the obe3-2 obe4-2 double mutant displays broad growth

defects and developmental arrest of seedlings. Transcript levels ofWUS and its target

gene in the stem cells, CLAVATA3, are reduced in obe3-2. On the other hand, OBE3 and

OBE4 transcripts are both indirectly upregulated by ectopicWUS expression. Our results

suggest a positive feedback regulation betweenWUS and OBE3 that contributes to shoot

meristem homeostasis.

Introduction
Postembryonic growth and iterative organ formation of higher plants rely on the activity of
pluripotent stem cells in organogenic centers, the meristems. The shoot meristem that will give
rise to the above ground organs has been extensively studied in the model plant Arabidopsis
thaliana. The homeodomain transcription factor WUS is expressed in the organizing center
(OC) underneath the stem cells [1] where it directly represses cytokinin response inhibitors [2]
and, after moving into the overlying stem cells [3, 4], represses cell differentiation and activates
expression of the signal peptide CLV3 [4–6]. CLV3 in turn repressesWUS transcription via
CLV1/CLV2-CRN receptor-like kinases to delimit the size of the OC [6–8]. This negative feed-
back loop balances stem cell maintenance and differentiation [7]. The WUS/CLV3 loop also
functions to maintain stem cells of the floral meristems [6, 7]. In contrast to the indeterminate
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shoot meristem, WUS in the determinate floral meristem also activates the gene encoding the
MADS domain protein AGAMOUS (AG) that in turn terminates WUS expression and thus
floral meristem growth [9–11]. In addition to its function in stem cell regulation, WUS is also
required for the development of the female and male gametes [12–14]. However, CLV3 signal-
ing does not appear to be targeted by WUS in these cases.

Although in the recent years, many studies identified further components affecting WUS/
CLV3 homeostasis [3, 15–23], howWUS maintains stem cells remains enigmatic.

In order to find hitherto undiscovered factors involved in the WUS-mediated stem cell reg-
ulation, we used a sensitized mutant screen for genetic modifiers of the hypomorphic wus-6
allele [21, 24]. Here we report the isolation of the wus enhancer 9 (wen9) mutant that enhances
stem cell defects in wus-6. We show by positional cloning that wen9 is an allele of the OBE3
gene, and characterize its function together with its closest homologue OBE4 in the shoot
meristem.

Results

wen9 enhances inflorescence shoot meristem defects ofwus-6
The putative null allele wus-1 causes premature termination of stem cells in the primary shoot
meristem during embryogenesis, resulting in a flat apex of partially differentiated cells at the
seedling stage [6]. Consequently, seedlings lack any true leaves at 10 days after germination
(Fig 1B). Postembryonically initiated shoot meristems terminate after the formation of a few
leaves, resulting in a stop-and-go phenotype (Fig 1C), and the seldom formed floral meristems
give rise to 4 sepals, 4 petals, and a single stamen before premature termination (Fig 1D). The
intermediate wus-6 allele causes reducedWUS expression levels, and the primary seedling
shoot meristem and floral meristem prematurely terminate indistinguishably to wus-1 (Fig 1B
and 1D; [21, 24]. In contrast to wus-1, however, postembryonically initiated wus-6 shoot meri-
stems grow indeterminately and give rise to many floral meristems (Fig 1C; Tables 1 and 2).
The wus-7 allele carries a missense mutation in the homeodomain and represents the weakest
known wus allele [25]. wus-7 seedlings form several rosette leaves before the primary shoot
meristem terminates (Fig 1B) and axillary shoot meristems form indeterminate shoots carrying
complete flowers (Fig 1C and 1D; Table 2).

In order to identify factors that cooperate withWUS in stem cell maintenance, we searched
for EMS mutants that modify the stem cell defects of the intermediate allele wus-6. One of the
isolated enhancers, wus enhancer 9 (wen9), was mapped to a 97 kb region between position
5001124 and 5098789 on chromosome 1, and a nonsense mutation was identified in the pre-
dicted first exon of locus AT1G14740. The encoded protein OBERON3 (OBE3) [26], also
named TITANIA1 (TTA1) [27], is 733 amino acids in size and contains a potential PHD
(plant homeo domain) DNA binding domain (Fig 1A). The wen9mutation introduces a stop
codon after the PHD domain at amino acid position 518. OBE3 transcript levels are reduced in
wen9 to about half of the wild-type level (S1 Fig). Transformation with a 4.6 kb genomic OBE3
fragment (Fig 1A) suppressed the enhanced phenotype of wen9 wus-6 plants (S1 Table; S4 Fig)
and two independent T-DNA insertion mutants in the OBE3 locus enhance wus-6 similar to
wen9, albeit to a weaker extent (S2 Table; S5 Fig). We thus conclude that the mutation in OBE3
caused the enhanced phenotype and assigned wen9 as obe3-2.

To investigate the genetic interaction betweenWUS and OBE3, we analyzed double mutants
between different wus alleles and the obe3-2mutant. Development of the homozygous obe3-2
single mutant is indistinguishable from wild type (Figs 1B–1D and 2A). The obe3-2mutation
does not affect the seedling phenotypes of wus-1, -6, or -7 (Fig 1B; Table 1). However, it
strongly reduces the postembryonic formation of inflorescence stems in all combinations
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(Fig 1C; Table 1) and causes the formation of leaves in a disorganized (= wuschel-like) pattern.
In cases where flowers are made, obe3-2 does not further enhance the already early termination
of wus-1 and wus-6 floral meristems, but causes premature termination of wus-7 floral meri-
stems (Fig 1D; Table 2).

In summary, residualWUS activity in hypomorphic wus alleles requires OBE3 for mainte-
nance of inflorescence meristems (wus-6 and wus-7) and floral meristems (wus-7).

OBE3 functions redundantly withOBE4
Because the obe3-2 single mutant does not display any developmental defect, we asked whether
related genes might mask its function. To this end, we isolated an insertion mutant in the clos-
est OBE3 homolog OBE4, also named TITANIA2 (TTA2) [27]. The obe4-2 (SAIL_827_F11)
mutation disrupts exon1, suggesting that it is a severe loss of function allele (S2 Fig). OBE4
transcript levels are reduced in obe4-2 to about half of the wild-type level (S1 Fig). obe4-2 single
mutants are indistinguishable from the Col wild type (Fig 2A).

Fig 1. OBE3 gene structure andmutant phenotypes. (A) Structure of theOBE3 gene. The upstream
region used for the complementation is shown in green. (B-D) Phenotypes of the denoted genotypes of
10-day-old seedlings (B), shoots (C), and flowers (D). Scale bars: 1 mm (B, D), 2 cm (C).

doi:10.1371/journal.pone.0155657.g001
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In the segregating progeny of an obe3-2/+ obe4-2/+ mother plant, we found 2.8% (n = 143)
very small seedlings with partially fused cotyledons and without any true leaves, did not
develop further, and were genotyped as homozygous double mutants by PCR (Fig 2B). By con-
trast, all obe3-2 obe4-2/+ plants identified by PCR (9.8%, n = 143) formed true leaves, but

Table 1. obe3-2 enhances the meristem defects of weak and intermediatewus alleles.

% of phenotype (of germinated seeds)

seedling (10 DAG) shoot (51DAG)

genotype of mother
plant

n ng wt-
like

wus-7
like

wus-1
like

retard1 wt-
like

wus-6
like

wus-1
like

disorganized leaves, no
stem

arrest2

Ler 244 42 99.5 0.0 0.0 0.5 99.0 0.0 0.0 0.0 1.0

obe3-2 51 2 98.0 0.0 0.0 2.0 98.0 0.0 0.0 0.0 2.0

wus-1/+ 202 3 69.9 0.0 28.1 2.0 68.8 1.5 24.6 4.0 1.1

obe3-2 wus-1/+ 205 2 75.9 0.0 20.7 3.4 69.5 3.9 1.5 19.7 5.4

wus-6/+ 245 0 73.5 0.0 25.3 1.2 73.1 25.7 0.0 0.0 1.2

obe3-2 wus-6/+ 212 1 74.4 0.0 24.2 1.4 74.4 0.0 0.0 23.7 1.9

wus-7/+ 237 2 94.0 5.6 0.0 0.4 79.6 19.5 0.0 0.0 0.9

obe3-2 wus-7/+ 228 4 93.8 4.9 0.4 0.9 75.4 19,2 0.0 4.5 0.9

Seedling phenotype classes: wt-like, shoot meristem forming a rosette of leaves; wus-7-like; shoot meristem termination after true leaves have been

formed, wus-1-like: shoot meristem termination without any leaves.

Shoot phenotype classes: wt-like, rosette, indeterminate inflorescence; wus-6-like, disorganized leaves, indeterminate inflorescence; wus-1-like,

disorganized leaves, stop-and-go inflorescence rarely forming flowers.

DAG, days after germination; n, number of plants analyzed; ng, not germinated;
1, retard: small whitish seedlings with retarded growth and cotyledons only.
2, arrest: plants stopped development at seedling stage.

Chi-square test results for the seedling phenotype difference between:

wus-1/+ vs obe3-2 wus-1/+, p>0.05, not significant

wus-6/+ vs obe3-2 wus-6/+, p>0.05, not significant

wus-7/+ vs obe3-2 wus-7/+, p>0.05, not significant
Chi-square test results for the shoot phenotype difference between:

wus-1/+ vs obe3-2 wus-1/+, p<0.0001, highly significant

wus-6/+ vs obe3-2 wus-6/+, p<0.0001, highly significant

wus-7/+ vs obe3-2 wus-7/+, 0.01<p<0.05, significant

doi:10.1371/journal.pone.0155657.t001

Table 2. Flower phenotypes of obe3-2 wus-1, obe3-2 wus-7 and obe3-2 wus-6.

Genotype n flowers stamens carpels

wild type (Ler) 20 6.0±0.0 2.0±0.0

obe3-2 20 6.0±0.0 1.8±0.6

wus-1 8 1.0±0.0 0.0±0.0

obe3-2 wus-1 3 1.0±0.0 0–0±0.0

wus-6 20 1.0±0.0 0.0±0.0

obe3-2 wus-6 3 1.0±0.0 0.0±0.0

wus-7 15 5.9±0.6 1.6±0.8

obe3-2 wus-7 20 4.0±0.0 0.2±0.6

At 79 DAG (except the obe3-2 wus-6 at 100DAG), opened flowers were taken from the genotyped plants

and the organ numbers were counted. Organ numbers in first and second whorls were 4 sepals and 4

petals, respectively, for all genotypes.

doi:10.1371/journal.pone.0155657.t002
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display severe growth retardation (Fig 2C), whereas the remaining segregating sibling plants
look like wild type. We independently confirmed these results with the obe3-1 obe4-1 combina-
tion (S3 Fig). Thus, OBE3 and OBE4 are redundantly required for plant growth.

obe4-2 wus-6 double mutants are indistinguishable from wus-6, with the exceptions that
obe4-2 wus-6 inflorescences produced less than 10 siliques (data not shown) and that all double
mutant plants (n = 6) were mosaics carrying both, wild-type-like complete flowers (40/170)
and wus-1-like incomplete flowers (130/170; Fig 2D and 2E). Thus, in contrast to obe3-2, the
obe4-2mutation restores carpel and seed development in wus-6, suggesting that in floral meri-
stems,WUS and OBE4 act oppositely.

Mutual expression regulation betweenWUS andOBE3
In order to investigate whether the expression levels ofWUS and CLV3 genes are altered, we
performed qRT-PCR with the 7 day-old obe3-2 and obe4-2 seedlings.WUS and CLV3mRNA
levels are significantly reduced in obe3-2 (0.43 and 0.45 fold, respectively) compared to the Ler
wild type, whereas ARR7mRNA levels appear increased (Fig 3A). In a converse experiment,
WUSmRNA level is increased after induction of p35S:cOBE3-GR expression and this effect is
suppressed in the presence of cycloheximide, whereas mRNA levels of CLV3, STM, and ARR7
are not significantly changed (Fig 3B). In contrast to obe3-2, expression levels ofWUS or CLV3

Fig 2. Genetic combinations of obe3-2 and obe4-2. (A) Plants of obe3-2 and obe4-2 single mutants are
indistinguishable from wild type. (B) obe3-2 obe4-2 seedlings that did not develop further. (C) obe3-2 obe4-
2/+ plants displayed two phenotypic classes at 60 DAG. (D) obe4-2 wus-6 plant displayedwus-6-like shoot
formation at 60 DAG. (E) obe4-2 wus-6 plant produced complete flowers and wus-1 like flowers. Scale bars:
2 cm (A, C and D), 1 mm (B and E).

doi:10.1371/journal.pone.0155657.g002
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genes are not significantly changed in obe4-2 (Fig 3A), but the ARR7mRNA level is reduced
(Fig 3A). In summary, OBE3 is required for normalWUS and CLV3 expression.

Because double mutant plants are severely retarded, we analyzed theWUS expression pat-
tern in obe3-1 obe4-1/+ plants. In 6-day-old seedlings, expression of the pWUS:GUS (Fig 3C)
reporter is confined to the OC of obe3-1 obe4-1/+ plants as in the wild type. However, in
20-day-old inflorescences,WUS expression is not detectable in obe3-1 obe4-1/+ (genotyped by
PCR) inflorescence and floral meristems unlike in the wild type (Fig 3D).

In order to address whetherWUS affects OBE3/OBE4 transcript levels, we analyzed the
effects of inducible WUS activity. After induction of p35S:WUS-GR plants with dexametha-
sone, mRNA levels of OBE3 and OBE4 are upregulated, and this effect is suppressed in the
presence of cycloheximide (Fig 3E). The directWUS target in the shoot meristem, ARR7 [2], is
used as a control forWUS-GR induction. Upregulation of OBE3 and OBE4 expression byWUS
is also suggested by published microarray data (S3 Table). Thus,WUS activity is sufficient to

Fig 3. Changes of transcripts in obe3-2 and obe4-2. (A) Transcript levels of 7-day-old seedlings as
indicated. Error bars represent SE. (B) After induction ofOBE3 overexpression, mRNA levels ofWUS are
increased, whereas mRNA levels of CLV3, STM, and ARR7 are unchanged in 7-day-old seedling. Error bars
represent SD. (C) pWUS:GUS expression in 6-day-old obe3-1 obe4-1/+ seedlings is confined to the OC as in
the wild type. (D)WUSmRNA is undetectable by in situ hybridization in obe3-1 obe4-1/+ floral meristems of
30-day-old plants. (E)WUS overexpression upregulatesOBE3 andOBE4mRNA levels in 7-day-old
seedlings. ARR7 expression is used as a control. Error bars represent SD. Relative mRNA levels compared
to the mock control are shown.*,p<0.05, calculated from Cp’ values; ***, p<0.001, calculated from Cp’
values.

doi:10.1371/journal.pone.0155657.g003
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induce OBE3/OBE4 expression by an indirect mechanism. However, we did not detect any
abnormal phenotype in p35S:cOBE3 or p35S:cOBE3-GR plants.

Overexpression ofOBE3 alleviates shoot meristem but not floral
meristem defects ofwus-1
BecauseWUS overexpression can upregulate OBE3, we asked whether forced expression of
OBE3 can overcome the absence ofWUS activity and expressed p35S:cOBE3 in wus-1. When
comparing segregating p35S:cOBE3 wus-1/+ plants with wus-1 empty vector controls, we find
that the number of seedlings lacking the shoot meristem are reduced (10.3% vs. 28.5%) whereas
seedlings with weak shoot meristem defects are increased (20.8% vs. 6.0%; Fig 4A, S4 Table).
Furthermore, postembryonic shoot formation is increased (29.2% vs. 14.7%; S4 Table). The dif-
ference between p35S:cOBE3 wus-1/+ and empty vector wus-1/+ control is highly significant in
both seedling and shoot stages (both Chi square, p<0.0001). By contrast, defective wus-1

Fig 4. p35S:cOBE3 expression partially suppresseswus-1 defects. (A) Phenotypes of segregating
seedlings in the progeny of a p35S:cOBE3 wus-1/+mother plant. (B) p35s:cOBE3 wus-1 plants produce
wus-1-like flowers. (C) Model forWUS-OBE3 interaction. Scale bars: 1 mm.

doi:10.1371/journal.pone.0155657.g004
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flower development is not altered by p35S:cOBE3 (Fig 4B). Thus, OBE3 activity can partially
replaceWUS activity in seedling and inflorescence shoot meristems, but not in the floral
meristem.

Discussion
Stem cell homeostasis requires the balanced activities of a complex network of regulatory fac-
tors. Despite strong advances, our knowledge of regulatory pathways is still fragmentary with
many components unknown. This is due in part to the fact that a limited number of mutants
display informative stem cell phenotypes. Furthermore, many other essential stem cell factors
may remain undiscovered due to genetic redundancy or pleiotropic mutant phenotypes. Here
we used a modifier screen to overcome this problem and discovered the obe3-2mutant as an
enhancer of the hypomorphic wus-6 allele.

What is the developmental nature of theWUS-OB3 interaction?
The role ofWUS in stem cell maintenance can be observed at several developmental stages.
Mature wus-1 embryos and seedlings lack shoot meristem stem cells and display differentiated
cells instead. Postembryonically formed adventitious meristems terminate prematurely after
forming a few leaves. Only occasionally an inflorescence is formed, but it terminates prema-
turely after formation of 1–3 flowers, which in turn terminate prematurely after a single first
anther. Whereas seedling and floral meristems appear to absolutely requireWUS activity, the
occasional formation of inflorescences suggests that at this stage other factors can sustain stem
cells for some time [21]. Although OBE3 is ubiquitously expressed [27], the obe3-2mutation
enhances only the premature vegetative shoot meristem termination in wus-1 and thus repre-
sents one of these additional factors. In the hypomorphic allele wus-6, obe3-2 causes premature
termination of the inflorescence meristem indistinguishable to wus-1. Finally, in combination
with wus-7, which as a single mutant displays higher floral meristem activity compared to wus-
1 and wus-6, obe3-2 enhances premature termination of the floral meristem. These results
indicate that in addition to the seedling phase, OBE3 is required for residual WUS activity of
hypomorphic wus alleles in inflorescence and floral meristems. By contrast, obe3-2 does not
enhance wus defects in embryonic shoot meristem formation.

Curiously, despite their redundancy in the shoot meristem, obe3 enhances wus flower termi-
nation whereas obe4mutant suppresses it. One possible reason for this particular behavior
might be that in obe3-1 and obe3-2mutants, the C-terminal region of OBE3 is disrupted and
the PHD domain is still intact, whereas in obe4-1 and obe4-2mutants the PHD domain is dis-
rupted. Alternatively, both wild-type proteins might have divergent functions specifically in
floral meristems.

Considering the ubiquitous expression of OBE3, it is noteworthy that the obe3-2mutation
reduces the organ number only of the two inner whorls of wus-7 but does not affect the peri-
anth. A plausible explanation is thatWUS-mediated stem cell maintenance is only required to
provide the cells for the inner two whorls, whereas perianth organs appear to consume the
cells present in the initial floral meristem formed independently ofWUS, as described previ-
ously [6].

What is the genetic nature of theWUS-OB3 interaction?
Based on our mutant analysis and expression studies, OBE3 appears to act downstream of
WUS. On the other hand,WUS expression levels are reduced in obe3-2mutants and increased
by OBE3 overexpression from the ubiquitous 35S promoter. The reduction of pWUS:GUS
expression in the shoot meristem of obe3-1 obe4-1/+mutants and the requirement of OBE3 in
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wus hypomorphs suggest that this is also the case in shoot meristem regulation. One plausible
interpretation of this data is thatWUS and OBE3 reinforce each other's expression in a positive
feedback loop (Fig 4C), albeit this effect seems moderate.

OBE3 is a member of a small group of related proteins and, together with its closest homo-
log OBE4, is redundantly required for plant growth, consistent with previous observations
[27]. The seedling lethality of obe3-2 obe4-2 double mutants suggests that both genes are
involved in several processes other than shoot meristem regulation. Likewise, obe1 obe2 [28]
displays seedling lethality, but not any other obe double mutant combinations, indicating two
pairs of redundant functions in this group, OBE1,2 and OBE3,4. In contrast to obe3-2 wus-6
plants, obe4-2 wus-6 double mutants have wus-6-like inflorescences and partially restored floral
organs and seed production. This indicates that OBE3 and OBE4, in addition to their redun-
dant functions in general growth control, have opposite roles at least in floral meristems.

What is a possible molecular basis of interaction?
The upregulation of OBE3mRNA levels byWUS and vice versa is abolished by the presence of
the protein inhibitor cycloheximide, suggesting that intermediate components are necessary.
OBEs are PHD domain containing proteins, which originally were found by their homology to
the Potyvirus VPg-interacting protein [29]. The PHD domain is reported to bind to potentially
activating H3K4me2/3 modifications [30–34]. Further experiments are necessary to address
how OBE affectsWUS expression and vice versa and whether the enhancement of hypo-
morphic wusmutant defects by obe3-2 can be attributed to the reduction ofWUS expression
levels.

Material and Methods

Plant materials and growth conditions
The obe3-2mutant was isolated from EMS-mutagenized populations in a wus-6 background in
Ler [25]. The insertion alleles obe3-3SALK_078036, obe3-4SALK_042597c and obe4-2SAIL_827_F11 in the
Col background were identified from the SALK collection [35] of T-DNA tagged lines and the
SAIL collection [36], respectively. All other mutant alleles and transgenic lines used in this
study are listed in S5 Table. For segregation analysis, entire siliques from genotyped mother
plants were harvested and the seeds were sown in randomized schemes [37]. Plant growth con-
ditions were as previously described [6]

Mapping, genetic analysis and PCR genotyping
The wen9 wus-6/+ x Col cross was performed for map-based cloning. Among 12113 F2 plants
from F1 parents genotyped as wus-6/+, we identified 446 plants (3.7%) with an enhanced phe-
notype. The wen9mutation was mapped with SSLP and dCAPS markers to a 97 kb region in
chromosome 1 (between SNP CER465614 and CER424346). Sequencing of all 23 candidate
loci in this region detected a mutation only in the OBE3 gene. The identified G1554>A “stop”
mutation is in exon1 of the predicted reading frame of locus AT1G14740. The primers wen9-F
(5’- CAGAGATGTTTGGATTCGTTAAGGATGTTTTTGTGTGTTGCGCTAAGAATCG-3’) and
wen9-R (5’-GAAATTGTGATAAGAGAAGG-3’) were used for genotyping PCRs (Ta 55°C).
After TaqI restriction cleavage, the wild type displays a 300bp band, and wen9 displays a 250bp
and a 50bp band. Genotyping primers of other mutants including T-DNA lines used in this
study are listed in S6 Table.
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Preparation of constructs and selection of transformants
The genomic fragment including the intergenic region of OBE3 was amplified by PCR from
Ler and cloned as pOBE3:gOBE3 in a pGPTV-HPT-based vector. The RALF11-03K20 cDNA
clone from RIKEN BRC was used to amplify the full length cDNA by PCR for construct prepa-
ration. The cDNA fragments starting from ATG to the end of gene, with or without the stop
codon, were cloned as: p35S:cOBE3, and p35S:cOBE3-GR respectively, in a pGreenII-based vec-
tor. Arabidopsis plants were transformed by floral dip, and T1 seeds were selected on plates
with the respective antibiotics.

Quantitative RT-PCR analysis
Arabidopsis seeds were surface-sterilized with 1% hypochlorite for 10 minutes and washed two
times with 70% ethanol. Sterilized seeds were sown on 1/2 MS plates, stratified for 3 days in the
dark at 4°C and then grown in a Percival growth cabinet with constant illumination for 7 or 10
days. For all qRT-PCR experiments, 3 biological replicates with two technical replicates each
were done.

For experiments without further treatment, seedlings were collected from the plates and fro-
zen in liquid nitrogen immediately. For the induction experiments, dexamethasone (5 μM),
with or without cycloheximide (50 μM) were applied by spraying the plates, and flooding the
seedlings for 15 minutes. After removal of the liquid, seedlings were returned to the Percival
growth cabinet for 4 hours before sample collection.

Total RNA was extracted from whole seedlings using the RNeasy1 Mini kit (QIAGEN), fol-
lowed by RQ1 RNase-Free DNase (Promega) treatment and reverse-transcribed with Super-
Script III First-Strand Synthesis SuperMix for qRT-PCR (Invitrogen). Quantitative PCR was
performed with the LightCycler1 480 system (Roche) coupled with SYBR Green I Master
(Roche). For each qPCR reaction, 25 ng of cDNA was used. Transcript level analysis was car-
ried out according to a published protocol [38]. For statistical analysis, ANOVA or t-tests were
performed on Cp’ values. The Cp’ values were calculated after normalizing the Cp values with
three independent reference genes, which passed the geNorm v3.5 [39] test. For graphic pre-
sentation, Normalized Relative Quantity (NRQ) was first rescaled by setting NRQ of mock
treated wild-type samples as 1, then adjusted for the unspecific DEX effect and the transgene
effect sequentially in order to calculate the transcript fold change. Fold changes were plotted as
bar graphs. Primers used for quantitative PCR are listed in S7 Table.
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