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Abstract
Polymer nanoparticles are vehicles used for delivery of hydrophobic anti-cancer drugs, like

doxorubicin, paclitaxel or chemopreventors like quercetin (Q). The present study deals with

the synthesis and characterisation of nano formulations (NFs) from Q loaded PLGA (poly

lactic-co-glycolic acid) nano particles (NPs) by surface modification. The surface of Q-

loaded (NPs) is modified by coating with biopolymers like bovine serum albumin (BSA) or

histones (His). Conventional chemotherapeutic drugs adriamycin (ADR) and mitoxantrone

(MTX) are bound to BSA and His respectively before being coated on Q-loaded NPs to

nano formulate NF1 and NF2 respectively. The sizes of these NFs are in the range 400–

500 nm as ascertained by SEM and DLS measurements. Encapsulation of Q in polymer

NPs is confirmed from shifts in FT-IR, TGA and DSC traces of Q-loaded NPs compared to

native PLGA and Q. Surface modification in NFs is evidenced by three distinct regions in

their TEM images; the core, polymer capsule and the coated surface. Negative zeta poten-

tial of Q-loaded NPs shifted to positive potential on surface modification in NF1 and NF2. In
vitro release of Q from the NFs lasted up to twenty days with an early burst release. NF2 is

better formulation than NF1 as loading of MTX is 85% compared to 23% loading of ADR.

Such NFs are expected to overcome multi-drug resistance (MDR) by reaching and treating

the target cancerous cells by virtue of size, charge and retention.

Introduction
Most anti-cancer drugs have limitations in clinical administration due to their poor solubility,
some physicochemical and pharmaceutical properties. They require the use of adjuvant, which
often cause serious side effects when administered intravenously. Considerable changes in con-
centration of this adjuvant are recorded in the blood plasma. These limitations are overcome
through nano formulation using biodegradable polymers and bioadhesive materials to encap-
sulate anticancer drug and render them suitable for oral administration. Many biopolymers
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like chitosan, gelatine, proteins and lipids are used for drug encapsulation. In the present work
we have used Poly (lactic-co-glycolic acid) PLGA (Fig 1a) as a polymer for drug encapsulation.
PLGA is approved by the US FDA for drug delivery because of its biodegradability, efficacy of
encapsulating hydrophobic drugs and sustained release of the drug at the target site. Encapsu-
lation shields the drugs from chemical degradation and non specific binding. The size of these
nanoparticles enables them to penetrate specific cancerous cells via receptors and or other
pathways which are over expressed by target cells. Various formulations of drug loaded poly-
mer nanoparticles and their efficacy in cancer treatment is reported [1–5].

Our interest is to deliver more than one drug by surface modification of drug encapsulated
PLGA NPs. This delivery model is designed to overcome multi-drug resistance (MDR) which
is major impediment in cancer treatment. In this model the hydrophobic drug is encapsulated
in the core of the NPs and its surface is modified to accommodate a hydrophilic drug. The sur-
face is modified by coating a biopolymer to which the hydrophilic drug is bound. Biopolymers
like BSA or His can have dual role; one is to carry the drug and other is to shield the nanoparti-
cles from body immune system, reticulo endothelial system (RES) and cellular degradation.
Dietary polyphenols are bestowed with chemopreventive properties and are ubiquitously
found in fruits and vegetables. Quercetin (Q) [6], a hydrophobic phenolic antioxidant is encap-
sulated in PLGA NPs. It has a chemical structure (Fig 1b) that counteracts the damaging effects
of oxidation caused by ROS or free radicals in living cells of our body. The suppression of carci-
nogenesis is suggested to be due to its radical scavenging activity. Q is also known to have che-
mopreventive properties along with ability to reverse the MDR pathways [7, 8]. Q is also
reported to inhibit CYP450, COX protein and tyrosine kinase family of enzymes leading to
modulation of signal transduction and apoptosis [9]. Adriamycin (ADR) and mitoxantrone
(MTX) (Fig 1c and 1d respectively) are well known chemotherapeutic drugs of the anthracy-
clines group. They are used as the hydrophilic drugs which act by DNA intercalation leading to
apoptosis [10–12]. When chemotherapeutic drugs like ADR/MTX act on cancerous cells some
normal cells in the near vicinity are also sacrificed; Q can help in reducing the damage as an
antioxidant. In cancerous cells Q can reverse MDR and render them favourable for the action
of ADR and MTX. The drugs when delivered in combination can either work synergistically or
as adjuvant. In the present work, the synthesis of Q-loaded polymer NPs carrying second drug
on modified surface and their physicochemical analysis is reported. Such formulations can be
used as alternative anti-cancer drug delivery system to over come MDR.

Fig 1. Chemical structures. (a) PLGA, (b) Quercetin, (c) Adriamycin and (d) Mitoxantrone.

doi:10.1371/journal.pone.0155710.g001
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Materials and Methods
PLGA (LA:GA-50:50) of molecular weight 30,000–60,000, quercetin, histone, mitoxantrone,
adriamycin, and sodium azide were obtained from sigma. PVA (poly-vinyl alcohol) was
obtained from Aldrich and BSA fromMerck. Acetone used was of analytical grade from
Merck. Milli Q water and phosphate buffer from sigma was used where ever necessary.

Preparation of drug loaded NPs
PLGA nanoparticles were prepared by “Single Emulsion Solvent Evaporation Technique” [13]
as summarised in Fig 2. PLGA (40 mg) and Q (2 mg) was dissolved in 4 ml of acetone. The
resulting PLGA solution was then slowly added to a 5% PVA aqueous solution (8 ml) using a
syringe. The solution was then sonicated using a probe sonicator (Hielscher UP100H, Ger-
many) over ice bath for 2 min. The emulsion was stirred for 4 hrs at 25°C on a magnetic stir
plate to allow evaporation of organic solvent. The formed nanoparticles were recovered by
ultracentrifugation at 18000 rpm for 30 mins at 4°C and washed twice with Milli-Q water to
remove unbound or excess PVA and free Q. The washed formulations were stored overnight at
-80°C in a freezer and then freeze-dried or lyophilized (GeminiBV Heto Maxi Dry Lyo) for 2
days to get the powdered form of NPs.

Surface modification of NPs
BSA binds to ADR with binding constant 7.8 x 103 M-1 [14] and has been coated on supramag-
net iron oxide nanoparticles to bind to drugs[15]. From the binding constant the ratio of their
binding concentration was determined. Accordingly ADR (2.2 × 10−4 M) was incubated with
BSA (1 mg/ml) for 15 mins. Q-NPs were then added to BSA-ADR complex and the resulting
mixture was sonicated for 30 s using bath sonicator. The resulting mixture was then incubated
for 1 hr at 37°C under constant agitation in a shaker at 180 rpm to facilitate the adsorption pro-
cess [3,16,17]. The BSA-ADR coated and Q-loaded NPs were then recovered by ultracentrifu-
gation for 20 mins at 4°C. Washed twice with Milli-Q water to remove unbound BSA and free

Fig 2. Single Emulsion Solvent Evaporation Technique. Schematic representation of the synthesis and surface modification of PLGA NPs.

doi:10.1371/journal.pone.0155710.g002

PLGANanoparticles with Encapsulated and Coated Drugs

PLOS ONE | DOI:10.1371/journal.pone.0155710 May 19, 2016 3 / 15



ADR. The washed formulations were stored overnight at -80°C in a freezer and then freeze-
dried or lyophilized for 2 days to get the powdered form of NPs. Similarly the second formula-
tion was prepared using histone and MTX in 5:1 ratio calculated on the basis of their binding
constants.

Particle size analysis and zeta potential measurements
Dynamic laser scattering (DLS) was used to measure the hydrodynamic diameter (nm), and
Laser Doppler Anemometry (LDA) was used to determine zeta potential (mV). The DLS and
LDA analyses were performed using Zetasizer Nano ZS (Malvern Instruments, Malvern, UK).
To determine the particle size and zeta potential, a dilute suspension of void NPs, Q-loaded
NPs, NF1 and NF2 (100 μg/ml) each was prepared in double distilled water, sonicated on an
ice-bath for 30 s and subjected to particle size and zeta potential measurement separately. All
measurements were performed in duplicates.

Determination of drug entrapment efficiency
The entrapment efficiency (E%) of Q-loaded in PLGA nanoparticles was determined in the fol-
lowing method: the nanoparticles were separated from the free drug by centrifugation and the
amount of free drug in the supernatant was measured using spectrophotometer. The E% was
calculated by the following equation:

E% ¼ ð½Drug�total � ½Drug�freeÞ = ½Drug�total � 100;

where drug is Q.

Determination of drug loading efficiency
Loading efficiency was calculated by L% = ([Drug]total / [NP]total) × 100, where drug is Q.

Fourier transformed infrared spectroscopy
The Fourier transformed infrared spectroscopic (FT-IR) analysis was conducted to verify the
presence of various chemical functional groups in PLGA, Q, Q-loaded PLGA NPs and surface
modified NFs. The FT-IR spectra were recorded with Jasco Fourier Transform Infrared Spec-
trometer. Dry solid samples (1% by weight) were finely crushed and mixed with potassium bro-
mide and pressed to make a pallet. Scans were recorded for each sample at a spectral range
from 4000–400 cm-1.

Differential scanning calorimetry
Measurements of the thermal behaviour of pure Q, PLGA void NPs and (NFs) were performed
with Differential Scanning Calorimeter (Pyris Diamond DSC, Perkin Elmer). The samples
were loaded onto standard aluminium pans and were scanned in a range from of 0°C−350°C
with a scan rate of 10°C/min.

Thermogravimetric analysis
Thermogravimetric Analysis (TGA) measures weight changes in a material as a function of
temperature (or time) under a controlled atmosphere. Thermogravitometric profile of void
PLGA NPs, free Q and Q-loaded NPs were recorded on TGA, TA instrument Q 600 SDT
simultaneous DSC TGA.
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In vitro release kinetics study
In vitro release of Q from NPs was carried out by dissolving 2 mg of NPs in 1 ml of PBS (0.01
M, pH 7.4) containing 0.1% v/v of NaN3 (to maintain a sink condition). The NP suspension
was equally divided in two tubes containing 1 ml each (as the experiment was performed in
duplicate) and kept in a shaker at 37°C at 150 rpm. At particular time intervals like (1 day, 2
day up to 20 days) these tubes were taken out from shaker and centrifuged at 13,800 rpm, 4°C
for 10 min. To the pellet obtained after centrifugation, 1 ml of fresh PBS/ NaN3 solution was
added to the shaker for the next readings. The collected supernatant was lyophilized and dis-
solved in 1 ml of DMSO/acetone. The solution was centrifuged at 13,800 rpm for 10 min at
25°C to collect the drug in the supernatant. The amount of Q in the sample was measured
fluorimetrically.

Scanning electron microscope (SEM) studies
The surface morphology of NPs was characterized by SEM (Zeiss Evo-MA 10) operating at an
accelerating voltage of 10–30 kV. Few drops of void, Q-loaded NPs, NF1 and NF2 water sus-
pensions (100 μg/ml) were separately dried on small glass pieces and sputtered with gold to
make them conductive and placed on a copper stub prior to the acquisition of SEM images.

Transmission electron microscope (TEM) studies
The internal structure of NPs was determined by TEM (Jeol Jem 2100 HR with EELS). One
drop of void, Q-loaded, BSA-ADR NF and His-MTX NF water suspensions (100 μg/ml) placed
over a carbon coated copper TEM grid (150 mesh, Ted Pella Inc., Redding, CA), and allowed
to dry. The images were visualized at an accelerating voltage of 120 kV under the transmission
electron microscope.

Results

SEM-TEM analysis
SEM images of the void NPs and Q-loaded NPs as illustrated in Fig 3a and 3b confirm their
formation by the standard solvent evaporation method used. The exterior surface of void is
smoother compared to loaded NPs, suggesting encapsulation of the drug. The SEM images of
NF1 and NF2 are represented in Fig 3c and 3d respectively. From the figures it is revealed that
the sizes of the NFs are greater than the Q-loaded NPs evidencing successful surface modifica-
tion. The pealing of layer from the surface also confirms the surface coating in NF1 and NF2.
TEM images (Fig 4) of the surface modified NF2 show three distinct layers; one is of the drug
in the core of the NPs, second is the polymer encapsulation and third is the coating on the
surface.

Size determination and zeta potential measurement
Zeta potentials were measured using dynamic light scattering and the values recorded are -2.0
mv, -10.0 mv, +3.0 mv and +8.0 mv respectively for void NPs, Q-loaded NPs, NF1 and NF2
respectively. The shift from negative zeta potential of Q-loaded to positive potential in NF1
and even higher positive shift in NF2 also support successful coating. The measured sizes are
about 180 nm for void and 250 nm for Q-loaded NPs. For NF1 and NF2 the sizes are between
400 to 500 nm. The DLS out put of size population for NPs and NFs are reproduced in Fig 5.
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FT-IR analysis
The FT-IR spectra of pure Q, BSA and PLGA are illustrated in Fig 6a, 6b and 6c. The spectra
show characteristic peaks of functional groups like OH, CH, C-O and C = O bands in accor-
dance with the reported spectra of Q [18, 19], BSA [20, 21] and PLGA [22]. The FTIR spectra
of the surface modified NF1 and NF2 (Fig 6d and 6e respectively) also retained the characteris-
tic bands of PLGA and Q with slight shifts. New bands in the spectra are assigned to the amide
from the protein coating and OH contribution from the drugs. Bands in around 3383 cm-1 are
assigned to OH stretch which is intrinsic of PLGA, Q and BSA. In Fig 6e and 6d bands in the
region 3062 cm-1 is characteristic of the amide-A of the proteins which is more prominent for
NF1 and NF2 which are coated with proteins. The amide I and II bands at 1652 and 1531 cm-1

respectively [20] of the proteins are integrated with the PLGA peak at 1758 cm-1 and so its
intensity is high for NF1 and NF2. Bands between 3000–2850 cm are signature bands of CH
stretching common to all the NPs and NFs. The strong bands at 1320–1000 and 1760–1690
cm-1 identified in all the NPs are assigned to C-O and C = O bonds present in the carboxyl
groups of PLGA.

TGA and DSC analysis
TGA scans in Fig 7a, 7b and 7c and are representative of melting curves of void NPs, Q and Q-
loaded NPs respectively. The TGA spectra of PLGA follows a sharp loss in weight at around
50°C with temperature where as Q shows a slower loss in weight at higher temperature (320°C)

Fig 3. SEM images of NPs and NFs. Scanning electron microscope micrographs of (a) void-PLGA NPs; (b) Q-loaded NPs;
(c) NF1 and (d) NF2.

doi:10.1371/journal.pone.0155710.g003
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in accordance to earlier reports [23, 24]. TGA profile of Q-loaded NPs follows weight loss at
intermediate temperature and less steep than PLGA confirming encapsulation of Q. DSC pro-
files of pure Q in Fig 8a reflect distinct melting temperature of Q at 326°C in agreement with
earlier reports [25]. Fig 8b and 8c are representatives of DSC patterns of NF1 and NF2, respec-
tively. The zoomed peaks for PLGA at 50°C and BSA/His between 60–70°C are traced in Fig 8d
and 8e respectively as observed by others [26, 27]. The melting peaks for ADR and MTX are
merged with that of Q between 300–320°C.

Drug entrapment efficiency and loading efficiency
Q was efficiently loaded in PLGA NPs, reaching a loading of 105 μg of Q per mg of NP with
encapsulation efficiency of 85%. ADR was coated on Q-loaded NP with efficiency of 23.2%.
MTX was successfully coated on NPs with efficiency of 84.62%.

In vitro release kinetics study
In vitro drug release kinetics followed for 20 days is represented in Fig 9 demonstrating initial
burst of drug from PLGA NP, followed by gradual release of drug on subsequent days. This is
the characteristic feature of PLGA NPs, which can vary with composition of PLGA and cellular
environment [28].

Discussion
Targeted drug delivery has gone through many facets over the last few decades; the latest being
nanotechnology. This technology has advantage of formulating tailor made drugs to suit the
purpose from the existing conventional anti cancer drugs. The main features of the formula-
tions are size, charge and composition which renders the conventional drugs into potential
drugs that can be consumed orally. The nano particles can be of any biodegradable polymer

Fig 4. TEM image of NF2. Transmission electron microscope image of NF2 illustrating the three layers of;
encapsulated Q, polymer capsule and surface modification.

doi:10.1371/journal.pone.0155710.g004
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Fig 5. Size distribution of NPs and NFs. Size in nm (a) void-PLGA NPs (b) Q-loaded NPs (c) NF1 and (d)
NF2.

doi:10.1371/journal.pone.0155710.g005
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Fig 6. Fourier transformed infrared spectra in the region of 4000–400 cm-1. FTIR spectra of (a) pure—Q
(b) BSA (c) PLGA (d) NF1 and (e) NF2.

doi:10.1371/journal.pone.0155710.g006

Fig 7. Thermo gravimetric profiles. TGAmelting curves of (a) void-PLGA NPs (b) free Q and (c) Q-loaded NPs.

doi:10.1371/journal.pone.0155710.g007
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like chitosan, lipids, synthetic PLGA, PEG etc. in which more than one drug can be encapsu-
lated. In the present study Q-loaded PLGA NPs are surface modified to accommodate a second
drug on the surface. Formation of Q-loaded polymer (PLGA) nanoparticles by the solvent
evaporation method is exhibited by the SEM images in Fig 3a and 3b. The surface of the Q-
loaded NPs is slightly uneven compared to smooth surface of void NPs. The size determined
by DLS (Fig 5) for void NPs and Q-loaded NPs is about 180 and 250 nm respectively. The size
of Q-loaded NPs is greater than void NPs confirming encapsulation. FT-IR, TGA and DSC
spectra of Q, void NPs and Q-loaded NPs as illustrated in Figs 6, 7 and 8 respectively exhibit
features that are supportive of presence of Q and PLGA in the samples. The FTIR spectral
bands corroborate with those reported for Q and PLGA and their shifts in Q-loaded NPs is evi-
dence of encapsulation [18–22]. Q inside the NPs has different physical form than the free Q
and the shifts are attributed to this. PLGA physical properties themselves have been shown to
depend upon multiple factors, including the initial molecular weight, the ratio of lactide to gly-
colide, the size of the device, exposure to water (surface shape) and storage temperature. The
hydrophobic nature of PLGA influences polymer degradation which in turn tunes the slow
release of the drug from inside the core. Release of Q from NPs was monitored fluorimetrically
and release up to twenty days after initial burst was recorded (Fig 9). The primary requirement
for better therapeutic properties of NFs per se controlled release of Q has been achieved as evi-
denced by release kinetics [28]. Other factors like the surface charge of the NPs also influence
their efficacy in cancer treatment.

Nature of NF’s surface is very crucial for their uptake by the cancerous cells. PLGA-NPs
with no surface modification; carrying negative charge can be rapidly opsonised and massively

Fig 8. Differential Scanning Calorimetry traces in the region of 0 to 350°C.DSC traces of (a) free Q (b) NF1 and (c) NF2. (d) The trace between is 40
to 60°C is zoomed to highlight PLGAmelting temperature in void NPs, NF1 and NF2. (e) The trace between is 50 to 100°C is zoomed to highlight Protein
melting temperature for NF1 and NF2.

doi:10.1371/journal.pone.0155710.g008

PLGANanoparticles with Encapsulated and Coated Drugs

PLOS ONE | DOI:10.1371/journal.pone.0155710 May 19, 2016 10 / 15



cleared by RES, mainly the liver and spleen. This is a major obstacle for active targeting as the
system recognises and removes the NPs from systemic circulation, and hinders effective deliv-
ery of the nano drug to cancerous cells. Surface modification of these polymer NPs with hydro-
philic biopolymers recognized by RES is the most pragmatic way to control opsonisation and
favour targeted drug delivery [29–33].

Binding of drugs like adriamycin, metmorfin, aspirin, norfloxacin and ASN with serum
albumins is reported [14, 34–37]. The protein-drug complexes are stable and mainly bind by
H-bonding, electrostatic and hydrophobic interactions. In recent years, extensive research has
been focused on adriamycin delivery via various natural and synthetic delivery tools as nano-
particles in order to aid the drug solubility, improve the therapeutic process by extending the
circulation time and enhance uptake into tumours, through the permeability and retention
effect [38–44].

In the present study, surface modification is achieved by adsorption of the protein–drug
complex on the surface of the Q-loaded NPs. Surface modification of NPs by BSA is already

Fig 9. Release of Q as measured fluorimetrically in the supernatant collected on regular intervals for 20 days. 2 mg of Q-loaded
NPs were dissolved in 1 ml of PBS (0.01 M, pH 7.4) containing 0.1% v/v of NaN3 and kept in shaker incubator and centrifuged before
supernatant was collected.

doi:10.1371/journal.pone.0155710.g009
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reported to be stable and retains the ability to bind to drugs [3,15–17]. This modification will
shield the NPs from being eliminated by RES. Surface modification of these NPs by coating
BSA/His bound to ADR/MTX respectively is captured in the SEM images Fig 3c and 3d. The
surface modified NFs are larger in size than Q-encapsulated NPs (between 400 to 500 nm)
compared to Q-loaded (250 nm). Also the NPs show less aggregation suggesting acquisition of
higher charges upon surface modification leading to higher repulsive forces between them.
TEM images (Fig 4) of NFs capture three different layers namely the encapsulated drug, the
polymer encapsulation and the surface coating of the NPs.

Zeta potential is the charge that develops between solid surface of NPs and its medium of
suspension. The net charge at the NP’s surface affects the ion distribution in the near by region
by increasing the concentration of counterions close to the surface. The positive zeta potential
of NF1 and NF2 facilitates higher interaction with the negatively charged cancerous cells due
to over expression of negatively charged glycol proteins compared to Q-loaded NPs with nega-
tive zeta potential. MDR is mainly due to the over expression of the these negatively charged
plasma membrane glycoproteins, which are capable of extruding various generally negatively
charged xenobiotics including some anticancer drugs.

Doxorubicin is a cytotoxic agent with high growth inhibition values is positively charged
and may not be flushed away by the negatively charged cancerous cells but can be impeded by
its low solubility. In NF1 where ADR bound to BSA is coated on Q-loaded NPs, its zeta poten-
tial is positive (+3.0 mv) in spite of negative charges on BSA and Q-loaded NPs. More positive
zeta potential (+8.0 mv) was observed when MTX bound His was coated on Q-loaded NPs.
Also 85% of MTX is bound to His compared to 23% of ADR on BSA. High loading of MTX
and higher positive charge on NF2, makes it a better nano formulation than NF1. Once the
NFs are inside the cell, both the drugs are delivered and the low solubility of Q is also over-
come. The extracellular pH of malignant tumors is significantly lower than that of normal tis-
sues under physiological conditions and helps to stabilize positive charge of NFs. These two
factors—more positive charges of NFs at the tumor site and more negative charges of tumor
cells/vasculature could lead to tumor-specific accumulation of NFs. This method has been suc-
cessful in accelerating in vitro uptake of coumarin to cancer cells, enhanced cytotoxicity of pac-
litaxel and increased in vivo accumulation of coumarin in tumor-bearing tissues [45].

Conclusion
Quercetin, a flavonoid with anti-cancer properties, is limited by low solubility and bioavailabil-
ity to be successfully designated as anti-cancer drug. By encapsulating it in polymer nano parti-
cles; this limitation can be been overcome. By surface modification of the Q-loaded NPs; the
chances of degradation before reaching the target can be restricted. Finally by achieving posi-
tive zeta potential; the NFs are electrostatically favorable to interact with the negatively charged
cancerous cells resulting in specific uptake and accumulation. Combination Q in nano form
with regular chemotherapeutic drugs like ADR and MTX in NF1 and NF2 respectively may
overcome MDR—a daunting task in cancer treatment. Here NF2 is a better formulation than
NF1 as it carries higher positive charge as well as larger quantities of MTX are loaded on the
surface of NPs compared to ADR in NF1. The application of the NFs on cancerous cell line
K562 is in progress.
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