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Abstract

Genetic association mapping in structured populations of model organisms can offer a fruitful 

complement to human genetic studies by generating new biological hypotheses about complex 

traits. Here we investigated prepulse inhibition (PPI), a measure of sensorimotor gating that is 

disrupted in a number of psychiatric disorders. To identify genes that influence PPI, we 

constructed a panel of half-sibs by crossing 30 females from common inbred mouse strains with 

inbred C57BL/6J males to create male and female F1 offspring. We used publicly available single 

nucleotide polymorphism (SNP) genotype data from these inbred strains to perform a genome-

wide association scan using a dense panel of over 150 000 SNPs in a combined sample of 604 

mice representing 30 distinct F1 genotypes. We identified two independent PPI-associated loci on 

Chromosomes 2 and 7, each of which explained 12 – 14% of the variance in PPI. Searches of 

available databases did not identify any plausible causative coding polymorphisms within these 

loci. However, previously collected expression quantitative trait locus (eQTL) data from 

hippocampus and striatum indicated that the SNPs on Chromosomes 2 and 7 that showed the 

strongest association with PPI were also strongly associated with expression of several transcripts, 

some of which have been implicated in human psychiatric disorders. This integrative approach 

successfully identified a focused set of genes which can be prioritized for follow-up studies. More 

broadly, our results show that F1 crosses among common inbred strains can be used in 

combination with other informatics and expression datasets to identify candidate genes for 

complex behavioral traits.
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Table S1: Numbers of F1 mice. Our goal was to have five male and five female mice per strain per cohort.
Table S2: Genes with expression QTL within confidence intervals of PPI associations.

The authors declare that they have no competing interests.

HHS Public Access
Author manuscript
Genes Brain Behav. Author manuscript; available in PMC 2016 May 19.

Published in final edited form as:
Genes Brain Behav. 2016 February ; 15(2): 260–270. doi:10.1111/gbb.12262.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Acp2; Arfgap2; expression QTL; Fam171b; Gtf2h1; Htatip2; prepulse inhibition; Prkd3; Rbm45; 
schizophrenia; Smarcad1; Timm10

Impairments in the ability to filter out unnecessary sensory information are a common 

characteristic of patients with a number of neuropsychiatric disorders including 

schizophrenia, bipolar disorder, obsessive – compulsive disorder, Tourette’s syndrome, panic 

disorder and some social disorders (Braff et al. 1978, 2001; Larsen et al. 2002; Perry et al. 
2001, 2007; Swerdlow et al. 1993). Sensorimotor gating is often measured as the relative 

reduction in startle reflex that occurs when a weak prepulse is given before a stronger 

stimulus, which is referred to as prepulse inhibition (PPI). While genome-wide association 

studies (GWASs) in humans have begun to identify dozens of loci implicated in 

schizophrenia (Ripke et al. 2013, 2014), the function of those genes has yet to be delineated. 

Furthermore, the genes that influence endophenotypes for psychiatric disease and whether 

they overlap with schizophrenia risk genes remains unknown. We and others have used 

endophenotypes such as PPI to study the aspects of psychiatric disease using animal models 

(Geyer et al. 2001). Numerous studies have identified specific chromosomal regions that are 

associated with heritable differences in PPI in rodents. These studies have used a variety of 

crosses including backcrosses (Palmer et al. 2003), chromosome substitution strains (Leussis 

et al. 2009; Petryshen et al. 2005), recombinant inbred strains (Loos et al. 2012), panels of 

inbred mice (Webb et al. 2009), heterogeneous stock mice (Hitzemann et al. 2008) and 

advanced intercross lines (Samocha et al. 2010). These approaches have various strengths 

and weaknesses; some permit finer scale mapping resolution and higher power to detect 

variants, while others incorporate greater amounts of genetic diversity, which may better 

approximate the diversity of human populations (Flint & Eskin 2012; Mott & Flint 2013).

Large panels of inbred strains can be an efficient choice for mapping quantitative trait loci 

(QTL). One major advantage of mapping using inbred strains is that because all individuals 

of a given strain are genetically identical, genotype data only need to be collected once. An 

additional advantage is that the resolution of mapped intervals is better than classic F2 

crosses because of the much greater number of ancestral recombinations captured by the 

inbred strains. Third, there are many more alleles segregating among inbred strains. Finally, 

the results can be integrated with other accumulated data about the same inbred strains. 

Early attempts to use this approach used modest numbers of inbred strains to map the 

genetic basis of various quantitative traits (Berndt et al. 2011; Grupe et al. 2001; Liao et al. 
2004; Liu et al. 2006) and did not always correctly account for unequal relatedness among 

the inbred strains (Chesler 2001). More recently, larger panels of inbred strains have been 

developed and densely genotyped to further improve precision and power. For example, the 

hybrid mouse diversity panel (HMDP), which includes 29 inbred as well as 71 recombinant 

inbred lines, has been used to map the genetic basis of various physiological traits including 

gene expression networks in brain, bone mineral density and other metabolic traits (Bennett 

et al. 2010; Farber et al. 2011; Park et al. 2011). The HMDP can map QTL to regions 

smaller than 1 Mb (Ghazalpour et al. 2012).

Sittig et al. Page 2

Genes Brain Behav. Author manuscript; available in PMC 2016 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We conducted a GWAS of PPI using a panel of 30 inbred mouse strains. Rather than 

phenotyping inbred strains from a vendor or breeding 30 inbred lines in house, we used a 

more efficient breeding scheme in which we produced a panel of 30 F1 offspring from 

crosses of C57BL/6J males and inbred strain females. Because both parents of F1 offspring 

are inbred, the F1 genotypes can be inferred directly from publicly available genotype data. 

We used two independent cohorts of mice. We then conducted a combined analysis of the 

data from both cohorts. A critical aspect of GWAS in populations used for high-resolution 

mapping is to account for the unequal relatedness among individuals; we accomplished this 

by using mixed models, similar to our (Cheng et al. 2010) and other prior publications 

(Bennett et al. 2010; Farber et al. 2011; Kang et al. 2008; Park et al. 2011). In order to 

follow-up on the implicated regions, we used expression QTL (eQTL) derived from the 

HMDP in hippocampus and striatum. This strategy identified a number of candidate 

transcripts that underlie the effects of the identified loci on PPI.

Materials and methods

Inbred mice and structured panel of F1 offspring

All animals used in this study were housed in a single, pathogen-free barrier facility. All 

procedures were approved by the University of Chicago Institutional Animal Care and Use 

Committee (IACUC). Mice had access to food and water ad libitum. Lights were on a 12 h 

on/12 h off cycle with lights on at 0600 h. We bred C57BL/6J males with females from a 

range of 30 commonly used inbred lab strains, creating an F1 generation of mice to serve as 

the study’s test population. C57BL/6J was used as the common strain to all crosses because 

of its inclusion in mouse genome resequencing projects. The creation of F1 s rather than 

using purely inbred strains avoids several detrimental effects of homozygosity including 

small litter sizes, some vision and hearing problems and extreme phenotypic differences. We 

attempted to produce 10 male and 10 female mice for each of the 30 possible F1 crosses; 

however, the actual numbers varied somewhat, because of variable breeding success and 

other practical considerations. The exact numbers of F1 mice are listed in Table S1, 

Supporting Information.

The 30 strains used to produce F1 s were adapted from the Mouse Phenome Database list of 

‘priority strains’. We excluded wild-derived strains from consideration because of the severe 

population structure they introduce and because of the low power to map QTL to rare wild-

specific variants (Ghazalpour et al. 2012). We favored inbred strains for which genome-wide 

dense genotype data were available. We eliminated several strains that failed to breed in our 

colony (CE/J, BPL/1J, C57Br/cdJ). We also eliminated pairs of strains that were extremely 

genetically similar to one another (e.g. BALB/cByJ vs. BALB/cJ; Kirby et al. 2010; Petkov 

et al. 2004). The different maternal strains and their respective abbreviations are as follows: 

129S1/SvImJ (129), A/J (AJ), AKR/J (AKR), BALB/cByJ (BALB), BTBR T+tf/J (BTBR), 

BUB/BnJ (BUB), C3H/HeJ (C3H), C57BL/6J (B6), C57BLKS/J (BKS), C57L/J (57L), 

C58/J (C58), CBA/J (CBA), DBA/2J (DBA), DDY/JclSidSeyFrkJ (DDY), FVB/NJ (FVB), 

I/LnJ (ILN), KK/HlJ (KK), LP/J (LP), LG/J (LG), MRL/MpJ (MRL), NOD/ShiLtJ (NOD), 

NON/ShiLtJ (NON), NZB/BlNJ (NZB), NZW/LacJ (NZW), PL/J (PL), RIIIS/J (RII), 

SEA/GnJ (SEA), SJL/J (SJL), SM/J (SM), and SWR/J (SWR). We generated two cohorts of 
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F1 mice using this same design; the second cohort was produced to provide replication for 

the results obtained from the initial study and to increase sample size. Production and testing 

of each cohort occurred over a period of 8 and 6 months, respectively. For each cohort, 

females were obtained from the Jackson Laboratory (2 – 6 per strain depending on predicted 

fecundity) and were bred to C57BL/6J males using harem breeding. Individual females were 

removed from harems and single housed when visibly pregnant. Four or more litters per F1 

cross were used to minimize possible litter-specific effects. Male and female F1 offsprings 

were weaned and ear tagged at 21 – 23 days of age and housed in same-sex cages containing 

two to five littermates. Mice were tested between 64 and 99 days of age. The sample size 

used for genetic mapping was 604 mice (see Table S1).

Prepulse inhibition

Testing was conducted between 0900 and 1600 h. Five PPI testing apparati were used, which 

were 5-cm cylindrical Plexiglass containers on a platform contained within a lighted, 

ventilated chamber (San Diego Instruments, San Diego, CA, USA). The cylinder was 

connected to a piezoelectric accelerometer that measured the mouse’s startle response. The 

system was calibrated according to manufacturer’s specifications before each day of testing 

began.

Mice were placed in a clean holding cage with bedding where they awaited testing for 20 

min. An experimenter blind to genotype then placed them in the testing apparatus. The 

protocol consisted of a 5-min acclimation period of 70-db white noise, followed by 62 trials 

occurring with 70 db noise in the background (Dulawa & Geyer 1996). Trials included 

pulse-alone trials (40 ms, 120 db burst); no stimulus trials and three types of prepulse trials 

(20 ms prepulse; 3, 6 or 12 db above background noise) followed 100 ms later by a 40-ms, 

120-db pulse. Prepulse trials were arranged into four blocks. Blocks 1 and 4 were pulse-

alone trials; blocks 2 and 3 contained pseudo-random combinations of pulse alone, no 

stimulus and each type of prepulse trial (3, 6 and 12 db). Responses were recorded for 65 ms 

after the beginning of 120-db stimulus. The intertrial interval was 9 – 20 s (average 15 s) 

throughout the test.

Prepulse inhibition was quantified as previously reported (Samocha et al. 2010). The PPI 

phenotype was defined as the difference of the average startle amplitude during the 3-, 6- 

and 12-db prepulse trials from the average startle amplitude during the pulse-alone trials, 

normalized by the pulse-alone amplitude: PPI = (SApulse – SAprepulse )/SApulse . As 

expected, PPI increased as the prepulse intensity increased; PPI 3 db < PPI 6 db < PPI 12 db; 

see Fig. S1. This study focuses on PPI 12 db because it had the highest heritability of the 

three PPI phenotypes (Appendix S1).

PPI cannot exceed a value of 1; in rare cases, mice startled more during the prepulse trials, 

which produced negative PPI values. We transformed the PPI measurements using the logit 

function, allowing the empirical distribution of phenotypes to closely resemble a normal 

distribution. To avoid extremely small or extremely large values after the transformation, 

small (or negative) PPI values less than 0.01 were set to 0.01 and any values greater than 

0.99 were fixed at 0.99.
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Genome-wide SNP data and informatics

Mouse diversity array SNP panel—An advantage of working with inbred lab strains is 

that genotype data are readily available. A total of 198 mouse strains have been genotyped 

using the AffyMetrix (Santa Clara, CA) mouse diversity array (MDA). This array was 

specifically designed to capture genetic diversity in commonly used laboratory mouse strains 

(Yang et al. 2009, 2011). The MDA single nucleotide polymorphism (SNP) data, after 

discarding low-quality SNPs, consist of 155 283 SNPs on Chromosomes 1 through 19, X, Y 

and the mitochondria (Wang et al. 2012). Single nucleotide polymorphism genotype data for 

a large number of inbred strains have also been released as a part of the mouse HapMap 

project (Kirby et al. 2010). These data were used to impute genotypes for the recombinant 

inbred strains in the HMDP (Bennett et al. 2010). We used MDA genotype data instead 

because it includes genotypes for a larger number of SNPs ascertained in a more 

comprehensive collection of strains. Mouse diversity array genotype data from the Jackson 

Laboratory Center for Genome Dynamics webpage were retrieved on 28 January 2014 

(http://cgd.jax.org/datasets/popgen/diversityarray/yang2011.shtml). Mitochondrial and sex-

linked markers as well as SNPs with missing genotypes were removed. We also filtered out 

SNPs polymorphic in 5 or fewer of the 30 strains because power to detect significant 

associations at such loci is low. For the same reason, we removed any SNPs with missing 

genotypes. We did not consider the X chromosome for mapping QTL because the X 

chromosome introduces several additional complications to the analysis (Broman et al. 
2006; Wise et al. 2013), and a treatment that properly addresses confounding because of 

relatedness for SNPs on the X chromosome is beyond the scope of this study. After these 

filtering steps, we included 155 283 SNPs on Chromosomes 1 – 19 in the association 

analysis (the list of SNPs is available upon request). All physical base-pair positions are 

based on NCBI release 37 of the Mouse Genome Assembly (mm9). Mapped loci are also 

presented in the text using GRCm38/mm10.

Imputed SNP panel—The MDA SNP data together with the full DNA sequences of 11 

lab strains from the Wellcome Trust Sanger mouse genomes project (Keane et al. 2011; 

Wong et al. 2012), plus the mouse reference genome (Church et al. 2009; Waterston et al. 
2002), have been previously used to impute genotypes in 88 MDA lab strains in a higher 

density panel of 1 181 330 SNPs (Wang et al. 2012). We used this resource to ‘fine-map’ the 

QTL initially identified using the lower density MDA SNP panel. We downloaded imputed 

SNP data for 11.8 million markers on Chromosomes 1 – 19 (http://csbio.unc.edu/

imputation) on 16 September 2014. Heterozygous genotypes and low-confidence genotypes 

(confidence score = 0) were set to missing, any SNPs with missing genotypes were 

discarded, SNPs that were not polymorphic in our inbred strains were removed and a small 

number of SNPs that had more than two alleles were also removed. We found that a large 

number of SNPs from the MDA SNP panel (329 210) were not included in the imputed SNP 

panel. Presumably, this was because they were highly correlated with SNPs that were 

already included. We combined these SNPs with the UNC SNPs to create a final SNP panel 

for fine-mapping. We also found that 53 211 SNPs were common to both MDA and UNC 

SNP panels. We compared the MDA genotypes against the UNC imputed genotypes for this 

overlapping set of SNPs and found only a very small discrepancy in these genotypes, in line 

with the error rate reported previously (Wang et al. 2012); only 142 out of 53 211 SNPs 
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(0.3%) had one or more genotype discrepancies between the two panels. The discrepant 

SNPs were not used for the analysis.

QTL mapping

We took several steps to prepare the phenotype data for QTL mapping. We computed a 

linear model with terms representing each potential covariate, including sex, body weight, 

chamber number and cohort, to evaluate their effect(s) on the PPI phenotype. Cohort 

explained 0.6% of the variance; sex explained 0.2% and body weight explained 0.3%. 

Because cohort and sex had negligible effects on PPI, data were combined across these 

factors. Covariates explaining less than 2% of the variance were not used in the final linear 

model used for genetic mapping. Two of the five PPI testing chambers (boxes 3 and 5) 

explained ~3% of the variance in PPI phenotype, so we included binary indicators for these 

testing chambers as a covariate for subsequent analyses. Next, we inspected the phenotype 

residuals obtained by removing linear effects of covariates. We removed outlying data points 

that were more than two standard deviations away from the mean of each strain (N = 17). 

This ensures that statistics calculated in tests for phenotype –genotype correlations were not 

overly sensitive to unusually large or unusually small phenotype measurements. The 

residuals of our linear model had empirical quantiles that closely match expected quantiles 

under the normal distribution, suggesting that a normal distribution was a good fit. Figure S2 

contains genome-wide associations from cohorts 1 and 2.

As the amount of the genome that is shared can vary considerably among the inbred mouse 

strains, these varying levels of relatedness are likely to confound our tests for phenotype –

genotype correlations, leading to inflation of spurious associations (Astle & Balding 2009; 

Kang et al. 2008; Marchini et al. 2004; Newman et al. 2001; Price et al. 2010). To correct for 

confounding because of hidden relatedness in our genome-wide association analysis, we 

used a linear-mixed model approach implemented in the program GEMMA (v. 0.95 alpha) 

(Zhou & Stephens 2012). Linear mixed model (LMM)-based approaches for QTL mapping 

have emerged as a robust strategy to account for confounding because of the population 

structure (Astle & Balding 2009; Cheng et al. 2010, 2011; Kang et al. 2010; Lippert et al. 
2011; Listgarten et al. 2012; Price et al. 2010; Yang et al. 2014; Yu et al. 2006).

We have at least three reasons for using GEMMA over other LMM-based approaches: (1) 

the numerical computations in GEMMA scale well to large numbers of markers and 

samples; (2) unlike other implementations of LMMs for genome-wide mapping [e.g. 

EMMAX (Kang et al. 2010), GRAMMAR (Aulchenko et al. 2007)], GEMMA avoids 

making approximations which lead to a reduction of power to detect QTL in certain 

circumstances; and (3) GEMMA only models additive effects of genetic markers (but not 

dominance), which is appropriate for our study design because our F1 mice only have two 

possible genotypes (B6/B6 or B6/non-B6). GEMMA yields calculations that are equivalent 

to exact test statistics [e.g. as implemented in EMMA (Kang et al. 2008)] but computes these 

statistics much faster. We expect that FaST-LMM would have been a good alternative 

(Lippert et al. 2011; Listgarten et al. 2012). We used the genotypes of the genetic markers to 

specify the genetic relationship matrix. A critical consideration for LMM-based association 

mapping is that including a genetic marker in the genetic similarity matrix K can deflate the 
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test statistic for this marker, leading to a loss of power to detect a QTL. This phenomenon 

has been called ‘proximal contamination’ (Cheng et al. 2013; Listgarten et al. 2012). The 

basic intuition for this loss of power is that including the candidate SNP in the genetic 

relationship matrix makes the null log-likelihood higher when the SNP helps to explain 

variance in the trait. In human GWASs with smaller sample sizes, this loss in power is 

expected to be small (Yang et al. 2014). In our study, we expect that proximal contamination 

will have a larger impact on QTL detection because of the extended patterns of linkage 

disequilibrium and because we anticipate alleles with relatively large effect sizes. To avoid 

proximal contamination, we computed 19 different matrices, each one excluding one of the 

19 autosomes [we have previously taken this approach in Parker et al. (2014)]. To scan 

markers on a given chromosome, we used the version of K that did not include that 

chromosome. This leave-one-chromosome-out (LOCO) approach provides a simple solution 

for avoiding the problem of proximal contamination (Cheng et al. 2013).

We report the evidence of a QTL at each SNP using the P value calculated from the 

likelihood-ratio test with 1 df (Zhou & Stephens 2012). Although other association tests are 

also implemented in GEMMA, we use the likelihood-ratio test because it is ‘well-behaved’ 

in that it controls for type 1 error; by contrast, the Wald and score test statistics for the LMM 

are not well-calibrated when the sample size (the number of genetically unrelated samples) 

is very small (Zhou & Stephens 2014). To calculate significance thresholds for the P values, 

we must first obtain the distribution of this test statistic under the null distribution. This 

distribution is commonly estimated by permuting the phenotype values relative to the 

genotypes (Broman & Sen 2009). However, standard permutation tests are based on the 

assumption that the samples are exchangeable and do not preserve the covariance structure 

in the samples because of population structure. Therefore, the permutation-based estimates 

may lead to inadequately stringent significance thresholds and inflated type 1 error rates 

(Abney et al. 2002; Aulchenko et al. 2007; Cheng & Palmer 2013; Cheng et al. 2010; Zou et 
al. 2005). Alternative permutation test procedures have been developed that preserve the 

relationship between the phenotype and polygenic effect (Abney 2015). However, we opted 

not to use this approach to assess significance because (1) these procedures are 

computationally intensive for the dense SNP sets in this study and (2) the accuracy of these 

permutation tests hinge on how well the polygenic covariance matrix captures the true 

covariance structure in the phenotype, and this accuracy may not be high given that the 

effect sample size (the number of inbred strains) is small. A simple alternative to this 

approach is to use a Bonferroni correction of the P values obtained from GEMMA, which 

controls for the probability of making at least one false discovery (‘family-wise error rate’). 

Bonferroni correction typically leads to overly stringent significance thresholds in GWASs 

because it ignores correlations between markers (i.e. it ignores the fact that the association 

tests are not independent). In our data, this threshold is easily improved by observing that we 

often have blocks of SNPs in complete or near-complete linkage disequilibrium. Therefore, 

we reduced the effective number of tests in the Bonferroni correction by pruning the set of 

markers so that no pair of markers has a (Pearson’s) correlation coefficient greater than 0.98. 

This reduced number of tests from 155 000 to about 35 000. Using this as our effective 

number of independent tests, P values of 1.4 × 10−6 , or −log10 P values of 5.86, yield 

Bonferroni-adjusted P values of 0.05; P values of 2.8 × 10−6 , yield Bonferroni-adjusted P 
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values of 0.1. The full code and data for reproducing the analysis are available for download 

at http://palmerlab.org/protocols-data/.

Bioinformatics

The Mouse Genome Database at the Mouse Genome Informatics website (http://

www.informatics.jax.org) was used to search for disease associations and mouse phenotypes 

for genes in mapped regions (Eppig et al. 2015). Coding polymorphisms, indels and 

structural variants in mapped regions were searched using Wellcome Trust mouse genomes 

project (Keane et al. 2011). Sorting intolerant from tolerant (SIFT) (http://sift.jcvi.org) was 

used to predict the impact of nonsynonymous coding variants (Kumar et al. 2009). The 

Allen Mouse Brain Atlas was used to identify evidence for brain gene expression (Lein et al. 
2007).

eQTL data

We used gene expression data from the Hybrid Mouse Diversity Panel, a panel of 29 

classical inbred strains (including 24 of the 30 strains used in our study) and 71 recombinant 

inbred strains. Expression data included 25 697 transcripts measured on the Illumina 

MouseRef-8 v2.0 expression beadchip for both hippocampus and striatum in male mice 

(Park et al. 2011). The hippocampus and striatum have key roles in the neural regulation of 

PPI of the startle response in rodents (Swerdlow et al. 2001). For each region, eQTL were 

defined using a genome-wide significance threshold corresponding to a false discovery 

rate/Q value <5% (Park et al. 2011). Transcript abundance values were normalized using the 

neqc() function from the LIMMA R package. A non-normalized version of expression array 

data is available from NCBI-GEO under Dataset record number GDS3900. Strains included 

in the eQTL data are given in Table S1.

Human phenotypic associations

We used the genome-wide repository of associations between SNPs and phenotypes 

(GRASP) to explore genes implicated in our study. The NHLBI GRASP catalog contains 

human genetic association results reported in primary manuscripts, their supplemental 

information and web-based content. Included studies use 25 000 or more markers to study 

one or more traits (Eicher et al. 2015; Leslie et al. 2014). Genome-wide repository of 

associations between SNPs and phenotypes v 2.0 contains searchable data from 2082 studies 

totaling 8.87 million association results extracted with a P < 0.05 threshold. Genome-wide 

repository of associations between SNPs and phenotypes v 2.0 searches were conducted via 
the web interface.

Results

Heritability and genome-wide association

Prepulse inhibition was evaluated in 604 mice from 30 F1 strains (Fig. 1 and Fig. S1). In 

order to estimate the heritability (h2) of the PPI trait (12 db prepulse), we compared 

between- and within-strain variations from a one-way analysis of variance (ANOVA) of PPI 

given strain, resulting in an estimated heritability h2 = 0.32 (Hegmann & Possidente 1981) 

(Appendix S1). In addition, we also estimated h2 using all of the SNPs from the GWAS 
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scan; this approach is often called ‘SNP heritability’ or ‘chip heritability’. The chip 

heritability was estimated at 0.43 with 95% posterior interval from 0.29 to 0.57. We suspect 

that the chip heritability may be higher because it can better account for the degree of 

divergence between each pair of strains in the study, whereas the other method implicitly 

assumes that all strains are equally unrelated.

We performed a GWAS for PPI (12 db prepulse) using the set of 155 283 SNPs. We 

identified loci on Chromosomes 2 and 7 (Fig. 2). Using a conservative Bonferroni-adjusted 

correction for multiple testing, the locus on Chromosome 2 (P = 9.7 × 10−7) met the α< 0.05 

level for genome-wide significance and the association on Chromosome 7 (P = 2.1 × 10−6) 

met the α< 0.1 threshold. To better establish the location of genetic variants underlying these 

QTL, we assessed support for PPI associations in a higher density panel of imputed SNPs. 

Several imputed SNPs within the Chromosome 7 QTL had lower P values than that obtained 

in the MDA mapping (imputed P = 1.5 × 10−6), and thus just exceeded the α< 0.05 threshold 

(P = 1.4 × 10−6). The implicated region, as defined by SNPs with log P values within two of 

the highest P value were Chr 2: 84.82 – 86.53 Mb (mm10: 84.97 – 86.69 Mb) and Chr 7: 

51.82 – 52.85 Mb (mm10: 44.56 – 45.59 Mb) (Fig. 3). We examined the distribution of PPI 

phenotype across the 30 strains after removing the linear effects of covariates on phenotype 

(Fig. 4). The proportion of variance in PPI explained by genotype was estimated to be 12.0% 

for the Chromosome 2 locus and 14.6% for the Chromosome 7 locus.

Informatics

The locus on Chromosome 2 contains 7 genes plus a large cluster of olfactory receptor 

genes, and the Chromosome 7 contains approximately 100 coding genes. Although many of 

these are expressed in the brain, none of these genes have been previously reported to 

influence the PPI phenotype. Mice with a null allele of Slc17a7, which is within the 

Chromosome 7 locus, have an altered startle response but also exhibit severe neurological 

deflcits that we did not observe in this study (Fremeau 2004). There are no reported coding 

polymorphisms in Slc17a7 among the panel of strains we used. Several other genes within 

the Chromosome 7 locus have been previously implicated in behavioral phenotypes in 

mouse models: Shank1, Emc10, IL4i1 and Cpt1c. Of these, only Shank1 has a missense 

variant predicted to have a ‘moderate’ impact, but the allelic distribution of this variant 

within our panel of strains does not match that of the peak PPI-associated variant (data not 

shown).

We searched the Wellcome Trust mouse genomes project for additional potentially 

deleterious coding variants with strain distribution patterns similar to our PPI-associated 

SNPs. We found that Olfr1014 and Olfr1015 each contained one predicted deleterious 

variant. Olfactory receptor (Olfr -) genes represent a large family of more than a thousand 

genes that are believed to mediate the detection of odorants (Buck & Axel 1991); these 

genes are unlikely to underlie our QTL for PPI. There was one predicted deleterious coding 

variant each in Zfp473 and Hrc, but according to the Allen Brain Atlas, these genes do not 

appear to be expressed in the mouse brain. Known indels within the mapped regions were all 

limited to introns. We did not identify evidence suggesting that the homologous human 

genes/regions have been strongly associated with any psychiatric diseases.
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eQTL at PPI-associated markers

As described in the previous section, there were no coding polymorphisms likely to underlie 

the loci on Chromosomes 2 and 7. Another possibility is that these loci influence gene 

expression, rather than protein coding. Expression polymorphisms are enriched among 

complex trait-associated polymorphisms (Nicolae et al. 2010), so we considered the possible 

role for regulatory variation affecting gene expression. We used public eQTL data from the 

HMDP to determine whether the SNPs associated with PPI were eQTL in hippocampus 

and/or striatum. The SNP on Chromosome 2 that was most strongly associated with PPI 

(rs28029078) was strongly associated with the expression of five transcripts in both the 

hippocampus and the striatum, Fam171b, Timm10, Arfgap2, Rbm45 and Acp2 (Table 1). 

Within the confidence intervals of the association on Chromosome 2, there were 31 

additional SNPs with more modest P values that were also eQTL for these same five 

transcripts (Fig. 3 and Table S2). The SNP on Chromosome 7 that was most strongly 

associated with PPI (rs37320054) was associated with hippocampal and/or striatal 

expression of four transcripts: Prkd3, Smarcad1, Htatip2 and Gtf2h1 (Table 1).

Phenotypic associations of genes with eQTL at PPI-associated markers

Next, we asked whether genes with eQTL at the PPI-associated SNPs had been previously 

implicated in human disease. Variants in two of the eQTL genes have been associated with 

psychiatric phenotypes in humans: Prkd3 and Smarcad1. Prkd3 resides within a linkage 

disequilibrium block in humans that have been significantly associated with schizophrenia 

(Ripke et al. 2013). Smarcad1 was suggestively associated with bipolar disorder and 

schizophrenia in a European-American sample (P = 3.7 × 10−6; Wang et al. 2010), and it is 

one of a groups of Wnt-signaling genes implicated in bipolar disorder (Pandey et al. 2012).

Discussion

We conducted genome-wide association in F1 mice to generate new hypotheses about the 

genetic basis of PPI, which is an endophenotype for multiple psychiatric diseases. The mice 

were derived from 30 common inbred strains and were produced and tested in two 

independent cohorts. We identified loci on Chromosomes 2 and 7 that explained 12% and 

14% of the variance in PPI, respectively. Given the absence of coding polymorphisms that 

could explain these associations, we examined eQTL data from the HMDP. The most 

strongly associated SNP on Chromosome 2 is also associated with the expression of five 

transcripts in both hippocampus and striatum. The most strongly associated SNP on 

Chromosome 7 is associated with the expression of four transcripts, one of which has a 

human homologue that is implicated in schizophrenia and another which has been 

implicated in bipolar disorder. The results of this study generate new biological hypotheses 

about the genes underlying PPI and thus identify genes which might be involved in the 

etiology of human psychiatric diseases for which successful human GWAS are nascent or 

have met technical limitations. More broadly, these results show that panels of inbred F1 

mice can be used to efficiently map other complex behavioral traits.

Our effective sample size of 30 different inbred genotypes is small and has limited power to 

detect QTL (Kirby et al., 2010; Bennett et al., 2010); as a consequence the genetic 
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associations we identified had large effect sizes (12 – 14%). Moreover, the Bonferroni-

corrected genome-wide significance threshold used here was conservatively chosen such that 

no pair of markers had a correlation coefficient greater than 0.98; this further reduced our 

power. The association on Chromosome 2 met the α< 0.05 significance criterion, while the 

evidence for association at the Chromosome 7 locus met the α< 0.1 criterion at our 

conservative significance threshold. It is likely that adding more strains to the panel would 

increase power, which has been part of the motivation behind other experimental designs 

such as the BXD recombinant inbred strains (Andreux et al. 2012; Peirce et al. 2004), and 

the HMDP, which is composed of more than 100 strains (Bennett et al. 2010; Ghazalpour et 
al. 2012; Park et al. 2011).

This study is the first to use a panel of F1 mice to map complex phenotypes. This approach 

differs in several ways from using a panel of traditional inbred mice. We were able to 

produce these F1 mice more easily because we only had to obtain females from the 30 

inbred strains, and we obtained larger litters, presumably because of hybrid vigor. Similar to 

a panel of fully inbred strains, genotypes could be inferred from publicly available genotype 

data. The results were significant and identified small regions (approximately 1 – 2 Mb), 

even when using conservative confidence intervals. The size of our mapped regions is 

consistent with the size of ancestral haplotype/linkage disequilibrium blocks across inbred 

mouse strains (Kirby et al. 2010). Given that the mice in this population are F1s, phenotypic 

differences across strains could be because of direct genetic effects, maternal factors (which 

are indirect genetic effects) and/or parent-of-origin effects.

The loci that we mapped in this study have not been previously implicated in PPI in other 

QTL studies in mice or rats (Hitzemann et al. 2008; Leussis et al. 2009; Loos et al. 2012; 

Palmer et al. 2003; Petryshen et al. 2005; Samocha et al. 2010; Webb et al. 2009). This could 

be because of minor differences in PPI testing protocols, different statistical methods, a lack 

of power to detect true positive associations and the use of different mouse strains/crosses 

across studies, including the new population of F1s used here. The most similar study to our 

own mapped PPI in silico in a large panel of inbred strains, 25 of which were also used here 

(Webb et al. 2009). That study used publicly available PPI data for 37 strains and ~17k SNPs 

from various sources (Willott et al. 2003) and identified QTL on Chromosomes 1 and 13, 

neither of which show evidence for association here. Differences between these two studies 

include our use of F1 mice rather than fully inbred individuals, the SNPs used for phenotypic 

association, the statistical procedures and the thresholds for significance.

The most comprehensive available databases did not show coding variants likely to explain 

our observed associations. We found instead that eQTL for multiple brain transcripts overlap 

with the behavioral QTL. Most eQTLs have an additive genetic architecture, suggesting that 

the use of inbred strain expression data was appropriate although the phenotypic data were 

derived from F1s rather than fully inbred strains. The peak PPI-associated SNP on 

Chromosome 7 is an eQTL for Prkd3 and Smarcad1, which are within regions previously 

implicated in schizophrenia and bipolar disorder by human GWASs (Ripke et al. 2013; 

Wang et al. 2010). Genes that have eQTL at our Chromosome 2 locus included Fam171b, 

Timm10, Arfgap2, Rbm45 and Acp2. Acp2 is involved in the development of cerebellum 

(Bailey et al. 2014). Rbm45 is found in neuronal and glial nuclear inclusions in patients with 
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several neurodegenerative disorders (Collins et al. 2012). Arfgap2 is involved in vesicle 

formation and trafficking (Frigerio et al. 2007; Kartberg et al. 2010) and is a protein binding 

partner of secretagogin, a calcium-binding protein within the calmodulin superfamily (Bauer 

et al. 2011). Of all the eQTL co-localizing with the top PPI-associated SNPs, Fam171b was 

the strongest (see Table 1, Table S2). A member of a family of secreted proteins, Fam171b 
exhibits intense and selective expression levels in brain but its function has not yet been 

studied. As a result of these characteristics, Fam171b is one of a set of 106 genes that has 

been described as the ‘core brain ignorome’ (Pandey et al. 2014). Because of its putative 

association with PPI and its potential impact on brain functions, Fam171b may be an 

especially interesting candidate for knockout and other biological studies.

In summary, we used high-density SNP data downloaded from public databases to conduct 

genome-wide association in F1 inbred mice, leading to the identification of several small (<2 

Mb) loci associated with PPI. We then used extant eQTL data collected in the same inbred 

strains that formed our F1 panel to efficiently narrow down possible candidate genes within 

each locus. This study shows two advantages of using F1 mice. First, breeding is less time-

consuming and expensive because female but not male inbred mice from 30 strains were 

purchased. Second, one may use existing genotype and expression data to inform the genetic 

analysis. This same approach can be applied to other complex traits as a complement to 

human GWAS and as a means of generating new biological hypotheses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Percent prepulse inhibition at 12 db across 30 F1 mouse strains
Box-and-whisker plots indicate median (black bar), boxes indicate the upper and lower 

quartiles and whiskers indicate high and low values; N = 604 mice balanced across strain 

and sex.
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Figure 2. Genome-wide scan for prepulse inhibition in F1 mice from 30 inbred strains
Both the initial and the replication cohort data were used to calculate P values using a linear-

mixed model that accounts for differences in genetic sharing among the F1 mice (N = 604). 

P values are shown on the log-scale for 155 283 SNPs on autosomes. The dotted line gives 

the α= 0.05 significance threshold after applying Bonferroni correction.
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Figure 3. Region plots showing fine-mapped genetic loci for PPI
Regions were identified on Chromosome 2 (a) and Chromosome 7 (b). Red SNPs are eQTL 

in hippocampus and striatum (see Table 1 and Table S2). A higher density panel of SNPs 

with imputed genotypes was used to further evaluate support for association at the loci 

identified in the genome-wide scan. Both initial and replication cohort data were used for 

fine-mapping (N = 604). The dotted line gives the α= 0.05 significance threshold after 

applying Bonferroni correction.
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Figure 4. Distribution of (logit-transformed) PPI in F1 crosses
Data from the initial (a) and replication (b) cohorts, stratified by genotype for SNP 

rs28029078 (left-hand panels) and SNP rs37320054 (right-hand panels). Box-percentile 

plots show the distribution of PPI across all the individual F1 samples. Dots give strain 

means over genetically identical F1 crosses, colored by strain. Proportion of variance 

explained (PVE) by genotype is estimated for each SNP after removing linear effects of 

covariates on phenotype.
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Table 1

Brain expression QTL at peak prepulse inhibition-associated markers

Marker
eQTL P value,

region Location Gene
Psychiatric GWAS

(human)
GWAS P value

(human)

rs28029078 (Chr 2) 1.3E–14 HIP
1.9E–19 STR

cis Fam171b – –

6.0E–12 HIP
2.2E–16 STR

cis Timm10 – –

2.9E–09 HIP
9.2E–07 STR

trans Acp2 – –

2.3E–09 HIP
3.5E–11 STR

trans Arfgap2 – –

1.2E–09 HIP
8.8E–12 STR

trans Rbm45 – –

rs37320054 (Chr 7) 3.7E–08 HIP
1.9E –08 STR

trans Prkd3 Schizophrenia
 (Ripke et al. 2013)

6.7 E–09

7.4E–07 STR trans Smarcad1 Bipolar disorder and
 schizophrenia
 (Wang et al. 2010)

3.7E–06

6.9E–08 STR cis Htatip2 – –

3.5E–09 STR trans Gtf2h1 – –

Hybrid mouse diversity panel eQTL were determined in hippocampus (HIP) and striatum (STR). Genes with start position ±3Mb from eQTL were 
called cis-eQTL. Genome-wide repository of associations between SNPs and phenotypes (GRASP) was used to determine associations with 
psychiatric phenotypes.
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