
RESEARCH ARTICLE

Inhibition of β-Catenin to Overcome
Endocrine Resistance in Tamoxifen-Resistant
Breast Cancer Cell Line
Hye SungWon1, Kyung Mee Lee2, Ju Eon Oh2, Eun Mi Nam2, Kyoung Eun Lee2*

1 Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic
University of Korea, Seoul, Korea, 2 Division of Hematology-Oncology, Departments of Internal Medicine,
Ewha Medical Research Center, School of Medicine, EwhaWomans University, Seoul, Korea

* oncolee@ewha.ac.kr

Abstract
Background

The β-catenin signaling is important in cell growth and differentiation and is frequently dys-

regulated in various cancers. The most well-known mechanism of endocrine resistance is

cross-talk between the estrogen receptor (ER) and other growth factor signaling, such as

phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR)

signaling pathway. In the present study, we investigated whether β-catenin could be a

potential target to overcome endocrine resistance in breast cancer.

Methods

We established tamoxifen-resistant (TamR) cell line via long-term exposure of MCF-7

breast cancer cells to gradually increasing concentrations of tamoxifen. The levels of pro-

tein expression and mRNA transcripts were determined using western blot analysis and

real-time quantitative PCR. The transcriptional activity of β-catenin was measured using

luciferase activity assay.

Results

TamR cells showed amesenchymal phenotype, and exhibited a relatively decreased expres-

sion of ER and increased expression of human epidermal growth factor receptor 2 and the epi-

dermal growth factor receptor. We confirmed that the expression and transcriptional activity of

β-catenin were increased in TamR cells compared with control cells. The expression and tran-

scriptional activity of β-catenin were inhibited by β-catenin small-molecule inhibitor, ICG-001 or

β-catenin siRNA. The viability of TamR cells, which showed no change after treatment with

tamoxifen, was reduced by ICG-001 or β-catenin siRNA. The combination of ICG-001 and

mTOR inhibitor, rapamycin, yielded an additive effect on the inhibition of viability in TamR cells.

Conclusion

These results suggest that β-catenin plays a role in tamoxifen-resistant breast cancer, and

the inhibition of β-catenin may be a potential target in tamoxifen-resistant breast cancer.
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Introduction
Breast cancer is the second most common malignancy among women in South Korea. It is a
heterogeneous disease that can be classified into multiple subtypes with distinctive histological
and biological features [1]. The most common subtype is the hormone receptor-positive breast
cancer, about 70–75% of all breast cancers express the estrogen receptor (ER) or progesterone
receptor (PR) [2]. Therefore, endocrine therapy to block ER activity is an important treatment
for these patients [2]. Tamoxifen, which is a selective ER modulator, has been the mainstay of
endocrine therapy for the management of ER-positive breast cancer. However, de novo (pri-
mary) or acquired (secondary) resistance to endocrine therapy remains an important clinical
issue. About 20–30% of patients who received adjuvant tamoxifen experience relapse, and the
majority of patients with advanced disease who showed an initial good response to tamoxifen
eventually experience disease progression [3]. Thus, acquired resistance to endocrine therapy is
common in clinical practice, and overcoming this resistance remains a crucial challenge in the
treatment of ER-positive breast cancer.

Over the past few decades, there have been many studies about the mechanisms of resis-
tance to endocrine therapy. Although the exact molecular mechanisms underlying this phe-
nomenon are still not completely understood, several theories have been proposed, such as the
loss of ER expression, mutations within the gene that encodes the ER, adaptation of estrogen
withdrawal, cross-talk with other growth factor receptor pathways, and alteration of the cell-
cycle signaling pathway [2, 4, 5]. Actually, about 20% of patients treated with endocrine ther-
apy show a loss of ER in tumors over time [5]. These tumors would no longer be driven by ER,
and other pathways may adopt for the role of oncogenic driver. To date, the most well-known
alternatively activated pathway is the phosphatidylinositol-3-kinase (PI3K)/Akt and the mam-
malian target of rapamycin (mTOR) signaling pathway [2].

Aberrant activation of Wnt/β-catenin signaling is observed in many human cancers, such as
colon cancer [6]. Recent studies of breast cancer suggested that activation of β-catenin signal-
ing is enriched in the triple-negative phenotype without ER expression and is associated with
poor outcome [7]. Therefore, we concerned about whether β-catenin signaling as an alternative
pathway for endocrine resistance in breast cancer. The β-catenin is important in developmental
processes, cell growth, differentiation, invasion, and survival. Inactivation of β-catenin signal-
ing leads to the formation of the "destruction complex", which consists of adenomatous polyp-
osis coli, Axin, glycogen synthase kinase-3β (GSK-3β) and casein kinase 1α. This "destruction
complex" phosphorylates β-catenin; phosphorylated β-catenin is then targeted for ubiquitina-
tion and proteolytic degradation [8]. Conversely, the binding of Wnt ligands to receptors pre-
vents the GSK3β-dependent phosphorylation of β-catenin and leads to its stabilization.
Stabilized β-catenin proteins translocate into the nucleus and interact with the T-cell factor
(TCF)/lymphocyte enhancer factor (LEF). The β-catenin/TCF complex regulates the transcrip-
tion of many target genes that are associated with cell proliferation in cancer [8].

In this study, we aimed to assess the expression and transcriptional activity of β-catenin in
tamoxifen-resistant breast cancer cell line and evaluate the effect of inhibition of β-catenin on
the viability of tamoxifen-resistant breast cancer cells.

Materials and Methods

Cell lines and cell culture
The human breast cancer cell line MCF-7 was purchased from the Korean Cell Line Bank
(Seoul, South Korea). MCF-7 cells are a well-characterized ER-positive control cell line. MCF-7
cells were seeded at a density of 2 × 105/cm2 and cultured in phenol-red-free RPMI 1640
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medium containing 10% fetal bovine serum (FBS) and antibiotics. According to a methodology
reported elsewhere [9], we established an MCF-7-derived tamoxifen-resistant cell line (TamR)
via long-term culture of MCF-7 cells in the presence of 4-hydroxytamoxifen (Sigma-Aldrich,
St. Louis, MO, USA). Briefly, MCF-7 cell monolayers were washed with phosphate-buffered
saline (PBS) and transferred to phenol-red-free RPMI 1640 medium containing 10% charcoal-
stripped, steroid-depleted FBS (Sigma-Aldrich), antibiotics, and 4-hydroxytamoxifen (10−7 M
in ethanol). The cells were exposed to this treatment for 1 week, during which the medium was
replaced twice a week. To generate drug-resistant cell lines, the cells were cultured in the pres-
ence of gradually increasing concentrations of 4-hydroxytamoxifen from 0.05 to 3 μM over a
period of 8 months.

Cell viability assay
Cell viability was measured using the EZ-Cytox Cell Viability Assay kit (Daeil Lab Service,
Seoul, South Korea). Briefly, MCF-7 and TamR cells were seeded into 96-well plates at a den-
sity of 2 × 103 cells/well and then cultured in a CO2 incubator (5% CO2, 37°C) for 24 hours. To
evaluate dose-dependent effect, cells were treated with each concentration of 4-hydroxytamoxi-
fen (0, 3, 6, and 9 μM) for 24 hours, and then 10 μL of EZ-Cytox solution was added to each
well of the plate. After 30 minutes of incubation, the plates were read at 560 nm on a spectro-
photometer. A cell viability assay was performed in the same way after ICG-001 (Selleckchem,
Houston, TX, USA) or rapamycin (Sigma-Aldrich) treatment for 24 hours. ICG-001 is a small-
molecule inhibitor of β-catenin and rapamycin is a well-known inhibitor of the serine/threo-
nine protein kinase mTOR.

RNA isolation and real time PCR
MCF-7 and TamR cells were seeded at a density of 1 × 105 cells/mL in 12-well plates. On the
following day, cells were serum starved for 16 hours and then cultured in RPMI 1640 medium
supplemented with 10% FBS for 24 hours. RNA was extracted from MCF-7 and TamR cells
using the RNeasy mini kit (Qiagen, Valencia, CA, USA), according to the manufacturer’s
instructions, and was quantitatively analyzed on a nanodrop spectrophotometer. cDNA was
synthesized using 500 ng of total RNA and the cDNA Synthesis Kit (iNtRON Biotechnology,
Gyeonggi-do, South Korea) at the following temperatures: 60 minutes at 45°C, 5 minutes at
95°C, and 5 minutes at 4°C. Real-time PCR (RT–PCR) was performed to quantify the mRNA
of the ER-alpha (ERα), human epidermal growth factor receptor 2 (HER2), and epidermal
growth factor receptor (EGFR). A reaction mixture (12 μL) consisting of 10 ng of diluted
cDNA preparation (2 μL), the SYBR Green Dye (Qiagen, Valencia, CA, USA), and 10 pmol of
each primer (0.5 μL) was used for PCR using the following thermal cycler conditions: denatur-
ation, 95°C for 5 minutes; amplification, 45 cycles of 95°C for 10 seconds, 60°C for 10 seconds,
and 72°C for 10 seconds. The analysis was repeated three times for each sample and the relative
expression levels of ERα, EGFR, and HER2 were normalized to that of glyceraldehyde-3-phos-
phate dehydrogenase.

Western blot analyses
MCF-7 and TamR cells were seeded at a density of 1 × 105 cells/mL in 100 mm dishes. On the
following day, cells were serum starved for 16 hours and were then incubated with rapamycin,
ICG-001, and a combination of rapamycin and ICG-001 in RPMI 1640 medium supplemented
with 1% FBS for 24 hours. The separation and quantification of proteins were performed with
the PRO-PREPTM protein extraction solution (iNtRON Biotechnology). Briefly, cells were
lysed in 500 μL of ice-cold PRO-PREP lysis buffer for 20 minutes. Lysates were centrifuged at
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13,000 rpm for 10 minutes at 4°C, and the supernatants were collected. Total protein concen-
trations were determined using the Bradford assay (Bio-Rad, Hercules, CA, USA) using a spec-
trophotometer at 595 nm. A total of 50 μg of protein was mixed with the 5× sample buffer and
boiled for 5 minutes. Proteins were separated using 10% sodium dodecyl sulfate–polyacryl-
amide gel electrophoresis (SDS–PAGE) and transferred to polyvinylidene difluoride mem-
branes. Membranes were blocked in 5% skim milk-Tris-buffered saline (TBS)-Tween for 1
hour and then incubated with shaking for 2 hours in primary antibodies (1:1,000 dilution).
Blots were washed with TBS-Tween buffer and then incubated for 1 hour with an anti-rabbit-
Horseradish Peroxidase-conjugated secondary antibody (1:1,000 dilution). Immunoblots were
treated with enhanced chemiluminescence (ECL) reagents and visualized on a LAS lumines-
cent image analyzer (Fujifilm Life Science). All antibodies were purchased from Cell Signaling
Technology (Beverly, MA, USA): the antibodies used were against ERα, HER2, EGFR, Akt,
phospho-Akt (Ser473, pAkt), GSK-3β, phospho-GSK-3β (Ser9, pGSK-3β), mitogen-induced
p70 ribosomal protein S6 kinase (p70S6K), phospho-p70S6K (Thr389, pp70S6K), β-catenin,
nonphospho (active) β-catenin, cyclin D1 (cat #2978), E-cadherin, N-cadherin, Snail, Slug,
Twist, and c-myc. All of these are rabbit monoclonal antibodies.

Pull-down assay
We prepared Luria–Bertani (LB) media containing the antibiotic ampicillin for the growth of
bacteria. The glutathione S-transferase (GST)-E-cadherin plasmid was kindly provided by Pro-
fessor Stuart Aaronson, Oncological Sciences, Mount Sinai Hospital in New York, USA. The
GST-E-cadherin plasmid was transformed into the BL21 strain of E. coli. For the induction of
protein, isoprolyl-β-D-thio-galactopyranoside (IPTG) was added to a final concentration of 0.1
mM. After extraction, proteins were bound on glutathione-Sepharose resin for 1 hour. The glu-
tathione-Sepharose resin attached to GST-E-cadherin protein was incubated with proteins
extracted from control and TamR cells for 1 hour. After centrifugation and removal of the
supernatant, beads were eluted using a 10 mM glutathione elution butter. After incubation at
room temperature for 10 minutes, centrifugation was performed and the supernatant was
transferred into a new tube. The proteins were analyzed by SDS–PAGE and western blotting.

Luciferase assay
Luciferase assay kit from Promega (Madison, WI, USA) was used. MCF-7 and TamR cells were
seeded at a density of 4 × 104 cells/0.5 mL/well in 24-well plates the day before transfection.
Cells were serum starved for 16 hours and then cotransfected with the pGL4.49 [luc2p/
TCF-LEF RE/Hygro] (Promega) and pRL-TK constructs (Promega) using Lipofectamine 2000
(Invitrogen Korea, Seoul, South Korea). The pGL4.49 [luc2p/TCF-LEF RE/Hygro] vector con-
tains eight copies of a TCF-LEF response element (TEF-LEF RE) that drives transcription of
the firefly luciferase reporter gene luc 2p. The pRL-TK vector provides constitutive expression
of Renilla luciferase as a control reporter vector. The cells were incubated for 24 hours after
transfection, followed by treatment with ICG-001 or rapamycin for 24 hours. The cells were
then processed using the DUAL-Luciferase Reporter Assay System (Promega), and luciferase
activities were measured on a luminometer. The ratio of firefly to Renilla luciferase activity was
representative of the transcriptional activity of β-catenin.

Transfection and knockdown
The siRNA against β-catenin was obtained from Cell Signaling Technology (SignalSilence1 β-
catenin siRNA I). The mixture of β-catenin siRNA (100 nM) and Lipofectamine 2000 in Opti-
MEM was incubated in room air for 20 minutes. MCF-7 and TamR cells were seeded at a
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density of 5 × 105 cells in 100 mm dishes and then were incubated with mixture of β-catenin
siRNA and Lipofectamine 2000 in a CO2 incubator (5% CO2, 37°C) for 48 hours. The Control
siRNA (SignalSilence1 Control (unconjugated) siRNA) was used as negative control (Mock).

Flow cytometric analysis of cell cycle
Cells were treated with ICG001 (40μM) and rapamycin (20nM) for 24 h for cell cycle analysis.
The cells were detached with trypsin and pelleted by centrifugation at 1,200 rpm for 5 min, fol-
lowed by fixation with 70% ethanol for overnight at -20°C. The cells were washed with PBS
and cellular DNA was stained with 0.5 ml of protium iodide (PI) solution (BD, 50 ug/ml pro-
pium iodide, 5 mM EDTA and 1 mg/ml RNase in PBS) for 30 min at room temperature. For
annexin V staining, cells were stained with FITC annexin V in binding buffer (10 mMHEPES
(pH 7.4), 140 mM NaCl, 0.25 mM CaCl2) and 5 ug/ml of PI. Analytical cytometry was per-
formed on FACSCalibur (BD). Cell cycle analysis was performed with CellQuest (BD) and
ModFit (Verity, Topsham, ME) software.

Statistical analysis
Results were presented as means with error bars representing the standard deviation. Statistical
analyses were performed using SPSS (IBM Company, version 18). An unpaired t-test was used
to evaluate significant differences among the continuous variables. A P-value� 0.05 was con-
sidered statistically significant.

Results

Characteristics of tamoxifen-resistant breast cancer cell lines
TamR cells had a markedly different morphology compared with the parental control cells (Fig
1A). The majority of control cells exhibited a cuboidal shape, whereas TamR cells exhibited a
more spindle-shaped morphology, which was similar to that of mesenchymal cells. The cell via-
bility assay was performed according to dose of tamoxifen (Fig 1B). TamR and control cells
were treated with various doses of tamoxifen. The viability of control cells decreased by 65.2%
after 3 μM tamoxifen treatment, whereas the viability of TamR cells showed no change. Thus,
TamR cells exhibited resistance to tamoxifen. Because the morphological changes which were
shown in TamR cells, were associated with epithelial-mesenchymal transition (EMT) pheno-
type, we proceeded to assess the expression of EMT-related markers using western blotting.
TamR cells exhibited E-cadherin loss and increased expression of Snail, Slug, and cyclin D1
(Fig 1C). There was no difference in the expression of Twist and c-myc between control and
TamR cells. The expression of N-cadherin was not observed in both control and TamR cells
(data not shown). The transcript and protein expression levels of ERα, HER2 and EGFR were
determined using RT–PCR and western blot analysis. The relative expression of ERα was sig-
nificantly decreased in TamR cells compared with control cells. On the other hand, the relative
expression of HER2 and EGFR was increased in TamR cells compared with control cells,
respectively (Fig 1C and 1D).

Increased expression and activity of β-catenin and its inhibition in
tamoxifen-resistant breast cancer cell lines
We confirmed the protein expression levels of unphosphorylated transcriptionally active β-
catenin using two methods: Western blot analysis using a commercial primary antibody and
pull-down assay. Both methods showed that the expression of the active β-catenin protein was
increased in TamR cells compared with control cells (Fig 2A–2C). The transcriptional activity
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of β-catenin was confirmed using a luciferase reporter assay. TamR cells showed a significantly
increased β-catenin transcriptional activity compared with control cells (Fig 2D).

ICG-001 is a small-molecule inhibitor that antagonizes β-catenin/TCF-mediated transcrip-
tion [10]. Transcriptional regulation of the β-catenin/TCF complex requires some coactivators,
such as the cAMP response element-binding protein (CREB)-binding protein (CBP). ICG-001
specifically binds to CBP, resulting in the prevention of the interaction between β-catenin and
CBP [10]. We measured the protein levels and transcriptional activity of active β-catenin after
treatment with ICG-001 for 24 hours in TamR and control cells. ICG-001 significantly reduced
the protein levels and transcriptional activity of active β-catenin. This effect was more pro-
nounced in TamR cells compared with control cells (Fig 2A–2D).

To the next, control and TamR cells were transfected with siRNA specific for β-catenin and
then the protein levels of β-catenin were assessed by western blot analysis. The β-catenin
siRNA suppressed the expression of total and active β-catenin (Fig 2E). Taken together, the
expression of active β-catenin was decreased with both ICG-001 and siRNA.

Cell viability assays were conducted to determine the growth inhibitory effect of inhibition
of β-catenin. TamR cells did not show a change in viability by tamoxifen (3 μM). However,
ICG-001 (40 μM) reduced the viability of TamR cells by 45% and β-catenin siRNA also
reduced the viability of TamR cells by 41% (Fig 2F).

Fig 1. Characteristics of tamoxifen-resistant breast cancer cell lines. (A) TamR cells exhibited a more
elongated, spindle-shaped morphology, whereas control cells exhibited a cuboidal shape (magnification
100×). (B) The viability of control cells decreased by 65.2% after 3 μM tamoxifen treatment, whereas the
viability of TamR cells showed no change. (C) Western blot analysis of EMT-related markers, estrogen
receptor alpha (ERα), human epidermal growth factor receptor 2 (HER2) and epidermal growth factor
receptor (EGFR) in control and TamR cells. TamR cells showed decreased expression of E-cadherin and
increased expression of Snail, Slug, and cyclin D1. TamR cells showed decreased expression of ERα and
increased expression of HER2 and EGFR. (D) mRNA expression of ERα, HER2 and EGFR was assessed by
RT-PCR. TamR cells exhibited a relatively decreased expression of ERα and increased expression of HER2
and EGFR. Error bars, mean ± standard deviation (SD). *, P < 0.05.

doi:10.1371/journal.pone.0155983.g001
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Combinatory effect of β-catenin and mTOR inhibition in tamoxifen-
resistant breast cancer cell lines
PI3K/Akt/mTOR signaling pathway is a well-known mechanism of endocrine resistance.
Rapamycin is the mTOR inhibitor, which previously showed overcoming endocrine resistance
in breast cancer cells [11]. To confirm the dual inhibitory effects of β-catenin and mTOR in
endocrine resistance, we performed cell viability assay after treatment of rapamycin and a com-
bination of ICG-001 and rapamycin, respectively. The viability of TamR cells showed no
change after 3 μM tamoxifen treatment. Rapamycin (20 nM) reduced the viability of TamR
cells by 68.3%. The combination of ICG-001 (40 μM) and rapamycin (20 nM) reduced the via-
bility of TamR cells by 81.7% (Fig 3). To analyze the combined effects of these drugs, we calcu-
lated combination index (CI) values for different concentrations at a constant ratio using the
CalcuSyn software (Biosoft, Cambridge, U.K.). A CI between 0.9 and 1.1 indicates an additive
effect, and a CI� 0.9 indicates synergy [12]. After combination treatment of TamR cells with
ICG-001 and rapamycin, the CI values at a fractional effect analysis value of 0.5, 0.75, and 0.9
were 1.314, 1.108, and 1.022, respectively. Thus, we found an additive effect of the two drugs,
ICG-001 and rapamycin, at higher concentrations in TamR cells.

Fig 2. Protein expression and transcriptional activity of β-catenin and its inhibitory effects in TamR
cells. (A) Protein expression levels of β-catenin were measured by western blot analysis using a commercial
primary antibody and pull-down assay. The expression of β-catenin was increased in TamR cells and was
inhibited by ICG-001. (B) Quantification of band intensities was determined by densitometry analysis. The
graphs showed the active β-catenin divided by total β-catenin. (C) Quantification of band intensities was
determined by densitometry analysis. The graphs showed the pull-down β-catenin divided by total β-catenin.
(D) The transcriptional activity of β-catenin was assessed using luciferase reporter assay. The transcriptional
activity of β-catenin was increased in TamR cells and was inhibited by ICG-001. (E) The protein expression of
β-catenin was also inhibited by β-catenin siRNA. (F) Cell viability assay of TamR cells was assessed after
treatment with ICG-001 (40 μM) and β-catenin siRNA for 24 hours. The viability of TamR cells was decreased
by ICG-001 and β-catenin siRNA. The experiment was repeated three times. Error bars, mean ± SD.
*, P < 0.05. C, control cells. T, TamR cells.

doi:10.1371/journal.pone.0155983.g002
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We evaluated the protein levels and transcriptional activity of active β-catenin after treat-
ment with ICG-001 (40 μM), rapamycin (20 nM), and a combination of ICG-001 and rapamy-
cin, respectively. The expression β-catenin was decreased by rapamycin as well as by ICG-001.
Pull-down assays tend to measure the expression of β-catenin more accurately. The combina-
tion of ICG-001 and rapamycin led to a greater decrease in the expression and transcriptional
activity of β-catenin compared with each single inhibitor (Fig 4A–4D).

Cell cycle of control and TamR cells was analyzed by flow cytometry. The results showed
that TamR cells had an acceleration of the G1 to S phase transition compared to control cells,
indicating that cell cycle progression was promoted in TamR cells. ICG-001 increased apopto-
sis and rapamycin induced significant G0/G1 phase arrest in TamR cells (Fig 5). The combina-
tion of ICG-001 and rapamycin seems to exert its growth-inhibitory effect on the TamR cells
by both cell cycle arrest and apoptosis.

Fig 3. Combinatory effect of ICG-001 and rapamycin in TamR cells.Cell viability assay of TamR cells
after treatment with ICG-001 (40 μM) and rapamycin (20 nM) for 24 hours was performed. The viability of
TamR cells, which had showed resistance to tamoxifen (3 μM), was decreased by ICG-001 and rapamycin.
All media except first lane were treated with tamoxifen (3 μM).

doi:10.1371/journal.pone.0155983.g003

Fig 4. Alteration of β-catenin after treatment with ICG-001 and rapamycin. (A) The expression of β-
catenin was decreased by ICG-001 and rapamycin. It was decreased to a greater extent by the combination
of ICG-001 and rapamycin. (B) Quantification of band intensities was determined by densitometry analysis.
The graphs showed the active β-catenin divided by total β-catenin. (C) Quantification of band intensities was
determined by densitometry analysis. The graphs showed the pull-down β-catenin divided by total β-catenin.
(D) The transcriptional activity of β-catenin reduced to the greatest extent by the combination of ICG-001 and
rapamycin. The experiment was repeated three times. Error bars, mean ± SD. *, P < 0.05. I, ICG-001
(40 μM). R, Rapamycin (20 nM). C, control cells. T, TamR cells.

doi:10.1371/journal.pone.0155983.g004

Inhibition of β-Catenin in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0155983 May 19, 2016 8 / 13



We confirmed the protein levels of pAkt, pGSK-3β, and pp70S6K in TamR cells, as well as
the change in their expression levels after treatment with ICG-001 (40 μM), rapamycin (20
nM), and a combination of ICG-001 and rapamycin (Fig 6). The expression of pAkt, pGSK-3β,
and pp70S6K was slightly increased in TamR cells compared with control cells. This suggests
that Akt/GSK-3β/mTOR signaling is activated in TamR cells. Rapamycin blocked p70S6K
phosphorylation and activation. It caused a slight increase in pAkt levels and slight decrease in
pGSK-3β levels because of the loss of the p70S6K-mediated negative feedback on Akt and
GSK-3β. ICG-001 also slightly downregulated pGSK-3β in TamR cells and it may affect the
Akt/mTOR signaling. Treatment with a combination of rapamycin and ICG-001 led to a block-
age of p70S6K phosphorylation that was similar to that observed for the rapamycin treatment.

Fig 5. Cell cycle analysis of control and TamR cells with ICG-001 and rapamycin. Flow cytometric
analysis of cell cycle was performed in control and TamR cells after treatment with ICG-001 (40 μM) and
rapamycin (20 nM) for 24 hours. TamR cells showed the accelerated G1 to S phase transition. ICG-001
increased the fraction of apoptotic cells and rapamycin increased the fraction of G0/G1-arrested cells. I, ICG-
001 (40 μM). R, Rapamycin (20 nM). C, control cells. T, TamR cells.

doi:10.1371/journal.pone.0155983.g005

Fig 6. Alteration of PI3K/Akt/mTOR and β-catenin pathway- related proteins after treatment with ICG-
001 and rapamycin.

doi:10.1371/journal.pone.0155983.g006
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However, pAkt and pGSK-3β levels were decreased to a greater extent, which was different
from that observed for the rapamycin treatment. We confirmed the expression of cyclin D1,
which is a target gene of ERα, β-catenin, and mTOR. The expression level of cyclin D1 in
TamR cells was comparable with that of control cells, and was significantly decreased by ICG-
001 and rapamycin (Fig 6). There was no significant change in expression level of c-myc
between control and TamR cells (data not shown).

Discussion
We established tamoxifen-resistant breast cancer cell line by continuously exposing ER-posi-
tive breast cancer cells to tamoxifen by a gradual process. In the present study, TamR cells
showed relatively decreased expression of ERα and increased expression of HER2 and EGFR.
This result was consistent with previous research [13] and indicated that other signaling path-
ways, rather than ERα signaling, are involved in TamR cells, the most widely known among
them being the PI3K/Akt/mTOR signaling pathway [2, 14]. In addition to PI3K/Akt/mTOR
signaling, we were interested in the role of β-catenin in endocrine resistance. The results dem-
onstrated that the expression and transcriptional activity of β-catenin were increased in TamR
cells and were effectively inhibited by ICG-001 or β-catenin siRNA. To obtain insight into
overcoming endocrine resistance via the inhibition of β-catenin, we measured changes in the
viability of TamR cells after inhibition of β-catenin. TamR cells showed no change in cell viabil-
ity after treatment of tamoxifen, but ICG-001 or β-catenin siRNA reduced the viability of
TamR cells. This suggests that β-catenin plays a role in endocrine resistance, and that inhibi-
tion of β-catenin is another therapeutic target for patients with breast cancer who have tamoxi-
fen resistance.

The previous studies have reported that activation of the PI3K/Akt/mTOR pathway is asso-
ciated with endocrine resistance, and that sensitivity to endocrine therapy might be reversed by
inhibition of this pathway [14–16]. deGraffenried et al reported that the inhibition of mTOR
restored tamoxifen sensitivity in breast cancer cells with aberrant Akt activity [11]. According
to their study, MCF-7 breast cancer cells that express a constitutively active Akt showed resis-
tance to tamoxifen, however, treatment with rapamycin inhibited the growth of resistant cells
by 65%, as shown by a cell viability assay. They suggested that cotreatment with rapamycin
restored tamoxifen response in breast cancer cells with aberrant Akt activity [11]. The present
study yielded similar results. The expression of pAkt and pp70S6K, which is main downstream
effectors of mTOR, was slightly increased in TamR cells. Treatment of TamR cells with tamoxi-
fen did not change cell viability. However, the addition of rapamycin reduced the viability of
TamR cells by 68.3%. Also, the combination of ICG-001 and rapamycin reduced the viability
of TamR cells by 81.7%. Taken together, inhibition of β-catenin had the effect on the inhibition
of the growth as much as rapamycin in TamR cells. The combination of ICG-001 and rapamy-
cin had an additive effect on the inhibition of the growth of TamR cells. Cell cycle analysis was
performed to confirm whether growth inhibitory effects of ICG-001 and rapamycin are due to
cell cycle arrest or apoptosis. We found that TamR cells showed the accelerated G1 to S phase
transition. ICG-001 induced apoptosis of cells and rapamycin led to prolonged G1 phase in
TamR cells. It suggests that the growth inhibitory effect of ICG-001 and rapamycin on TamR
cells is due to both cell cycle arrest and apoptosis.

To the next, studies on the altered expression of β-catenin and mTOR-related molecules
were performed to identify a mechanism of action and interaction between β-catenin and
mTOR pathways. Cyclin D1 is a well-known regulator of cell-cycle progression, and a target
gene of the ERα, β-catenin, and mTOR [8, 17, 18]. Estrogen induces the expression of cyclin
D1 in ER-positive breast cancer cells, and treatment with tamoxifen downregulates the
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expression of cyclin D1 [19]. Aberrant expression of cyclin D1, despite the presence of tamoxi-
fen, has been shown to lead to endocrine-resistant cell growth [20]. In the present study, the
expression of cyclin D1 was maintained consistently in TamR cells, although the expression of
the ERα was suppressed significantly. The expression of cyclin D1 was decreased significantly
after treatment with ICG-001 and/or rapamycin. This suggests that other pathways that work
to overcome tamoxifen-induced cell-cycle arrest are activated in TamR cells, possibly the
mTOR and β-catenin pathways. Thus, blocking these pathways may induce cell-cycle arrest
again, resulting in the overcoming of endocrine resistance.

Several recent studies reported a relationship between PI3K/Akt/mTOR and β-catenin sig-
naling [21–23]. Growth factors activate PI3K, which subsequently activates Akt via phosphory-
lation. The phosphorylated Akt activates mTOR, which subsequently phosphorylates p70S6K,
leading to the transcription of target genes related to cell proliferation [24]. GSK-3β, which is
inactivated by phosphorylation at Ser9, negatively regulates mTOR. Various kinases, such as
active Akt and p70S6K, can phosphorylate GSK-3β at Ser9, resulting in the inactivation of
GSK-3β [25]. On the other hand, Wnt stimulation generally induces the accumulation of β-
catenin by inhibiting the formation of the destruction complex. However, overexpression of β-
catenin is also induced by Wnt-independent signaling; i.e., the phosphorylation of GSK-3β by
activated Akt can result in a substantial decrease in the formation of the destruction complex
of β-catenin, thereby leading to increased accumulation of β-catenin [24, 26, 27]. Therefore, it
may be possible to modulate the interaction between PI3K/Akt/mTOR and the β-catenin path-
way by mediating GSK-3β. In the present study, rapamycin, which completely blocked the acti-
vation of p70S6K, increased the expression of pAkt and decreased the expression of pGSK-3β.
This was caused by the elimination of the p70S6K negative feedback on Akt and GSK-3β. This
result suggests that rapamycin activates GSK-3β [21], thereby decreasing the β-catenin via the
destruction complex. Our study showed that ICG-001 led to downregulation of pGSK-3β. Hao
YQ et al. also showed that the expression of pGSK-3β was decreased by ICG-001 compared
with control in human alveolar epithelial cell line A549 [28]. The mechanism of the effect of
ICG-001 on GSK-3β phosphorylation is unclear. This result suggests that GSK-3β is activated
in the process of inhibition of β-catenin by ICG-001, which may have affected the Akt/mTOR
signaling.

The activity of GSK-3β and β-catenin were decreased to the greatest extent by the combina-
tion of ICG-001 and rapamycin. The exact mechanisms of interaction between PI3K/Akt/
mTOR and the β-catenin pathway are not yet fully understood, and further study is needed for
this.

In summary, the results of this study suggest that the β-catenin pathway plays a considerable
role in breast cancer with acquired tamoxifen-resistance. It is expected that the inhibition of β-
catenin will be act as a new targeted therapy in endocrine resistance, such as mTOR inhibitor.
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