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Abstract

Purpose of review—Neurosteroids are a family of compounds synthesized directly in the brain 

by transforming cholesterol into pregnenolone, which is then converted to compounds such as 

allopregnanolone and allotetrahydrodeoxycorticosterone. In view of their ability to modulate 

neurotransmission, neurosteroids may influence the clinical course of epileptic disorders. In this 

review, we highlight two emerging properties of neurosteroids, that is, their anticonvulsant and 

antiepileptogenic activities.

Recent findings—It has been shown that fluctuations in neurosteroid synthesis, such as those 

seen in response to stress or during the ovarian cycle, determine an increase in seizure threshold. 

Moreover, increased neurosteroid synthesis, presumably occurring in glial cells during 

epileptogenesis, delays the appearance of recurrent spontaneous seizures in an animal model of 

temporal lobe epilepsy; such an effect may be due to augmented tonic γ-aminobutyric acid type A 

receptor-mediated inhibition. Finally, clinical trials with ganaxolone, an allopregnanolone 

analogue, have demonstrated beneficial effects in pharmacoresistant epileptic patients, whereas 

finasteride – which interferes with neurosteroid synthesis – facilitates seizures in catamenial 

epilepsy.

Summary—The overall evidence suggests that neurosteroids may represent a novel therapeutic 

strategy in epileptic disorders and a future perspective to control epileptogenicity.
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Introduction

Neurosteroids are currently under clinical evaluation for their potential therapeutic use in 

epileptic disorders. Clinical trials have demonstrated anticonvulsant effects for ganaxolone, 

an analogue of the neurosteroid allopregnanolone, in pharmacoresistant epileptic patients 
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[1]. Moreover, Herzog and Frye [2] have reported of a patient affected by catamenial 

epilepsy, whose seizures were controlled by progesterone administration, but were 

exacerbated by treatment with finasteride, an inhibitor of allopregnanolone and 

allotetrahydrodeoxycorticosterone (THDOC) synthesis [3]. The anticonvulsant effect of 

progesterone is mediated by its nongenomic actions (i.e. independent of progesterone 

receptor expression), as administration of progesterone maintains powerful antiseizure 

effects in progesterone receptor-knockout mice [4]. The mechanism underlying these clinical 

effects is presumably based on the ability of allopregnanolone (a progesterone metabolite) 

and THDOC to modulate γ-aminobutyric acid type A (GABAA) receptor-mediated 

transmission as these molecules can increase both tonic and phasic inhibition [5]. The 

GABAA receptor-related anticonvulsant effects of neurosteroids are further supported by 

experimental evidence obtained from animal models [5–8]. Furthermore, recent findings 

have substantiated the role of neuroactive steroids in catamenial epilepsy [9•,10•]. Finally, 

neurosteroids appear to be involved in temporal lobe epilepsy (TLE) as suggested by their 

ability to delay the establishment of this chronic condition following pilocarpine-induced 

status epilepticus in rats [11,12]. Here, we will address these aspects by reviewing recently 

available information on both clinical and experimental findings and by presenting 

unpublished data obtained in our laboratories.

Neurosteroids as modulators of neuronal excitability

Neurosteroids are synthesized after the conversion of cholesterol to pregnenolone by the 

cytochrome P450 cholesterol side chain cleavage (P450scc) enzyme [3]. Pregnenolone is 

then turned into 17α-hydroxypregnenolone or into progesterone, which are precursors of a 

cascade of diverse steroid derivatives that are in turn able to interact with various 

neurotransmitters. Neurosteroids are in fact capable of interacting with GABAA, N-methyl-

D-aspartate (NMDA), glycine, and opioid σ1 receptors (reviewed by [13]).

Two classes of neurosteroids can be distinguished, depending on their metabolism by 

addition of sulfate residues, conferring these compounds different modulatory properties on 

neuronal excitability. Whereas substances belonging to the family of nonsulfated 

neurosteroids, such as allopregnanolone and THDOC, enhance GABAA receptor function 

(as described in the next paragraph, but see also [14•]), sulfated neurosteroids present with 

more complex properties. Overall, this class of neurosteroids appears to increase neuronal 

excitability, acting as negative GABAA receptor modulators and/or by enhancing 

glutamatergic activity. However, several investigations have provided evidence for a negative 

modulatory effect of sulfated neurosteroids on glutamate-mediated neurotransmission. 

Glutamate receptor subunit composition appears to be a key factor influencing the 

modulatory effect of neurosteroids [15] and further investigation is needed to address the 

pathophysiological relevance of such variable effects in the context of epileptic disorders. 

These puzzling observations have been recently reviewed [16,17•].

Given the well known role of GABAergic inhibition in epileptic disorders, the remaining 

review will focus on the effects induced by neurosteroids on GABAA receptor function. The 

interaction of nonsulfated neurosteroids with GABAA receptors exhibits concentration-

dependent mechanisms of action [5]: in the nanomolar range (e.g. during stress and oestrus), 
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they act as modulators of GABAA receptors, whereas at micromolar concentrations (as those 

physiologically observed during parturition), they can directly open GABAA channels. It has 

been suggested that neuroactive steroids may potentiate GABAA currents via interaction 

with the α1 subunit, whereas direct activation of the GABAA receptor relies upon the 

interaction with both α1 and β2 subunits [18].

As shown in Fig. 1, GABAA receptor activation can generate two types of current, 

depending on their location and subunit composition: synaptic receptors give rise to phasic 

‘transient’ currents in response to GABA release from synaptic vesicles, whereas 

extrasynaptic and perisynaptic receptors respond to low levels of ambient GABA by 

generating a tonic ‘always on’ current [19]. The tonic GABAergic current is largely 

contributed by α5 and δ-subunit-containing GABAA receptors [20]. Interestingly, mice 

lacking the GABAA δ-subunit present with an attenuated response to neurosteroids [21], a 

finding consistent with the view that tonic rather than phasic inhibition may represent the 

preferential target for neurosteroid modulation (see [22•] for review).

Neurosteroids and epileptic seizures

Catamenial exacerbation of epileptic seizures provides compelling evidence of the 

involvement of steroids in this chronic neurological disorder, a phenomenon explained by 

the influence on GABAA receptor plasticity exerted by fluctuations in steroid production and 

their conversion in neurosteroids (see for review [23•]). However, the view that neuroactive 

steroids may exert a protective role against seizures has been recently challenged by the 

emergence of opposite effects that these compounds exhibit when studying absence seizures. 

Although progesterone appears to improve catamenial epilepsy [10•], its derivative 

allopregnanolone promotes spike-and-wave discharges in Wistar Albino Glaxo rats of 

Rijswijk (WAG/Rij), a model of absence seizures [24]. Moreover, a role for 

allopregnanolone in disinhibiting neuronal networks has recently emerged based on 

experimental data obtained from seizure-prone rats [25]. The following paragraphs will 

specifically address the effect of neurosteroids as studied in different epilepsy models and 

will focus on the possible clinical implications of these findings.

Stress and seizures

Stress is among the most frequent seizure precipitating conditions reported by epileptic 

patients [26], a phenomenon that may be related to corticosterone secretion [27•]. However, 

the possibility that stressing stimuli may also exert a protective action against epileptic 

seizures has emerged over the past decades (see [28•] for extensive review). This effect may 

rest on the conversion of steroid hormones into neuroactive steroids.

Selye [29,30] was the first to describe the anesthetic and anticonvulsant properties of 

progesterone, another stress-related steroid. More recently, the anticonvulsant effect 

associated with stress has been ascribed to the conversion of deoxycorticosterone in 

neuroactive metabolites such as THDOC [31]. The role of stress in restraining seizure 

activity has recently been reappraised by Verleye et al. [32••] in a mouse model of anxiety. In 

this study, Balb/cByJ mice exposed to a short immobilization stress exhibited a lower 

seizure threshold in response to GABAA receptor blockade when neurosteroid synthesis was 
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limited by treatment with finasteride. This effect was antagonized by allopregnanolone, 

whereas progesterone was ineffective, suggesting that only neurosteroids are able to 

modulate seizures by potentiating GABAA receptor function at physiological concentrations.

Catamenial epilepsy

Finasteride has been reported to increase seizure activity in a patient affected by catamenial 

complex partial seizures, which were instead controlled by progesterone [2], suggesting that 

modulation of neurosteroid pathway can play a role in controlling seizures, at least when 

hormonal dependence is present. Further support to this view has been recently provided by 

experimental evidence obtained from a rodent model of catamenial epilepsy, in which 

progesterone withdrawal or finasteride treatment has been shown to exacerbate 

pentylenetetrazol-induced and pilocarpine-induced seizures [10•].

The anticonvulsive effect related with physiological fluctuations in neurosteroids during the 

ovarian cycle has been identified by analyzing the changes in δ-GABAA receptor subunit in 

mice in which seizure threshold was assessed by kainic acid treatment [33]. It was found that 

the tonic GABAA receptor-mediated current doubled in amplitude during late diestrus in 

dentate gyrus granule cells. This change was mirrored by a 43% increase in hippocampal δ-

GABAA subunit, and the two findings were related with fluctuations in progesterone plasma 

levels. Consistent with the findings obtained in the dentate gyrus, mice injected with kainic 

acid presented with a doubled latency to seizure appearance during diestrus (i.e. when 

progesterone level peaks) and the average seizure duration was much shorter. All these 

phenomena were abolished by treating mice with a δ-GABAA subunit antisense mRNA, 

which reduced the expression of this GABAA subunit by 36% and the tonic current by 76%. 

Thus, when associated with increased neurosteroid availability occurring during the ovarian 

cycle, variations in δ-GABAA subunit decrease seizure susceptibility. Overall, these findings 

point at neurosteroids replacement therapy as a novel therapeutic approach for the treatment 

of catamenial epilepsy [10•].

Temporal lobe epilepsy

Different isoforms of 5α-reductase and 3α-hydroxysteroid dehydrogenase – which are both 

involved in the synthesis of allopregnanolone and THDOC – have been identified in the 

hippocampus and cerebral cortex of patients affected by refractory TLE [34]. The mRNA 

levels for these enzymes were similar to those found in brain tumor specimens obtained 

from nonepileptic individuals. However, the mRNA for 3α-hydroxysteroid dehydrogenase 

isoform 2 was higher in the hippocampus than in the temporal neocortex of TLE patients. 

Interestingly, allopregnanolone serum levels were found to be significantly decreased in 

male, but not in female TLE patients compared with healthy controls.

Further support to the view that neurosteroids are involved in TLE comes from evidence 

obtained from animal models. Studies on pilocarpine-treated mice have shown a 50% 

decrease in δ-subunit expression of GABAA receptor in the dentate gyrus molecular layer 30 

days after status epilepticus. This change was accompanied by loss of efficacy in reducing 

granule cells excitability by THDOC [35]. However, experiments on pilocarpine-treated rats 

have revealed only a transient loss (24–48 h after status epilepticus) of the ability of 
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allopregnanolone to modulate GABAA receptor-mediated currents in the dentate gyrus [36]. 

A more recent study has demonstrated a compensatory increase in GABAA γ2-subunit, so 

that tonic inhibition was substantially preserved in the dentate gyrus of epileptic mice [37], 

though the efficacy of THDOC in modulating of the tonic GABAergic current was 

decreased. In a different model of status epilepticus induction, obtained by continuous 

hippocampal electrical stimulation, neurons recorded from epileptic rat brain slices were 

found to be insensitive to low (10–30 nmol/l) but responsive to high (100 nmol/l) 

allopregnanolone concentrations [38], thus explaining the inconsistencies found in mice 

[35,37] and rats [36] treated with pilocarpine.

Overall, these findings suggest that the ability of neurosteroids to potentiate GABAA-

mediated currents is lost after status epilepticus in chronic epileptic animals, whereas the site 

for direct receptor activation is preserved and could enhance GABAergic transmission. It 

must, however, be emphasized that the implication of experimental data on neurosteroids 

and TLE for clinical practice remains unclear.

Absence seizures

A more complex role is played by neurosteroids in primary generalized epileptic disorders 

such as absence seizures. The hallmark of generalized absence epilepsy is the generation of 

spike-and-wave discharges, which are largely contributed by GABAergic mechanisms 

involved in thalamocortical interaction [39].

Both allopregnanolone and pregnenolone sulfate [intra-peritoneally (i.p.) injected] promote, 

in a dose-dependent manner, spike-and-wave discharges in WAG/Rij rats [24]. Consistently, 

a recent study by Pisu et al. [40••] described an increase in allopregnanolone and THDOC 

along with overexpression of α4 and δ-GABAA subunits in this rodent model of absence 

seizures. However, Citraro et al. [41] had previously reported in the same model that the 

effects induced on generalized spike-and-wave activity by local neurosteroid microinjection 

are both dose-dependent and region-specific. Moreover, these investigators found opposite 

effects when comparing allopregnanolone with pregnenolone sulfate, which, as summarized 

above, depend on the resulting interaction with both GABAA and glutamate receptor 

function. These findings highlight the variability of neurosteroid action in absence seizures 

and indicate that caution must be taken when considering neurosteroid treatment for this 

type of epilepsy.

Neurosteroids and epileptogenesis

The P450scc enzyme is found in neurons, oligodendrocytes and astrocytes [3], and in 

activated microglial cells [12] (Fig. 2a). Thus, neurosteroid levels in brain tissue that has 

been hit by status epilepticus could be altered as a consequence of neuronal damage as well 

as of glial cell activation. To assess how these changes could affect epileptogenesis, we have 

recently studied P450scc immunoreactivity after pilocarpine-induced status epilepticus in 

adult rats [11]. We have found a highly significant increase in P450scc both in neurons and 

glial cells. However, the neuron-specific changes were limited to the first few days after 

status epilepticus, whereas those in glial cells were long-lasting and approximately 

equivalent to the latent period preceding the appearance of spontaneous recurrent seizures. 
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In addition, by varying the duration of the initial status epilepticus induced by pilocarpine, 

we discovered a clear correlation between the extent of P450scc induction and the duration 

of the latent period, which was significantly longer in rats exposed to at least 180 min of 

continuous seizures compared with others exposed to shorter status epilepticus [12] (Fig. 

2b). It should also be emphasized that young, 3-week-old rats exposed to short (60 min) 

status epilepticus present with a more pronounced induction of P450scc than that seen in 

adult animals (Fig. 2b), and in fact, contrary to adult animals, young rats rarely present with 

stage V seizures during the chronic epileptic period (Fig. 2c) [42].

The role of neurosteroids in delaying seizure onset in the pilocarpine model has been further 

tested by treating rats exposed to status epilepticus with finasteride, a procedure that could 

anticipate the appearance of stage V seizures in rats experiencing at least 180 min of status 

epilepticus, but not in those experiencing 90 min only [12]. In addition, we compared the 

effects of finasteride in adult (8-week-old) and young (3-week-old) rats exposed to 60 min 

of status epilepticus. Again, finasteride was ineffective in altering the latent period in adult 

rats, in which P450scc is scarcely induced by such a short exposure to status epilepticus 

(Fig. 2c). On the contrary, seizure manifestation was anticipated in approximately 50% of 

young rats. Therefore, these findings suggest that neurosteroid synthesis is related to the 

extent of P450scc induction in glial cells consequent to status epilepticus.

A high neurosteroid synthesis can influence epileptogenesis presumably by providing 

GABAA receptor activation, whereas low neurosteroid levels are unable to potentiate 

GABAA receptor transmission in epileptic rats [38]. Consistent with this hypothesis, 

GABAA-mediated inhibition should be enhanced during the period immediately following 

the induction of prolonged status epilepticus. Remarkably, ongoing investigations in our 

laboratories suggest that tonic GABAA current is more pronounced in rat pyramidal-like 

subicular neurons as early as 3 days following a 2 h long pilocarpine-induced status 

epilepticus (Fig. 3). These findings may be particularly relevant to better understand the 

dynamic interplay between epileptogenesis and neurosteroid–GABA interactions and may 

represent a focal point for future investigation on the mechanisms underlying the 

antiepileptogenic action of neuroactive steroids.

Conclusion

The involvement of endogenous neurosteroids and their synthetic analogues as modulators 

of neuronal excitability in the context of epileptic disorders still remains under investigation, 

due to the variability of their influence on neurotransmission. In fact, the modulatory effect 

of these neuroactive compounds depends on their class (e.g. sulfated vs. nonsulfated), the 

neurotransmitter receptor subunit composition, and the pathophysiological mechanisms 

underlying specific epileptic disorders. The literature summarized here clearly indicates that 

the ability of neurosteroids to modulate neuronal excitability resides primarily in the 

enhancement of GABAergic inhibitory tone. This physiological characteristic may, however, 

yield opposite effects, depending on the contribution of GABAergic mechanisms to 

epileptiform synchronization that are specific to different epileptic syndromes. In rodent 

models of TLE, glia-derived neurosteroids have proved to exert antiepileptogenic actions, an 

intriguing finding that let us foresee the possibility of employing neurosteroids or their 
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analogues to prevent the development of a chronic epileptic condition in high-risk patients. 

This is particularly relevant in epileptology, as there are, to date, no pharmacological agents 

capable of stopping epileptogenesis.
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Figure 1. 
Neuroactive steroids and their actions on GABAergic inhibition

γ-Aminobutyric acid (GABA) released from an interneuron interacts with GABAA receptors 

at synaptic (orange) and extrasynaptic (blue) locations, generating phasic and tonic 

inhibitory currents, respectively. The schematic drawings below the two receptors illustrate 

the corresponding effect of allopregnanolone on GABAA-mediated currents, showing an 

increase in the decay time constant of synaptic events and an increase in the inhibitory tone 

as revealed by the downward shift in the holding current.
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Figure 2. 
Induction of neurosteroids after status epilepticus modulates epileptogenesis

(a) Triple immunostaining with antibodies against the neuron-specific nuclear protein 

(NeuN, arrow), the glial fibrillary acidic protein (GFAP) expressed in astrocytes 

(arrowhead), and the cholesterol side chain cleavage enzyme associated with the cytochrome 

P450 (P450scc). Methods were previously detailed (ref. [12]); scale bar is 50 μm. (b) 

Quantification of P450scc immunoreactivity in astrocytes of the CA3 region in young (3-

week-old) and adult (8-week-old) rats exposed to variable duration of status epilepticus, 

obtained by injecting pilocarpine (ref. [42]). *P <0.05 vs. 120 min status epilepticus; #P 
<0.05, ##P <0.01 vs. 60 min status epilepticus, adult rats; ∘P <0.05 vs. adult rats; one-way 

analysis of variance (ANOVA) and the Tukey’s test. (c) Finasteride (100 mg/kg 

subcutaneously, injected from the 4th up to the 28th day after status epilepticus induction) 

significantly (*P <0.05 vs. vehicle-treated young rats, log rank test) anticipated the onset of 

seizure activity in young rats. SE, status epilepticus.
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Figure 3. 
GABAergic tonic inhibition is enhanced in the rat subiculum after pilocarpine-induced status 

epilepticus

(a) Patch clamp recordings (Vm = −70 mV) of subicular pyramidal-like neurons obtained 

from a nonepileptic control (NEC) and a pilocarpine-treated (PILO) rat, 3 days after 

induction of status epilepticus lasting for 2 h. In symmetric chloride condition, tonic 

GABAergic activity is revealed by a positive shift in the holding current during application 

of the GABAA receptor blocker picrotoxin (PTX, 100 μmol/l). On the right of each trace, 

all-point histograms indicate the normalized amount of tonic current generated during 

control condition (white) and after application of PTX (black), as measured at the 

corresponding dashed gray lines. (b) Pyramidal-like subicular neurons present with 

enhanced tonic current as early as 3 days after pilocarpine-induced status epilepticus (NEC: 

9.06 ± 3.02 pA; pilocarpine: 22.97 ± 1.78 pA; n =7 and 5, respectively; P =0.003, unpaired 

t-test. Data are expressed as mean ± SEM).
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