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Abstract

Background—Fluoxetine improves social interactions in children with autism, social anxiety 

and social phobia. It is not known whether this effect is mediated directly or indirectly by 

correcting the underlying pathology. Genetics may also influence the drug effect. Polymorphisms 

of the MAOA (monoamine oxidase A) gene interact with fluoxetine to influence metabolic 

profiles in juvenile monkeys. Juvenile nonhuman primates provide an appropriate model for 

studying fluoxetine effects and drug*gene interactions in children.

Methods—Male rhesus monkeys 1–3 years of age living in permanent social pairs were treated 

daily with a therapeutic dose of fluoxetine or vehicle (n=16/group). Both members of each social 

pair were assigned to the same treatment group. They were observed for social interactions with 

their familiar cagemate over a 2-year dosing period. Subjects were genotyped for MAOA variable 

number of tandem repeats (VNTR) polymorphisms categorized for high or low transcription rates 

(hi-MAOA, low-MAOA).

Results—Fluoxetine-treated animals spent 30% more time in social interaction than vehicle 

controls. Fluoxetine significantly increased the duration of quiet interactions, the most common 

type of interaction, and also of immature sexual behavior typical of rhesus in this age group. 

Specific behaviors affected depended on MAOA genotype of the animal and its social partner. 

When given fluoxetine, hi-MOAO monkeys had more social invitations and initiation behaviors 

and low-MAOA subjects with low-MAOA partners had more grooming and an increased 

frequency of some facial and vocal expressive behaviors.
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Conclusions—Fluoxetine may facilitate social interaction in children independent of 

remediation of psychopathology. Common genetic variants may modify this effect.

1. Introduction

Social functioning is a major endpoint for pharmacotherapy of depression (1, 2). The 

selective serotonin reuptake inhibitor (SSRI) fluoxetine is approved for treatment of 

depression in children and is also used to treat social anxiety and autism in children (3–6), 

but there is no information on whether fluoxetine specifically improves social function 

during childhood. In adult depressed patients, SSRIs, including fluoxetine, improve social 

function (7–9). In normal adults, SSRIs (citalopram, reboxetine, escitalopram) have been 

demonstrated to facilitate social interactions although fluoxetine has not been studied in this 

regard (10–14). Similar studies of SSRI promotion of normal social interactions in children 

or juvenile animals were not identified in the literature. Based on findings with other SSRIs 

in normal adult humans, fluoxetine would be expected to facilitate social interactions in 

children.

In this study we measured peer social interactions in healthy young male rhesus monkeys. 

Ethical considerations preclude experiments in normal children with psychoactive drugs. A 

unique potential “side effect” of giving psychopharmacological agents to children is 

irreversible change in the trajectory of brain development that could lead to permanent 

impairment of brain function (15).

Nonhuman primates, particularly macaque monkeys, have become a valuable model for 

studies of psychoactive agents that translate to children (16–24). Macaque monkeys undergo 

a long period of brain development between infancy and puberty when higher cortical 

functions are being established in conjunction with synaptic pruning (25, 26, 27) and 

prefrontal cortex specialization and inclusion in brain circuits (28). Nonhuman primates are 

also a valuable model for studying gene*environment interactions (29).

In addition to drug effects, drug*genotype interactions were studied. Individuals within the 

two Treatment groups (fluoxetine, vehicle) were balanced for common variable number of 

tandem repeats (VNTR) polymorphisms of the serotonin metabolizing enzyme monoamine 

oxidase A (MAOA, LPR polymorphism). Each social dyad consisted of two partners in the 

same Treatment group, but with either the same or different MAOA genotypes (high or low 

transcription polymorphism). Thus MAOA genotype was also balanced within Treatment 

group, and individual, rather than dyad, was the unit of analysis. This design allowed 

evaluation of both variables with efficient use of animals. Monoamine oxidase metabolizes 

monoamine neurotransmitters including serotonin via oxidative deamination. The MAOA 

isoform has high selectivity for serotonin (30) and is localized primarily in brain (31). 

VNTR polymorphisms of MAOA occur in both macaques and humans and can be classified 

as producing greater (high-MAOA) or less (low-MAOA) transcription of the MAOA gene 

(32, 33). As an inhibitor of the serotonin reuptake, fluoxetine has potential to interact with 

the serotonin metabolism pathway. Interestingly, fluoxetine can also directly inhibit MAOA 

activity (34). In metabolomics studies of juvenile rhesus we found that fluoxetine 

administration interacted with MAOA polymorphism genotype in influencing metabolites in 
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plasma and cerebrospinal fluid (35) indicating a biological basis for an interaction between 

fluoxetine and MAOA.

MAOA polymorphisms influence risk for, symptom patterns of, and severity of childhood 

behavior disorders including autism and ADHD (36–43). There is minimal research on 

MAOA polymorphism effects on behavior of normal infants and children (44, 45). We 

previously found that infant and juvenile monkeys with low-MAOA polymorphisms used 

more expressive vocalizations and facial expressions in social challenge situations (46). Hi-

MAOA immature monkeys initiated more grooming episodes and displacements than their 

low-MAOA peers in round-robin testing (46) and also solved more cognitive puzzles (47). 

MAOA polymorphisms also interacted with developmental iron deficiency in macaques to 

influence social behavior (46). Based on this background, we hypothesized that MAOA 

polymorphism genotype would be a modifier of the behavioral response to fluoxetine.

2. Materials and Methods

2.1 Assurance of compliance with animal codes

All animal procedures followed the Guide for the Care and Use of Laboratory Animals of 

the National Research Council and were approved by the UC Davis Institutional Animal 

Care and Use Committee.

2.2 Animal selection

Thirty-two male rhesus monkey infants were selected from the outdoor group- caged colony 

at the California National Primate Research Center (CNPRC) at 10 months of age and 

adapted to long-term indoor pair-housing as described previously (35). Males were selected 

for study because of the feasibility of obtaining MAOA genotype groups with high and low-

expressing genotypes of the X-linked MAOA gene. The population of females homozygous 

for high and low-expressing alleles available for the study was limited due to the 

predominance of mixed allele heterozygotes.

2.3 Drug treatment

Drug treatment began at one year of age (367±0.4 days of age, mean±sem). Half of the 

group was administered an oral dose of fluoxetine (Webster Veterinary Supply, Devens, 

MA). Monkeys were trained to receive the daily dose diluted in a flavorful vehicle by oral 

syringe between 1 and 2 pm. Vehicle controls received only the flavorful vehicle. A dose of 

2.0 mg/kg was known to be therapeutic in adult rhesus (48–52) and determined to be in the 

therapeutic range for juvenile rhesus (53). During the two years of treatment (from 1 to 3 

years of age) the dose was initiated at 1.6 mg/kg for the first 11 months and increased to 2.4 

mg/kg for the remainder of the study. In a pilot study, serum levels of fluoxetine and its 

active metabolite norfluoxetine averaged 336±40 ng/mL (mean±sem) 2–10 h after a single 

dose of 2.0 mg/kg in rhesus juveniles (53). Fluoxetine and norfluoxetine averaged 273±31 

ng/mL when measured 20 h after dosing with 2.4 mg/kg at the end of the current study. 

Comparable values in children are 363 ng/mL measured 8–12 h after dosing in a 

pharmacokinetic study of pediatric patients treated with fluoxetine at therapeutic doses (54) 

and 213 ng/mL from a therapeutic monitoring study in pediatric patients (55).
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2.4 Study Design

The design of the study is shown in Table 1. Most rhesus infants at CNPRC are genotyped 

for common VNTR polymorphisms of the serotonin transporter gene (SERT, 5HTTLPR 

polymorphism, LL, SL and SS variant groups) and the serotonin metabolizing enzyme 

monoamine oxidase (MAOA, hi-MAOA and low-MAOA variant groups) allowing us to 

select subjects to balance these variables within treatment groups. SERT polymorphisms 

were not found to influence social behavior. An extensive battery of behavioral evaluations 

was conducted during this time (Table S1), including 3, 30-min sessions of social interaction 

observation conducted 6 months, 12 months and 20 months after initiation of dosing (18, 24 

and 32 months of age).

Social observations were conducted in the home housing situation. All animals in the study 

were housed in an indoor caging room in a suite of two cages (each 60 by 65 by 79 cm) 

connected by a door. The two cagemates assigned for compatibility by animal management 

staff remained together throughout the study with the door between the two cages open 

except during dosing and behavioral testing. Both cagemates were assigned to the same 

treatment (fluoxetine or vehicle). The sessions were conducted in the afternoon (1500 h) by 

the same observer seated with a laptop computer in a neutral location that differed for each 

dyad. Observations using a social ethogram (Table S2) were recorded with Observer 

software (Noldus Observer XT 11.0, Noldus Information Technology, Netherlands) after a 3 

min adaptation period. No more than two dyads were observed on one afternoon.

The ethogram contained 30 social interactions and social expressive behaviors (see behavior 

definitions in Table S2). All other behavior was recorded as “nonsocial” with the exception 

of stereotypic behaviors which were recorded separately. The major categories (Table 2) of 

social interactions were passive contact, quiet interaction, active play and immature sexual 

behavior. Social expressive behaviors (primarily facial expressions and vocalizations) were 

scored for frequency of occurrence. Expressive behaviors were not necessarily part of an 

interaction with the partner.

After the first observation session, refinements were made for the second and third sessions: 

the cagemate initiating and terminating each social interaction was recorded and invitations 

to social behavior (approach, play face, groom present) were added to the ethogram. Thus 

these data were only available for the last two sessions.

2.5 Statistical analysis

Statistical analysis used a tiered approach, first examining apical variables such as the total 

amount of social interaction, and then following up with examination of subcategories and 

individual behaviors. Prior to statistical analysis, all endpoints were screened for potential 

covariates including age, size, cohort, cage position, and 5HTTLPR genotype. These 

potential covariates, including 5HTTLPR genotype, did not significantly influence 

behavioral endpoints. However, individual MAOA genotype and the partner’s MAOA 

genotype category (analyzed as same or different) had strong and extensive influence on 

social interactions and expressive endpoints. The treatment groups had been balanced a 
priori for these MAOA genotype variables, so that they could be included as independent 
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variables in the analyses. Thus, summary social interaction durations and expressive 

behavior frequencies (Table 2) were analyzed by three-way ANOVA (fluoxetine, MAOA 

genotype and partner’s MAOA genotype) including the interactions. Social invitation 

behavior frequencies (approach, play face, groom present) and frequencies of initiation of 

social interaction categories were analyzed by two-way ANOVA (individual MAOA 

genotype, fluoxetine) including the interaction. When significant drug*genotype interactions 

were identified, two post hoc planned contrasts were conducted to determine whether 

treatment effects occurred within each of the two MAOA individual groups or partner (same, 

different) groups. Significance was identified at p<0.05 for ANOVA main effects and 

interactions.

3. Results

3.1 Social interaction: Fluoxetine increased time spent in social interaction

The average amount of time spent in social interactions was 38% of the 90 min observation 

period. The duration of social interactions was 30% greater in the fluoxetine-treated animals 

than in controls (F1,26=8.27, p=0.008) (Figure 1A). Looking at the individual summary 

categories of social interaction (Figure 1B), this effect was seen for quiet interactions and 

immature sexual behavior, but not for play or for passive contact. As described below, 

partner genotype also influenced time spent in various social interaction categories. In 

addition, some behaviors showed trends across the three individual sessions that were 

evaluated statistically. These analyses are detailed below.

The time spent in passive contact was 6% of the 90 min observation time. No fluoxetine or 

MAOA genotype effect or interaction was seen.

The time spent in quiet social interaction averaged 17%. Fluoxetine increased quiet 

socialization duration, summed across all sessions, by 61% compared to vehicle controls 

(F1,26=4.92, p=0.035). Partner genotype differentially affected the two components of quiet 

social interaction, groom and cling. Grooming duration (14% of observation time) was 

greater in monkeys whose partners had the same genotype (F1,26=6.71, p=0.0155) while 

clinging (3% of observation time) was greater, though not significantly (p=0.13), in monkeys 

whose partners had different genotypes. There were also interactions between fluoxetine and 

partner genotype. Fluoxetine increased time spent grooming for the monkeys whose partners 

had the same genotype (F1,26=6.55, p=0.017) but increased time spent clinging for the 

monkeys whose partner had a different MAOA genotype (F1,26=6.52, p=0.017). Thus 

fluoxetine increased the quiet social behavior that was more common in the pair.

The grooming analysis also revealed a 3-way interaction between fluoxetine, individual 

MAOA genotype, and partner’s (same/different) genotype (F1,26=7.47, p=0.011). 

Specifically, monkeys with the low-MAOA genotype, whose partners also had the same 

genotype, had greater durations of grooming when treated with fluoxetine than their vehicle 

treated counterparts (p=0.0003). In fact, this subgroup had the highest grooming durations 

indicating a greater sensitivity to fluoxetine.
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Time spent in play averaged 12% with no fluoxetine or MAOA genotype effects. Similarly, 

there was no effect of fluoxetine on duration of play in the subcategories of play: contact 

play, rough and tumble play, and chase play. Play was consistent in duration across sessions 

in controls but increased in the fluoxetine treated group (p=0.018, paired t-test) from a level 

initially lower than controls (first session, p=0.033).

Immature sexual behavior averaged 2.57% of the observation time and was 60% higher in 

the fluoxetine treated group (F1,26=8.57, p=0.007). Immature sexual behavior is a normal 

part of the play and stress-relief behavioral repertoire of juvenile macaques (56). No 

influences of fluoxetine or MAOA genotype were seen.

Notably, in these young familiar dyad partners, there was no incidence of aggression. 

Displacement behaviors, which are often used as an index of dominance in nonhuman 

primates, occurred at a low frequency (median=1/90 min) and were not influenced by 

fluoxetine or MAOA genotype.

3.2 Fluoxetine increased the invitation to social interaction and the initiation of social 
interaction in hi-MAOA individuals

In addition to duration of different social interactions, the frequency of invitation to social 

interactions (approach, play face, groom present) was examined in sessions 2 and 3. A 

fluoxetine effect emerged in the form of an interaction with individual MAOA genotype 

(F1,26=4.47, p=0.044). In the fluoxetine treated animals, the hi-MAOA subgroup had an 

increased number of invitation behaviors (approach, play face, and groom present) compared 

to the low-MAOA subgroup (p=0.036) (Figure 2A).

Data on which individuals initiated and terminated each social interaction were also 

recorded in sessions 2 and 3. As was the case with behavior invitations, a fluoxetine effect 

emerged in the form of an interaction with individual MAOA genotype (F1,26=4.85, 

p=0.036). In the fluoxetine treated animals, the hi-MAOA subgroup had an increased 

number of behavior initiations compared to the low-MAOA subgroup (p=0.038) (Figure 

2B). Fluoxetine and MAOA genotype were not found to influence the number of behavior 

terminations.

In general, fluoxetine could be seen to increase social interactions by increasing the 

invitation to social interaction and the initiation of social interaction by hi-MAOA 

individuals and by extending the duration of grooming in low-MAOA individuals whose 

partners had the same genotype.

3.3 Fluoxetine increased occurrence of some expressive behaviors in low-MAOA animals 
whose partners had the same genotype

The amount of expressive behavior (sum of all occurrences) was not influenced by 

fluoxetine but showed a trend toward effects of partner genotype (p=0.081) and toward an 

interaction between MAOA genotype and partner genotype (p=0.081). Low-MAOA 

individuals whose partner had the same genotype had the highest frequency of all expressive 

behaviors. This suggested possible effects on a subgroup of the expressive behaviors. 

Because the incidence of most individual expressive behaviors was low (Figure 3A), clusters 
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of these behaviors were needed to conduct statistical analysis. A preliminary Principal 

Component Analysis (PCA) yielded two clusters (Figure 3A). The first expressive cluster 

included coo, fear grimace, and scratch. When the summed incidence of these behaviors was 

analyzed, no fluoxetine, MAOA genotype, partner genotype effects or interactions were 

shown. The second cluster included grunt, threat, lipsmack, sniff and yawn and showed a 

trend toward a partner genotype effect (p=0.069), and a marginal fluoxetine interaction with 

partner genotype (p=0.053). Further analysis showed that the fluoxetine by partner genotype 

interaction occurred only in monkeys with the low-MAOA genotype (F1,12=5.58, p=0.036) 

and reflected a much higher frequency of these expressive behaviors in fluoxetine treated 

monkeys whose partners also had the low-MAOA genotype (Figure 3B). Some of these 

behaviors (threat) are interpreted as “aggressive” in adult social interactions (57, 58) but it 

should be noted that these expressive behaviors are not well integrated at these early ages 

and often appear out of the contexts in which they occur in adults (59). Further, it is 

important to note that clustering is based on the incidence of occurrence in individuals 

across the observation period, not on temporal association of behaviors as the animals 

interact.

3.4 Stereotypy was infrequent and not influenced by fluoxetine

Stereotypy, either self-directed or motor, is also thought to reflect emotional state. 

Stereotypy averaged 0.7% of the observation period and about a third (10/32) of the animals 

never displayed stereotypy during the 90 min observation period. Neither the number of 

animals displaying stereotypy nor total time spent in stereotypy differed by treatment group, 

individual genotype or partner genotype.

4. Discussion

In this study chronic fluoxetine treatment at therapeutic doses increased the amount of time 

spent in social interactions by juvenile monkeys interacting with a familiar peer. The normal 

time budget of social interaction was not disrupted and increases in abnormal or aggressive 

behavior did not occur. Instead fluoxetine enhanced the behaviors most commonly seen in 

the familiar dyads.

Basic research on the effects of other SSRIs on normal social interactions in adults is 

relevant to our study. Tse and colleagues have studied effects of SSRIs (citalopram and 

reboxetine) on social behavior in normal volunteers participating in detailed experiments 

using structured social interaction paradigms. These studies found promotion of affiliative 

behavior and social bonding by SSRIs (10, 12) and suggested greater noradrenergic than 

serotonergic influences through the use of SSRIs more selective for norepinephrine (11, 13). 

Most recently, experiments from these investigators supported the hypotheses that SSRIs 

enhance reward sensitivity of social stimuli (14). In nonhuman primates, the SSRI sertraline 

was found to increase affiliative social behavior and decrease dominance-related behaviors 

in long-term social groups of female cynomolgus macaques (60).

In addition to main effects on apical variables, fluoxetine was found to interact with MAOA 

genotype of the subjects and their partners in influencing specific behaviors. Specifically, 

fluoxetine increased duration of grooming and frequency of expressive vocalizations the 
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most in low-MAOA individuals interacting with low-MAOA partners. There was a main 

effect of MAOA genotype on initiation of social interactions. Hi-MAOA individuals initiated 

more social interactions, and this genotype effect was significant in the fluoxetine-treated 

individuals. A similar fluoxetine*MAOA interaction was seen for invitation to social 

interaction. These patterns are probably specific to the age, sex, housing and observation 

conditions. However, understanding that the pattern of change in specific behaviors may 

depend on genotype of the children may help personalize the use of psychoactive drugs to 

promote social interaction. Promoting positive social interaction is an important therapeutic 

target for disorders like autism, depression and social anxiety in children. Childhood and 

adolescence are periods of intense peer interaction that form a basis for success later in life.

Our study suggests that fluoxetine can facilitate positive social behavior in familiar 

situations. Most research on fluoxetine and social behavior focuses on correcting pathology, 

counteracting aggression or modifying response to strangers. In patient populations, 

fluoxetine has been demonstrated to increase social interactions in depressed patients (1, 2, 

7, 8) and is used as a treatment for social phobia (5, 61–63). In animal models, fluoxetine 

effects on social interaction have been studied in two mouse models of autism, the BTBR 

mouse strain (64) and the MAOA knockout or hypomorphic mouse (65). Adult sexual, 

aggressive, or social approach behaviors have been studied in rodent models in brief 

structured stranger interaction paradigms during fluoxetine dosing (66–68). In nonhuman 

primates fluoxetine has been studied in connection with aggressive response to a stranger in 

adult vervet monkeys (69), with response to social separation in juvenile rhesus monkeys 

(49) and with behavior during a brief encounter with strangers in juvenile rhesus (23) and 

adult marmosets (Kinnally 2006). However, other studies of extended interaction of 

juveniles with familiar peers in children or experimental animals were not located in the 

literature.

In addition to social interactions, we studied expressive behaviors often seen in a social 

context. Vocal and facial expressions can serve signaling or social communication purposes 

but also are seen as manifestations of emotional state (57). In the observation situation used 

here, expressive behaviors could be directed at other animals in the room, and at the 

observer, as well as at the proximal social partner (cagemate) and were not necessarily 

imbedded in an interaction sequence. These considerations limit interpretation. In adult and 

infant macaques, multivariate analysis of these expressive behaviors has shown relationships 

as factors that are often interpreted as “aggressive” but differential use of these behaviors is 

gradually acquired during juvenile development (59). In the current study, fluoxetine did not 

generally change frequency of expressive behaviors, but in dyads with two low-MAOA 

partners receiving fluoxetine treatment, the frequency of this specific cluster of expressive 

behaviors was increased.

Increased social behavior could be interpreted as part of a more general activation of 

behavior. “Activation” of behavior in children by fluoxetine and other SSRIs was recognized 

early in its therapeutic use in children (70) and is seen as having predominately negative 

implications (71). The current study does not suggest that the increased socialization is 

associated with “activation”. Similarly, no association with disinhibition (69) was indicated, 
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but rather facilitation of normal interaction patterns in a familiar social relationship as 

reported previously in adult macaques (60).

5. Conclusion

Social behavior was facilitated by chronic fluoxetine treatment in juvenile rhesus monkeys 

interacting with a familiar peer. The type of social behavior affected depended on the 

MAOA genotype of the monkey and its partner. Translation of these findings to use of 

fluoxetine therapy in children would require extension of research to larger, more complex 

and more challenging social situations including different age groups, maturational stages 

that include aggressive behaviors, and environments with more behavioral options.

Supplementary Material
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Highlights

• Fluoxetine increased social interaction in familiar pairs of young monkeys

• Behaviors affected depended on MAOA polymorphism genotypes of the 

partners

• Fluoxetine therapy may facilitate social interaction of pediatric patients
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Figure 1. 
Time spent in social interaction during 3 30-min sessions over a 2-year period of dosing. A. 

Time spent in all social interactions. B. Time spent in individual categories of social 

interaction. Mean ± s.e.m. are shown. N=16/group. * significantly different from 

corresponding vehicle mean.
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Figure 2. 
Invitation to social interactions and initiation of social interaction during 2nd and 3rd 30-min 

observation sessions. A. Invitation behaviors (approach, play face, groom present). B. 

Initiation of social interactions. Mean ± s.e.m. are shown. N=16/group.
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Figure 3. 
Expressive behaviors. A. Frequency of occurrence of different expressive behaviors during 

60 min of observation (2nd and 3rd observation sessions). Mean ± s.e.m. N=32. Tags indicate 

which behaviors were significant members of the first and second principal components 

(PC) in a preliminary principle components analysis. Low incidence behaviors (bark, tooth 

grind, scream) did not contribute to the PC1 or PC2. B. Effect of fluoxetine on PC2 

expressive behaviors in monkeys with high or low-MAOA genotypes and partners with the 

same or opposite genotype. * Significant fluoxetine effect from planned comparison. 

Frequency of occurrence of PC1 variables was not affected by fluoxetine.
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Table 1

Design of the drug*genotype study. Each subject was paired with a partner in the same treatment group.

Drug Treatment MAOA transcription
category

Partner MAOA transcription
category

Vehicle (n=16) Hi-MAOA (n=8) Same (n=4)

Different (n=4)

Low-MAOA (n=8) Same (n=4)

Different (n=4)

Fluoxetine (n=16) Hi-MAOA (n=8) Same (n=4)

Different (n=4)

Low-MAOA (n=8) Same (n=4)

Different (n=4)

Neuropharmacology. Author manuscript; available in PMC 2017 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Golub et al. Page 19

Table 2

Summary variables constructed from individual ethogram behaviors. The categories were based on nonhuman 

primate behavior literature and examination of covariance matrices from the study. Summary variables were 

analyzed first in the tiered statistical analysis approach.

Social Interaction categories: coded for both duration and frequency

Passive contact Bodies are in contact but there is no
active interaction

Quiet affiliation Cling, groom

Play Rough and tumble, contact play, chase

Immature sexual Mount, genital inspection, rump present

Social invitation/initiation: coded for frequency

Social Invitation Approach, groom present, play face

Social Interaction initiation Partner responsible

Expressive Behavior clusters: coded only for frequency

PC1 Scratch, coo, fear grimace

PC2 Grunt, threat, lipsmack, yawn, sniff

Neuropharmacology. Author manuscript; available in PMC 2017 June 01.


	Abstract
	1. Introduction
	2. Materials and Methods
	2.1 Assurance of compliance with animal codes
	2.2 Animal selection
	2.3 Drug treatment
	2.4 Study Design
	2.5 Statistical analysis

	3. Results
	3.1 Social interaction: Fluoxetine increased time spent in social interaction
	3.2 Fluoxetine increased the invitation to social interaction and the initiation of social interaction in hi-MAOA individuals
	3.3 Fluoxetine increased occurrence of some expressive behaviors in low-MAOA animals whose partners had the same genotype
	3.4 Stereotypy was infrequent and not influenced by fluoxetine

	4. Discussion
	5. Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

