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Abstract

Marfan syndrome (MFS) due to mutations in FBN is a known cause of thoracic aortic aneurysms
and acute aortic dissections (TAAD) associated with pleiotropic manifestations. Genetic
predisposition to TAAD can also be inherited in families in the absence of syndromic features,
termed familial TAAD (FTAAD), and several causative genes have been identified to date. FBNI
mutations can also be identified in FTAAD families, but the frequency of these mutations has not
been established. We performed exome sequencing of 183 FTAAD families and identified
pathogenic FBN variants in five (2.7%) of these families. We also identified eight additional
FBNI rare variants that could not be unequivocally classified as disease-causing in six families.
FBN1 sequencing should be considered in individuals with FTAAD even without significant
systemic features of MFS.
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INTRODUCTION

Genetic predisposition to thoracic aortic aneurysms and dissections can occur in individuals
with syndromic features, as in Marfan syndrome (MFS), or in the absence of syndromic
features, termed familial thoracic aortic aneurysms and dissections. Individuals with MFS
have pleiotropic involvement of the cardiovascular, skeletal, ocular, integument, and
pulmonary systems due to FBN.I mutations (1-3). Although patients with TAAD due to
underlying FBNI mutations with limited involvement of other organ systems have been
reported (4-6), these patients are not typically referred for FBNI sequencing analysis.

Approximately 20% of TAAD patients without a diagnosis of MFS report a family history of
aortic disease (7, 8). Mutations in several genes that disrupt smooth muscle cell function and
transcription growth factor beta signalling have been described in these patients; in
particular, mutations in 7TGFBRZ, TGFBRI1, SMADS3, and TGFBZ are each responsible for
1-3% of FTAAD without significant features of MFS or Loeys Dietz syndrome (LDS) (9-
11). We sought to determine the frequency of FBNI mutations in patients with FTAAD in
whom clinical features did not lead to a diagnosis of MFS or prompt FBN/I testing.

MATERIALS AND METHODS

The study protocol was approved by the UTHealth Institutional Review Board and the study
participants gave informed consent. Families with =2 members with TAAD, but without a
clinical diagnosis of MFS or LDS were enrolled in the study. Blood or saliva samples and
medical information were obtained from affected family members, although not all affected
members were available (e.g., died of an acute aortic dissection) or had been evaluated by a
geneticist. Phenotypic characterisation of the vascular disease was previously described (10).
Phenotypic features beyond the vascular system were assessed by a clinical geneticist or
cardiologist familiar with genetic aortic syndromes. Aortic measurements were reviewed by
a cardiologist familiar with thoracic aortic disease and Z-scores were calculated based on
normal values for age, gender, and body size (12).
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A total of 183 unrelated families underwent exome sequencing using DNA from one or
multiple affected members and data were analysed as previously described (10). FBNI rare
variants that disrupted the protein (missense, nonsense, frameshift variants, and variants
disrupting the donor and acceptor splice sites) were identified and described based on the
RefSeq code NM_000138.4. Sanger DNA sequencing was performed to confirm the FBN1
variants identified by exome sequencing and co-segregation with TAAD in the family.

RESULTS

To identify additional genes for FTAAD, we pursued exome sequencing of 183 families and
identified thirteen heterozygous rare variants in FBNI (Table 1). Based on established
criteria of pathogenicity of FBNI variants in MFS (13, 14), five of these variants were
classified as pathogenic and co-segregated with TAAD in the families with available samples
(Figure 1). A nonsense (c.7656C>A,; p.Cys2552Ter) and frameshift mutation (c.
7039_7040del AT; p.Met2347Valfs*19) were identified in two families (TAA748 and
TAA345). Three missense variants that disrupt amino acids in the EGF-like domains are
predicted to be pathogenic: ¢.813C>G (p.Cys271Trp) in family TAA258 and ¢.6866G>T
(p.Cys2289Phe) in family TAA321 disrupt highly conserved cysteine residues important for
folding of the domain, and ¢.4467T>A (p.Asn1489Lys) in family TAA394 disrupts an amino
acid critical for calcium binding to the domain.

Affected members of these families did not have sufficient systemic features of MFS to raise
clinical suspicion and pursue FBNI sequencing. The proband of family TAA258 (111:1) died
from a type A aortic dissection. After her death, her 68-year-old father was screened and
found to have a 4.4 cm aortic root (Z-score 2.08) and dilatation of the abdominal aorta and
bilateral iliac arteries. He is 193 cm tall and has mild mitral valve prolapse and pes planus.
The proband’s brother has mild aortic root dilatation (4.1 cm, Z-score 2.24) with effacement
of the sinotubular junction and mild mitral regurgitation at the age of 47. He is 188 cm tall
and has a systemic score of six based on the revised Ghent criteria (Table 2).

The proband of family TAA394 (111:3) was diagnosed with aortic root dilatation (4.2 cm; Z-
score 5.07) during pregnancy at the age of 17. She underwent a cesarean section followed by
a valve-sparing aortic root replacement due to rapid aortic enlargement. She has
arachnodactyly, skin striae, and myopia. Her brother (111:4) died at the age of 18 from aortic
rupture due to a motor vehicle accident. Her mother had a type A aortic dissection at the age
of 50, and her older sister has aortic root dilatation (4.1 cm; Z-score 4.22), myopia, scoliosis
and skin striae. Both her mother and sister carry the FBNZ variant; DNA sample was not
available from her brother.

The proband of TAA321 (11:3) had an ascending aorta rupture at the age of 24. She is 142.5
cm tall and has joint laxity and arachnodactyly. Her father also carries the FBN/I variant and
was diagnosed with aortic root enlargement (4.3 cm) at the age of 56 after the proband’s
dissection.

Individual 11:3 of family TAA345 presented with a type A dissection at the age of 36. He has
increased arm span:height ratio, positive thumb sign and spontaneous pneumothorax. His
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brother (11:1) also carries the FBN/I variant and is 210 cm tall and had surgical repair of a 6.5
cm aortic root aneurysm at the age of 30; he has no history of eye problems or clinical
diagnosis of MFS by his report.

The proband of family TAA748 is Hispanic and had surgery for aortic root aneurysm and
type A dissection at the age of 26. He is 183 cm tall and has joint laxity and arachnodactyly.
No other MFS features were reported by his referring physician. His mother died of an
aortic dissection at the age of 39. No samples from family members were available for
FBNI analysis.

Five other FBNI variants are in EGF-like domains that do not disrupt an amino acid in a
manner established to cause MFS (Table 1). A p.Tyr1266Phe and a p.Asp2707Glu
substitution were identified in the proband of TAA662, who had a type B aortic dissection
and 4.3 cm aortic root dilatation at age 58 years. The proband reported symptoms of myopia
and caved-in chest and no family history of MFS. There are no additional affected family
members available, but analysis of unaffected relatives indicated that these variants are on
different alleles. FBNI ¢.3428G>A (p.Gly1143Asp) was identified in a 53-year-old man
with aortic root aneurysm and has not been reported previously; samples from affected
relatives are not available. The proband has no other features of MFS or family history of
MFS. FBN1 c.6596G>A (p. Gly2199Asp), as well as ¢.185G>A (p.Arg62His), were
identified in an African American man with thoracic aortic dissection and a family history of
aortic dissection without skeletal features of MFS or lens dislocation. Samples from
additional family members are not available for analysis. FBN1 variants p.Pro1424Ala and
p.Asn736Ser did not segregate with aortic disease; additionally, the probands had ascending
aortic aneurysms associated with bicuspid aortic valve and did not have features of MFS or
family history of MFS. FBN1 p.Pro698Leu located in a transforming growth factor binding
protein-like domain did not co-segregate with aortic disease; the proband had a type A
dissection, ascending aortic dilatation (not aortic root), and other risk factors (bicuspid aortic
valve and hypertension) but no features of MFS or family history of MFS.

DISCUSSION

The frequency of pathogenic FBNI variants in patients with FTAAD is 3% (5/183). Of the
five pathogenic variants, two are null mutations, one of which has been reported in patients
with MFS. Three of the variants are missense mutations that disrupt conserved amino acid
residues in the EGF-like domains, predicted to be deleterious based on multiple
computational programs, and co-segregate with TAAD in the families. The p.Cys271Trp
substitution has been reported previously in a patient with MFS (15). The p.Asn1489Lys
substitution has been reported in a 56 year old woman with a type B aortic dissection and
aortic root aneurysm and no skeletal features of the MFS (6). These findings highlight the
variable clinical presentations of FBA/Z mutations, but the underlying mechanisms of this
fundamental genetic phenomenon are not understood.

The affected individuals had no lens dislocation and systemic scores that ranged from zero
to six as determined by a geneticist. Assessment of other family members may help raise the
suspicion of MFS, but these members may not be readily available. Our group and others
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have reported FBN mutations in patients with FTAAD or incomplete MFS (4, 5, 16). We
also reported a lack of skeletal features in Hispanic MFS patients (23), and one of the
probands in this report is Hispanic. Thus, the variable presence of MFS systemic features
indicate that sequencing of FBN as part of a gene panel should be pursued in probands with
familial TAAD and no significant systemic manifestations suggestive of MFS.
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Figure 1. Segregation of pathogenic FBN1 variantswith TAAD
Circles represent females, squares represent males, and an arrowhead indicates the proband.

A diagonal line through a symbol indicates the individual is deceased, with their age of
death shown below the symbol. Age at onset or diagnosis of TAAD (dx) is shown below
each individual. Symbols used to represent disease diagnoses are indicated in the figure key.
Individuals marked with asterisk were evaluated by a clinical geneticist, and individuals
marked with the symbol t underwent exome sequencing.
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