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Abstract

We report on PAX6 alleles associated with a clinical diagnosis of classical aniridia in 81 affected 

individuals representing 66 families. Allelic variants expected to affect PAX6 function were 

identified in 61 families (76 individuals). Ten cases of sporadic aniridia (10 families) had complete 

(8 cases) or partial (2 cases) deletion of the PAX6 gene. Sequence changes that introduced a 

premature termination codon into the open reading frame of PAX6 occurred in 47 families (62 

individuals). Three individuals with sporadic aniridia (3 families) had sequence changes (1 

deletion, 2 run-on mutations) expected to result in a C-terminal extension. An intronic deletion of 

unknown functional significance was detected in one case of sporadic aniridia (1 family), but not 

in unaffected relatives. Within these 61 families, single nucleotide substitutions accounted for 

30/61 (49%), indels for 23/61 (38%), and complete deletion of the PAX6 locus for 8/61 (13%). In 

five cases of sporadic aniridia (5 families), no disease-causing mutation in the coding region was 

detected. In total, 27 unique variants were identified that have not been reported in the LOVD 

database. Within the group assessed, 92% had sequence changes expected to reduce PAX6 

function, confirming the primacy of PAX6 haploinsufficiency as causal for aniridia.
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INTRODUCTION

Aniridia is a congenital, progressive disorder for which the majority of cases are caused by 

heterozygous loss-of-function mutations of the PAX6 gene (1, 2). Aniridia occurs in 

approximately 1/64,000 to 1/96,000 live births and is primarily characterized by iris 

hypoplasia that is clinically detectable at birth (2, 3). Associated foveal hypoplasia, indicated 

by early infancy nystagmus, causes reduced visual acuity. The progressive nature of the 

disease frequently leads to multiple ocular abnormalities such as keratopathy, corneal 

vascularization and opacification, glaucoma, anterior chamber fibrosis, and cataracts (2, 4–

7). Along with distinct ocular characteristics, the condition is associated with a number of 

other irregularities spanning sensory, neural, cognitive (8) and pancreatic phenotypes (9, 10). 

These include auditory processing deficits (11, 12), deficient pituitary function (13) and 

olfactory dysfunction (14). Previous studies have identified a correlation between PAX6-

mediated aniridia and a number of other disorders, including diabetes (15) and autism 

spectrum disorders (16). Additionally, structural abnormalities in major fiber tracts and 

subcortical structures in the brain including the corpus callosum, anterior and posterior 

commissures, pineal gland and probst bundles have been observed (14, 17). A functional 

understanding of the PAX6 gene in context of the manifestation of aniridia-related clinical 

traits continues to be the focus of much research.

Functional mutations that occur only in the PAX6 gene or associated regulatory regions give 

rise to aniridia, which can be sporadic or familial. WAGR syndrome (Wilms tumor, aniridia, 

genitourinary anomalies and mental retardation) is associated with large heterozygous 

genomic deletions at the 11p13 chromosome that include deletion of the PAX6 locus and the 

WT1 locus (18, 19). In addition to clinical symptomologies associated with aniridia, patients 

with WAGR syndrome present with Wilms tumor and, depending on the size of the causal 

chromosomal deletion, often exhibit cognitive delays and disabilities in addition to 

developmental genitourinary defects (19). Aniridia is not comorbid with WAGR syndrome; 

however, it can be further classified at the cellular and molecular level by the specific 

mutation affecting the PAX6 gene.

The PAX6 gene encodes a transcription factor critical for normal ocular and neural 

development. The gene is highly conserved and is expressed in the developing eye, brain, 

spinal cord and pancreas (20). PAX6 is required for various aspects of anatomical and 

functional development. The mechanistic role of PAX6 in eye development has been 

investigated and its involvement has been demonstrated in initial lens development (21), cell 

differentiation (22–24), and cell proliferation and adhesion/migration (25). PAX6 has also 

been identified as having critical maintenance functions in corneal homeostasis (26, 27). 

Additionally, in the central nervous system PAX6 is thought to be involved in brain 

patterning and regionalization and the formation of neural circuits, particularly in the 

forebrain (25, 28–30). In these ways, PAX6 is an integral upstream regulator involved in 

numerous developmental gene networks. It follows that the broad developmental and 

progressive phenotypic outcomes caused by PAX6 mutations are a consequence of the 

extensive roles of the gene and its products.
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The PAX6 protein is composed of four functional domains: a paired domain and a 

homeodomain (involved in DNA binding) joined by a linker domain, and a proline-serine-

threonine (PST) rich transactivation domain (31). Should products of mutant alleles undergo 

translation, disruptions in the coding sequence of different functional domains will alter the 

efficacy of PAX6 as a transcriptional regulator, which has been shown in molecular and 

phenotypic studies of missense and run-on PAX6 mutations in aniridia and other related 

disorders (32–39). However, the majority of PAX6-mediated aniridia cases are caused by 

mutations that give rise to premature termination codons (PTCs) leading to haploinsufficient 

levels of wild-type PAX6 protein.

Prior to the current study, the Human PAX6 Allelic Variant Database (LOVD database) 

(http://lsdb.hgu.mrc.ac.uk/home.php?select_db=PAX6) has identified 361 unique variants of 

PAX6 (833 total reported). The current study sought to further examine and classify 

mutations of PAX6 in patients diagnosed with classical aniridia, as well as examine our data 

in the context of previously identified mutations of the gene. This line of investigation 

provides insights towards identifying locations on the PAX6 gene that are more susceptible 

to mutations, and seeks to explore individual-specific mutation characteristics which could 

benefit from new therapeutics within the aniridia population.

MATERIALS & METHODS

Participants

DNA samples were collected from 81 individuals with a clinical diagnosis of aniridia and 77 

unaffected genetic relatives from 66 families (Supplementary Table 1). Participants were 

recruited through the Aniridia Foundation International Conferences in 2007, 2009, and 

2011 through affiliation and direct physician referral for participation in the study. The study 

protocol was in keeping with the tenets of the Declaration of Helsinki and was reviewed, 

approved, and overseen by the Institutional Review Boards (IRBs) at the University of 

Tennessee Health Science Center and the University of Georgia. All samples were collected 

after written informed consent had been obtained from each participant.

DNA Preparation

Genomic DNA from individuals with aniridia and their relatives was prepared from 

peripheral venous whole blood. Briefly, 10mL volume blood samples were collected from 

each adult participant, and 2mL blood samples were collected from each infant. Buffy coat 

preparation was performed on each sample and genomic DNA (gDNA) prepared by use of a 

Gentra Puregene Blood Kit (Qiagen). Buccal cell lysates were prepared from saliva or swab 

samples (Oragene-DNA OG-575, DNA Genotek, Inc; buccal swabs and QuickExtract DNA 

extraction solution, Epicentre). All gDNA samples were stored in 10 mM Tris-HCl (pH 7.5), 

1 mM EDTA buffer at −20°C.

Molecular Analysis

The PAX6 gene (11p13) [OMIM: 607108] is composed of sixteen exons (Supplementary 

Table 2) (20), of which eleven (4 to 13 and 5a) contribute to the protein-coding regions of 

the mRNA transcripts. The other exons (0, 1, 2, 3, and alpha) contribute to the non-coding 

Bobilev et al. Page 3

Clin Genet. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://lsdb.hgu.mrc.ac.uk/home.php?select_db=PAX6


regions of the mRNA transcripts. For this study, PAX6 exons 1–13 and 5a were individually 

amplified in a polymerase chain reaction (PCR) with primers located in the introns as 

previously described (40, 41). Mutation screening was performed on the PCR products by 

direct bi-directional sequencing using either the same PCR primers or more internal primers 

(40, 41). Bi-directional sequence was analyzed and compared to PAX6 reference sequences. 

Reference sequences for PAX6 cDNA and protein are contained in GenBank entry 

NM_000280 (http://www.ncbi.nlm.nih.gov/Genbank; provided in the public domain by the 

National Center for Biotechnology Information, Bethesda, MD). The February 2009 human 

reference sequence GRCh37 produced by the Genome Reference Consortium (http://

www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/) was used as the PAX6 genomic 

reference after first validating against genomic sequences obtained from cosmids FAT5 and 

A1280 (Genbank accession numbers Z95332 and Z83307, respectively), which together 

encompass all PAX6 exons. Supplementary Table 2 lists intron-exon boundary sequences for 

human PAX6 and all exon sizes. Potential mutations were identified as differences relative to 

the appropriate reference sequence. Results were confirmed by repeat PCR, which in most 

cases was performed using an independent, second gDNA sample prepared from either 

blood or buccal cells. Changes from the reference sequence were identified, classified and 

are documented in Table 1 using the nomenclature system recommended by the Human 

Genome Variation Society (42), with the first base of the ATG initiation codon in the PAX6 
cDNA reference sequence NM_000280 denoted as nucleotide 1.

Deletion/duplication testing was performed either by array-comparative genomic 

hybridization (CGH) analysis (43) (GeneDx or Emory Genetics Laboratory), fluorescence in 

situ hybridization (44), or physical mapping (45).

Individuals for which no PAX6 pathogenic mutations were detected were retested using 

fresh samples by GeneDx or the Denver Genetic Laboratories (University of Colorado 

Anschutz Medical Campus).

RESULTS

A total of 158 individuals (81 affected, 77 unaffected genetic relatives) from 66 families 

were evaluated in this study (Supplementary Table 1). All affected individuals had a clinical 

diagnosis of aniridia (Figure 1, data not shown). In the context of this study, “family” was 

used to group genetically related individuals, and includes instances of sporadic aniridia (a 

single individual within the family) or familial aniridia (multiple individuals). Of the eighty-

one affected individuals, 53 were female and 28 were male. Fifty-eight cases were sporadic 

(44 female, 14 male), with no affected relatives at the time of birth. Of these, five females 

subsequently had children (2 female, 4 male) with aniridia. Fifteen additional cases (6 

female, 9 male) were familial from 4 separate families. The parents for two cases (1 female, 

1 male) were unknown, and so it is not possible to determine if these two individuals were 

sporadic or not.

The PAX6 gene was characterized for all individuals. Sequence changes relative to the 

appropriate PAX6 reference sequence (see Methods) were identified and classified (Table 1, 

Supplementary Table 1). Potential aniridia-causing changes were identified as differences 
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relative to the reference sequence and sequences from unaffected genetically related family 

members. Sequence variants were identified in individuals with aniridia in 64 of the 66 

families (79 out of 81 individuals). One of these variants (c.766-12C>T) was detected in 

both affected and unaffected individuals in three families (3 individuals with sporadic 

aniridia) and is therefore likely to be a benign sequence change (Table 1C), as has been 

previously suggested (46–48). No sequence changes were detected in unaffected relatives in 

the remaining 74 families. Thus aniridia-specific alterations in the PAX6 gene were 

identified in 61 families (76 individuals).

Sequence alterations predicted to cause loss-of-function of one copy of the PAX6 gene were 

identified in 57 families (72 individuals). Whole gene deletions were detected in 8 cases of 

sporadic aniridia (8 families); seven of these deletions also included the WT1 gene. A partial 

deletion of PAX6 was detected in 2 cases of sporadic aniridia (2 families). In one case, the 

region extending from the P1 promoter to exon 4 was deleted, and in the other, a region 

encompassing exons 6 and 7 was deleted. Nonsense mutations were identified in 18 families 

(24 individuals), and frameshifting deletions or insertions were identified in 16 families (23 

individuals). Changes expected to disrupt normal splicing were identified in 13 families (15 

individuals). Of these, 9 were changes to the dinucleotides in the 5′ and 3′ splice sites. Also 

included were a C to T transition at the −3 position in the 5′ flanking sequence of exon 10 (c.

766-3C>T, family 173) and a T to G transversion at the +6 position in the 3′ flanking 

sequence of exon 11 (c.1032+6T>G, family 130). These two variants were included because 

changes in these positions are known to affect splicing in other human genes (49) and there 

is a high degree of conservation in the sequences immediately flanking PAX6 exons between 

humans, dogs, mice, chickens, Xenopus tropicalis, and zebrafish (data not shown). In 

families 117, 143, 163, and 169, where deletions included both exonic and intronic 

sequences, the deletion was scored as “frameshifting” if the deletion originated within the 

exon and included the 3′ flanking sequence (families 143 and 163) or “splice junction” if the 

deletion originated in the intron and included the 5′ end of the subsequent exon (families 117 

and 169).

Mutations predicted to result in a PAX6 protein with a C-terminal extension were identified 

in three cases of sporadic aniridia. Two cases had an A to T transversion (c.1268A>T) that 

converts the stop codon (TAA) to a leucine codon (TTA). This mutation is predicted to result 

in the addition of 14 residues to the C-terminal portion of the PAX6 protein.

One case had a single nucleotide deletion (c.1256delC) that is predicted to result in a 

frameshift at amino acid 419 and the addition of 105 residues to the C-terminal portion of 

the PAX6 protein. One case of sporadic aniridia (family 128) had a heterozygous deletion of 

the 18th – 20th nucleotides in the intronic sequence just 3′ to exon 5 (c.141+18_

+20delGCC). This deletion was not present in unaffected family members and is, therefore, 

likely to be causal for aniridia in this individual. Although the molecular effect of this 

change is not known, its position within the intron may affect splicing or alter a regulatory 

element.

The exon-by-exon distribution of single nucleotide substitutions and small indels (≤ 150 bp) 

associated with aniridia that were found in 51 families is shown in Figure 2. Mutations were 
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detected in all exons except for 4, 5a and 9. Twenty-one variants (41%) occurred within the 

paired domain, 11 variants (22%) occurred within the homeodomain, 8 (16%) within the 

linker domain, and 11 variants (22%) occurred within the C-terminal transactivation domain 

(Figure 3). In total, 27 unique variants were identified which have not been previously 

reported in the LOVD database (Table 1: variants in bold).

DISCUSSION

In the group of individuals with a diagnosis of classical aniridia analyzed here, aniridia-

associated alterations in the PAX6 gene were identified in 61 out of 66 families (76 out of 81 

individuals). These changes included complete (8 instances) or partial deletion (2 instances) 

of the PAX6 gene, introduction of a premature termination codon into the open reading 

frame of PAX6 (47 instances), and likely addition of residues to the C-terminal end of the 

PAX6 protein (3 instances). These changes are all predicted to reduce PAX6 function. 

Additionally, an intronic deletion of unknown functional significance was detected in one 

case of sporadic aniridia (1 family), but not in unaffected relatives. Overall, the distribution 

of the variants identified in the current study demonstrates similar characteristics when 

compared with the LOVD database (Figure 2a, 2b), except that the comparative frequency of 

frame-shifting insertions or deletions is higher in this study. These results confirm the 

primacy of PAX6 haploinsufficiency as causal for aniridia.

No pathological sequence changes were observed in 5 families with aniridia. At this time, 

these individuals appear clinically indistinguishable from others with aniridia who have 

known PAX6 mutation (Figure 1, data not shown). Three of these individuals are children 

and it is possible that clinical differences will emerge as they get older. These persons could 

harbor mutations in other genes involved in anterior eye development, such as FOXC1 or 

PITX3, among others, or they may have mutations in PAX6 regulatory elements. We are 

currently exploring these possibilities.

The major mutational mechanisms underlying genetic variation are single nucleotide 

substitutions (50–52), small DNA insertions and deletions (indels) ranging from 1 to 10,000 

bp in length (53–56), and large scale (>10 kb) genome rearrangements (57–63). For the 61 

families with aniridia-specific alterations in the PAX6 gene, single nucleotide substitutions 

accounted for 30/61 (49%), indels accounted for 23/61 (38%), and gross deletion of the 

PAX6 locus accounted for 8/61 (13%) of instances. These results demonstrate that single 

nucleotide substitutions and indels in PAX6 are a significant source of aniridia-causal 

mutations. Of the single nucleotide substitutions, 13/30 (43%) occurred at CpG 

dinucleotides, a structure known for its high mutability in the human genome (64, 65) and to 

be associated with significant mutation hotspots in PAX6 (66, 67). Consistent with previous 

reports (66, 67), nonsense mutations in exons 8, 10 and 11 occurred at CpG locations that 

created arginine CGA codons Arg203 (c.607C>T, 2 instances), Arg261 (c.781C>T, 4 

instances) and Arg317 (c.949C>T, 3 instances), respectively. Additionally, a CpG located at 

the 3′ exon/intron junction of exon 6 was mutated in four families (c.357+1G>A, 3 

instances; c.357+1G>T, 1 instance). The frequency of indels is notable as it is about twofold 

more than has been reported for the genome at large (56). Since indels result from 

nonhomologous end joining as a result of DNA break repair, the high frequency of indels in 
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PAX6 suggests that the 11p13 region of human chromosome 11 may be unstable relative to 

other regions of the genome. Alternatively, the frequency of indels in the human genome 

may currently be underreported due to technical issues with detecting these types of changes 

throughout the genome (68). Indels have been reported to occur preferentially in the male 

germline (69), and may be useful in tracking inheritance.

Analysis of the different types of mutations found in this study, in conjunction with those 

previously reported in the LOVD database can help to differentiate possible functional 

implications of the nature of mutations, in the context of phenotype analysis as well as 

potential genetic treatments. This requires consideration of individual mutations in the 

context of molecular and cellular mechanisms that act on mutant gene products. Mutations 

that lead to a PTC give rise to mRNA transcripts, which are putative targets of nonsense-

mediated mRNA decay (NMD). NMD is an RNA-surveillance pathway which recognizes 

and degrades transcripts with PTCs upstream of the last exon-junction complex (EJC) during 

the primary round of translation (70). This mechanism serves to prevent the translation of 

truncated proteins with possible dominant negative effects, and is expected to target all 

transcripts with a PTC upstream of the last EJC regardless of the nature of the causal 

mutation. In patients with mutations fitting these criteria, degradation of transcripts from the 

mutant PAX6 allele should result in PAX6 haploinsufficiency. However, PAX6 transcripts 

harboring mutations upstream of the coding region of PAX6, those causal for PTCs near or 

downstream of the last EJC, or missense mutations would likely evade NMD and could 

produce dysregulated or truncated dominant negative PAX6 protein products from the 

mutant allele. Three cases in the current study previously mentioned as causal for C-

terminus extensions of the open reading frame would fall into this category, leaving the vast 

majority of cases subject to this RNA surveillance pathway and ultimately leading to PAX6 
haploinsufficiency. Dominant negative PAX6 proteins could interfere with proteins produced 

from the wild-type allele, especially if the DNA binding domain structures remain intact. 

Future studies will seek to compare phenotypic differences at the levels of both cellular/

molecular differences and clinical presentation between patients with and without mutations 

identified as putative NMD targets.

In addition to contributing to our understanding of PAX6 allelic differences in the context 

and implications of haploinsufficiency, knowledge about the different disease-causing 

mutations is necessary for the development of potential therapeutic approaches to treat 

individuals with aniridia. Approaches that could be used include: 1) those that are cell-based 

coupled with genome editing or manipulation; 2) those designed to increase PAX6 
expression from the normal allele, through the use of microRNAs for example; and 3) those 

targeted towards generating functional PAX6 protein from the mutant transcripts.

Recently, a novel therapeutic known as ataluren (formerly PTC124) has been identified as a 

treatment for genetically-mediated diseases which are caused by mutations leading to a PTC 

(71). With successful clinical applications for other diseases (72–75) as well as evidence of 

the efficacy of ataluren in mouse models of aniridia (76), data from the current study could 

serve to identify potential candidates for this treatment based on specific genetic mutations 

of PAX6. Though ataluren has been demonstrated to effectively promote read-through of all 

PTCs, it shows the most significant increase in read-through when the PTC consists of the 
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UGA nucleotide sequence (followed in significance by UAG and then UAA) (71). The 

efficacy of ataluren on promoting read-through of PTCs (via START drug formulation) 

specifically in the PAX6 gene has recently been demonstrated in a mouse model of aniridia 

possessing a nonsense mutation which induces a UGA in-frame premature stop codon (76). 

Further, administration of this drug to mice with a mutant PAX6 allele provides 

demonstrable evidence for partial rescue of ocular phenotypes associated with aniridia, as a 

product of both systemic and topical postnatal application (76). These results are promising 

for the treatment of human aniridia with START therapy in patients with nonsense 

mutations, especially those consisting of a UGA in-frame premature stop codon. The current 

study has identified 14 families (20 individuals) with an UGA in-frame premature stop 

codon who may be good candidates for this therapy, followed by 3 families (3 individuals) 

with an UAG in-frame premature stop and 1 family (1 individual) with an UAA in-frame 

premature stop.

Results of the current study have identified new variants in the human PAX6 gene causal for 

aniridia and, in conjunction with previously identified mutations, serve to further the 

understanding of PAX6 mutations in this disorder as well as inform future studies of novel 

pharmacological treatments which may be beneficial for the treatment of aniridia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ocular phenotypes associated with individuals harboring PAX6 coding mutations (A–C) and 

those for whom no coding mutations were detected (D–F). Images from individuals with 

known PAX6 mutations were chosen to facilitate comparison with panels D–F and do not 

capture the full range of ocular phenotypes observed in individuals with identified mutations 

of the PAX6 gene. Family ID, upper right; causal sequence variant, lower right.

Bobilev et al. Page 12

Clin Genet. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Distribution of PAX6 variants. (A) Frequency of pathological variants identified in the 

current study located in each exon and intron of the PAX6 gene (N=51). (B) Frequency of 

variants complied from the PAX6 Allelic Variant Database as of June 2, 2015 (N=623). 

Variants classified based on nature of sequence alteration.
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Figure 3. 
Summary of allelic variants predicted to affect each protein domain. Illustration of the PAX6 

protein with summary statistics of the variants in the current study predicted to affect protein 

structure in (A) the paired domain, (B) the linker domain (C) the homeodomain, and (D) the 

transactivation (PST) domain.
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Table 1
Identified variants in the current study

(A) 51 sequence variants (from 51 families) sorted by genomic location and are described by type of variant, 

intronic/exonic location, and the predicted effect on gene products. (B) Complete and partial deletions of 

PAX6 from 10 families. (C) 5 families with no pathological change in PAX6 detected. Variants in bold 

represent those not previously identified in the LOVD database.

Table 1A: PAX6 variants expected to cause pathology.

FID LOCATION VARIANT TYPE OF VARIANT PREDICTED EFFECT

157 Exon 5 c.28C>T transition nonsense

118 Exon 5 c.57delG indel frameshift deletion

108 Exon 5 c.63-70delGCCGGACT indel frameshift deletion

133 Exon 5 c.112delC indel frameshift deletion

101 Exon 5 c.112-116delCGGCC indel frameshift deletion

135 Exon 5 c.121_122insGCGG indel frameshift insertion

138 Intron 5 c.141+1G>T transversion splice junction disruption

152 Intron 5 c.141+2_+30delTGATCCTCCCGGCGCCGCCCCACTCGCCG indel splice junction disruption

128 Intron 5 c.141+18_+20delGCC indel Unknown effect

150 Exon 6 c.179-185delATTACGAinsCTGAT indel frameshift deletion/insertion

112 Exon 6 c.199A>T transversion nonsense

147 Exon 6 c.204delC indel frameshift deletion

155 Exon 6 c.332insG indel frameshift insertion

1003 Exon 6 c.343delG indel frameshift deletion

163 Exon 6 & 
Intron 6

c.352-357+2delCCAAGCGT indel frameshift deletion

100 Intron 6 c.357+1G>A transition splice junction disruption

129 Intron 6 c.357+1G>A transition splice junction disruption

230 Intron 6 c.357+1G>A transition splice junction disruption

105 Intron 6 c.357+1G>T transversion splice junction disruption

169 Intron 6 & 
Exon 7

c.358-3_361delCAGGTGT indel splice junction disruption

168 Exon 7 c.365C>A transversion nonsense

141 Exon 7 c.401delA indel frameshift deletion
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Table 1A: PAX6 variants expected to cause pathology.

FID LOCATION VARIANT TYPE OF VARIANT PREDICTED EFFECT

104 Exon 7 c.454C>T transition nonsense

126 Exon 7 c.467G>A transition nonsense

127 Exon 7 c.480delT indel frameshift deletion

114 Exon 7 c.482delG indel frameshift deletion

117 Intron 7 & 
Exon 8

c.524-101_534del112bp indel splice junction disruption

102 Exon 8 c.607C>T transition nonsense

160 Exon 8 c.607C>T transition nonsense

189 Exon 8 c.631C>T transition nonsense

173 Intron 9 c.766-3C>G transversion splice junction disruption

124 Exon 10 c.771delG indel frameshift deletion

144 Exon 10 c.781C>T transition nonsense

164 Exon 10 c.781C>T transition nonsense

170 Exon 10 c.781C>T transition nonsense

232 Exon 10 c.781C>T transition nonsense

110 Exon 10 c.794G>A transition nonsense

227 Exon 10 c.795G>A transition nonsense

191 Exon 10 c.799A>T transversion nonsense

103 Exon 10 c.802_806delGAAGA indel frameshift deletion

120 Exon 11 c.949C>T transition nonsense

153 Exon 11 c.949C>T transition nonsense

1001 Exon 11 c.949C>T transition nonsense

130 Intron 11 c.1032+6T>G transversion splice junction disruption

122 Intron 11 c.1033-2A>G transition splice junction disruption

143 Exon 12 & 
Intron 12

c.1174_+6delACTTCAACAGGTGAGC indel frameshift deletion

119 Intron 12 c.1183+1G>A transition splice junction disruption

1004 Intron 12 c.1183+1G>A transition splice junction disruption
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Table 1A: PAX6 variants expected to cause pathology.

FID LOCATION VARIANT TYPE OF VARIANT PREDICTED EFFECT

185 Exon 13 c.1256delC indel frameshift deletion; C-
terminal extension

115 Exon 13 c.1268A>T transversion run-on, C-terminal extension

140 Exon 13 c.1268A>T transversion run-on, C-terminal extension

Table 1B: Partial and gross deletions of PAX6.

FID LOCATION VARIANT TYPE OF VARIANT PREDICTED EFFECT

228 Deletion P1 promoter to exon 4 indel

1002 Deletion exons 6 and 7 indel

161 WT1-PAX6; 3′ extent unknown gross deletion loss-of-function

174 WT1-PAX6; 3′ extent unknown gross deletion loss-of-function

180 WT1-PAX6; 3′ extent unknown gross deletion loss-of-function

182 WT1-PAX6; 3′ extent unknown gross deletion loss-of-function

214 WT1-PAX6; 3′ extent unknown gross deletion loss-of-function

219 WT1-PAX6; 3′ extent unknown gross deletion loss-of-function

225 WT1-PAX6; 3′ extent unknown gross deletion loss-of-function

501 Deletion of PAX6 gross deletion loss-of-function

Table 1C: Families with no pathological mutations of PAX6 detected.

FID LOCATION VARIANT TYPE OF VARIANT PREDICTED EFFECT

121 No changes detected N/A

162 Intron 9 c.766-12C>T transition Variant of unknown significance

166 Intron 9 c.766-12C>T transition Variant of unknown significance

190 Intron 9 c.766-12C>T transition Variant of unknown significance

231 No changes detected N/A
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