Skip to main content
. 2016 May 17;7:2041731416648810. doi: 10.1177/2041731416648810

Table 3.

Summary of effects of sterilization methods on biodegradable scaffolds.

Category Technique Condition Scaffold Effect of sterilization of scaffold Result of sterilization method Reference
Heat Heat treatment Steam treatment with air removal, 129°C PLA Increase in mechanical strength; decrease in molecular weight Not tested Rozema et al.14
Dry heat treatment, 135°C, vacuum atmosphere Lactide copolymers Increase in molecular weight; decrease in bending strength Not tested Gogolewski and Mainil-Varlet15
Irradiation Gamma Dose rate: 2.11 kGy/h Copolymers of LLA, CL, and DXO Decrease in molecular weight; random chain scission; cross-linking Not tested Plikk et al.16
Dosage: 25 kGy, vacuum atmosphere, 140°C, 12 h Hydroxyapatite–collagen composite scaffolds Decrease in compressive mechanical strength; increase in degradation rate Not tested Yunoki et al.17
Dosage: 30.8 kGy PCL Increase in the yield point and the maximum stress; alteration in mechanical structure Not tested Cottam et al.18
Dosage: 25 kGy Poly[(butylene terephthalate)-co-poly(butylenesuccinate)-block-poly(ethylene glycol)] Decrease in elongation at break, tensile strength, and molecular weight Slow cell growth Wang et al.19
Dosage: 39 kGy PLLA Decrease in molecular weight and mechanical strength; increase in degradation rate Not tested Hooper et al.20
Dosage: 10–50 kGy, atmosphere PCL-hydroxyapatite composites Chain scission Not tested Di Foggia et al.21
Dosage: 3 kGy PLGA Decrease in tensile strength Remained sterile for >3 months Selim et al.22
E-beam Dosage: 25–150 kGy, room temperature PCL Cross-linking, chain scission; increase in the modulus of elasticity Not tested Olah et al.23
Dosage: 26.6 ± 2.0 kGy Poly(l,dl-lactide) (PLDLLA) Decrease in inherent viscosity; faster mechanical degradation Not tested Smit et al.24
Dosage: 25–75 kGy, 2.5°C Copolymers of LLA, CL, and DXO Decrease in molecular weight; random chain scission Not tested Plikk et al.16
Dosage: 25 kGy, an inert atmosphere Poly(LLA-co-DXO) Decrease in molecular weight Not tested Dånmark et al.25
UV 5–24 h Me.PEG-PLA Increase in degradation rate; chain depletion; change to biochemical properties Not tested Fischbach et al.4
2 h Me.PEG-PLA NA Not tested Fischbach et al.4
12 h, 245–365 nm PLA Decrease in molecular weight; increase in degradation rate Effective in inactivating microorganisms Janorkar et al.26
30 min–8 h, 254 nm PLGA and P(LLA-CL) Decrease in molecular weight, tensile strength; increase in degradation rate; morphological change Not tested Dong et al.27
0.5–2 h, 254 nm PLGA Decrease in molecular weight Generated sterile scaffolds Braghirolli et al.12
Plasma Plasma Inert argon gas, 2–10 min for 33 W; 2–40 min for 100 W PLGA Affect chemical structure; change degradation behavior; increase in molecular weight Not tested Holy et al.28
Oxygen, carbon dioxide, ammonia plasmas Polyurethane Decrease in molecular weight; increase in mechanical property Not effective Gorna and Gogolewski29
Hydrogen peroxide Polyurethane Decrease in molecular weight and tensile strength; increase in degradation rate Activation of microorganism Gorna and Gogolewski29
Hydrogen peroxide, 1 h and 39 min, 43°C PLLA biomaterial Physical aging; increase in melting and glass transition temperatures, crystallinity, and brittleness Not tested Peniston and Choi30
Hydrogen peroxide, 55 min, 45°C–55°C Polyurethane Increase in degradation rate Not tested Bertoldi et al.31
Chemical treatment EtO Poly(DTE carbonate) Decrease in yield strength and stiffness Not tested Hooper et al.20
Poly(DTO carbonate) Increase in degradation rate; decrease in molecular weight Not tested Hooper et al.20
100% ethylene oxide atmosphere, 57°C, 2 h PLGA Shrinkage in dimensions; decrease in molecular weight; affects brittleness and stiffness Not tested Holy et al.28
18–96 h, 32°C–45°C, 45%–70% humidity PLDLLA Delays degradation Not tested Smit et al.24
Peracetic acid 2 h, room temperature Collagen fibers Affect structural integrity and bioactive properties Not tested Hodde et al.32
0.1% PAA, 15 min–24 h PLGA Increase in surface roughness and pore size; surface cracking Not tested Shearer et al.33
0.1% PAA, 3 h, room temperature PLGA Decrease in tensile strength and fiber diameter Remained sterile for >3 months Selim et al.22
Ethanol 70% Ethanol Chitosan membranes Increase in tensile strength Not tested Marreco et al.34
70% Ethanol, 15 min–24 h PLGA Structural change; decrease in breaking stress and porosity; increase in fragility and surface wrinkling Not tested Shearer et al.33
70% Ethanol, 5 min, 4°C PLGA Decrease in tensile strength and fiber diameter Became infected within 2–14 days Selim et al.22
70% Ethanol, 0.5–2 h PLGA Changes in the morphology and scaffold dimensions; hampering cellular adhesion Generated sterile scaffolds Braghirolli et al.12
Iodine 0.1% Iodine solution, 1–12 min Allografts (pericardial tissue) Complete inactivation of a wide variety of bacterial organisms Moore et al.11
Novel techniques sCO2 205 bar, 0.6–4 h, 25°C–40°C PLGA and PLA Complete inactivation of a wide variety of bacterial organisms Dillow et al.35
27.6 MPa, 60 min, 40°C Hydrogel, poly(acrylic acid-co-acrylamide) potassium salt Effective in inactivating microorganisms Jimenez et al.36
3.3% water, 0.1% hydrogen peroxide, 80 atm, 30 min, 50°C NA 6-log inactivation of Bacillus pumilus Checinska et al.37
0.25% water, 0.15% hydrogen peroxide, and 0.5% acetic anhydride Collagen-based scaffolds Increase in compressive modulus Vegetative bacteria, fungi, and bacteriophages; bacteria spores were inactivated Bernhardt et al.38
Antibiotics Combined with UV irradiation Polyphosphate; polyphosphonate NA Not tested Richards et al.39
1% Antibiotic antimycotic solution, 6–31 h, 4°C PLGA Increase in roughness Not tested Shearer et al.33
1% Antibiotic solution, 1–2 h PLGA Changes in the morphology and scaffold dimensions Generated sterile scaffolds Braghirolli et al.12
Freeze-drying Combined with gas plasma, 24–72 h Collagen sponges NA Effective in inactivating microorganisms Markowicz et al.13

PLA: poly(lactic acid); LLA: l-lactic acid; CL: ε-caprolactone; DXO: 1,5-dioxepane-2-one; PCL: poly(ε-caprolactone); PLLA: poly(l-lactic acid); PLGA: poly(lactide-co-glycolide); P(LLA-CL): poly(l-lactide-co-ε-caprolactone); UV: ultraviolet; Me.PEG-PLA: poly(d,l-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymer; DTE: desaminotyrosyl-tyrosine ethyl ester; DTO: desaminotyrosyl-tyrosine octyl ester; PAA: peracetic acid; NA: not applicable.

HHS Vulnerability Disclosure