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A B S T R A C T

Acute myelogenous leukemia is propagated by a subpopulation of leukemia stem cells (LSCs). In
this article, we review both the intrinsic and extrinsic components that are known to influence the
survival of human LSCs. The intrinsic factors encompass regulators of cell cycle and prosurvival
pathways (such as nuclear factor kappa B [NF-�B], AKT), pathways regulating oxidative stress, and
specific molecular components promoting self-renewal. The extrinsic components are generated
by the bone marrow microenvironment and include chemokine receptors (CXCR4), adhesion
molecules (VLA-4 and CD44), and hypoxia-related proteins. New strategies that exploit potentially
unique properties of the LSCs and their microenvironment are discussed.

J Clin Oncol 29:591-599. © 2011 by American Society of Clinical Oncology

INTRODUCTION

The past 10 to 15 years have witnessed substantial
progress in the biologic characterization of acute
myelogenous leukemia (AML). In particular, the
long-established view that myeloid leukemia is de-
velopmentally similar to normal hematopoiesis and
is driven by a relatively small subset of stem or pro-
genitor cells has been established via extensive stud-
ies using both primary human tissues and various
mouse models.1,2 Studies have clearly demonstrated
that AML populations are highly heterogeneous and
that the disease is propagated by a subpopulation of
leukemia stem cells (LSCs). Initial reports described
a specific cell surface phenotype for LSCs that al-
lowed primitive leukemia cells to be distinguished
from normal stem and progenitor cells (CD34�,
CD38�, CD123�, chronic lymphatic leukemia
1–positive [CLL-1�], and so on).3-6 However, more
recent data indicate that the phenotype of LSCs may
be somewhat variable from patient to patient and
that, in some cases, more than one phenotypically
distinct subpopulation may possess LSC activity.7,8

Nonetheless, the overall heterogeneity of AML and
the presence of LSCs are still strongly supported by
multiple lines of evidence.

From a clinical perspective, it has been dem-
onstrated that LSCs are substantially more resis-
tant to standard forms of chemotherapy than bulk
leukemia populations. Laboratory studies have spe-
cifically examined challenge with cytarabine and
daunorubicin and have demonstrated preferential
survival of functionally defined LSCs.9-11 Thus, elu-
cidating the specific molecular and cellular proper-

ties that mediate survival of LSCs is an extremely
important step toward the goal of creating improved
therapeutic regimens for leukemia. In this article, we
review both the intrinsic and extrinsic components
that are known to influence the survival of hu-
man LSCs.

INTRINSIC PROPERTIES REGULATING THE
SURVIVAL OF LSCS

Perhaps the most fundamental property of LSCs
that may influence relative drug sensitivity is cell
cycle status. Like normal hematopoietic stem cells
(HSCs), LSCs reside in a mostly quiescent state. In-
deed, studies by Guan et al12 showed that quiescent
cells isolated from primary human AML specimens
possessed most of their repopulating potential on
transplantation into immune-deficient mice. Simi-
larly, primary human chronic myelogenous leuke-
mia (CML) specimens also demonstrate a mostly
quiescent LSC population.13,14 As a consequence,
the overall activity of many chemotherapeutic
agents that function by targeting cycling cells is
likely diminished. Thus, as a general rule, agents
or regimens that can selectively eradicate LSCs
independent of cell cycle status are almost cer-
tainly preferable. Alternatively, recent studies
have also proposed that inducing cell cycle activity
of LSCs before treatment with conventional
chemotherapy may also be feasible.15

Because of the unique biology of LSCs, multi-
ple studies have investigated the molecular proper-
ties of such cells, with a particular emphasis on those
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genes and pathways that distinguish leukemia from normal stem cells.
For example, Guzman et al9,16 reported constitutive activation of the
nuclear factor kappa B (NF-�B) pathway in primary human AML
stem cells and provided evidence that NF-�B plays a significant role in
the overall survival of LSCs as well as AML cell types in general.
Furthermore, most of the compounds that have been shown to suc-
cessfully eradicate LSCs are known to be inhibitors of NF-�B.17 Hence,
this pathway is strongly implicated as a central target in developing
LSC-specific therapies. Constitutive activation of Akt is also com-
monly observed in primary AML specimens, and inhibition of Akt via
the use of phosphatidylinositol-3 kinase (PI3K) inhibitors such as
wortmanin and LY294002 have been shown to augment therapies
designed to target LSCs.18,19 Interestingly, aside from its known role as
a survival signal (via modulation of the proapoptotic factor Bad), the
activity of the PI3K pathway has also recently been implicated in
antioxidant defenses. Increased activity of the PI3K pathway was asso-
ciated with induction of the Nrf2 pathway and downstream activation
of heme oxygenase (HMOX-1), a well-known component of the an-
tioxidant defense machinery.20 Furthermore, treatment with PI3K
or mammalian target of rapamycin pathway inhibitors effectively
blocked induction of HMOX-1. Thus, agents that inhibit PI3K activity
may act to increased oxidative stress in AML cells by inhibiting cellular
antioxidant mechanisms.

Agents that induce oxidative stress have also been strongly
implicated in targeting of LSCs, but this activity alone is clearly not
sufficient, since many pro-oxidants do not affect the viability of
malignant stem cells. Nonetheless, in the absence of oxidative
stress, there are few if any well-documented cases in which LSCs are
targeted, with the exception of some antibody-based strategies.
Interestingly, aside from a direct role in the cell death process,
oxidative stress may also inhibit self-renewal of LSCs. Indeed,
normal HSCs, as well as neuronal progenitors cells, have been
shown to respond strongly to changes in oxidative state.21-23 In-
creased oxidation is clearly associated with differentiation, whereas
more reduced conditions promote self-renewal. If the self-renewal
of LSCs is regulated by molecular mechanisms similar to those of
normal HSCs, then it stands to reason that increased oxidative
stress may reduce self-renewal, which in turn should lead to either
differentiation or death of primitive AML cells.

Specific molecular components of self-renewal have also been
implicated in the survival of LSCs. For example, recent studies by
Wang et al24 demonstrated that in murine LSCs derived from MLL-
AF9–induced leukemias, signaling via the Wnt/beta-catenin pathway
was required for self-renewal. Similarly, Zhao et al25 demonstrated a
central role for beta-catenin signaling in the survival of CML stem
cells. More recent studies26 have also shown a role for the embryonic
self-renewal regulator Musashi in blast crisis CML. Taken together,
the data indicate that strategies targeting several of the known regula-
tors of stem-cell self-renewal may be a promising approach to im-
proved therapy for AML.

Selective upregulation of the components of apoptotic machin-
ery in leukemic versus normal progenitor cells may provide additional
tools for sensitizing LSCs to conventional chemotherapeutics. Mcl-1–
deficient mice succumb secondary to hematopoieic failure, indicating
the key role of this protein in normal HSCs.27 In turn, Bcl-XL and
Bcl-2 antiapoptotic proteins are highly expressed in leukemic progen-
itor cells and are redundant for normal hematopoiesis. This differen-
tial use of Bcl-2 family members can be exploited through use of

compounds such as BH3-mimetic ABT-737, which was shown to
preferentially inhibit survival of LSCs in preclinical AML models.28

The caveat of this approach is lack of efficacy in leukemias with high
levels of Mcl-1 and potential hematologic toxicity of other BH3 mi-
metics capable of targeting Mcl-1.

Collectively, the findings outlined above indicate the most
likely regimens for targeting intrinsic components of LSC biology:
(1) exhibit cell cycle independence (ie, be as efficacious for quies-
cent cells as for cycling cells), (2) inhibit NF-�B signaling and/or
related survival pathways, (3) induce oxidative stress, and (4) in-
hibit self-renewal mechanisms. Agents known to modulate one or
more of these properties are currently approved or in various stages
of clinical evaluation. For example, arsenic trioxide and bort-
ezomib are strong inhibitors of the NF-�B pathway and also induce
high levels of oxidative stress. The clinical analog of Bcl-2 inhibitor
ABT-737, ABT-263, is undergoing phase I and II clinical trials as a
single agent or in combination with monoclonal antibodies in CLL
and acute lymphocytic leukemia (ALL). Multiple agents that in-
hibit PI3K pathway components are in development, and deriva-
tives of the mammalian target of rapamycin inhibitor are also
available (eg, temsirolimus). In addition, there is strong interest in
targeting the Wnt/beta-catenin pathway, with several types of
agents currently under investigation.29,30 Taken together with
strategies that target extrinsic components of the tumor microen-
vironment (see below), it appears that several exciting new thera-
peutic options will be available in the near future.

ENVIRONMENT-MEDIATED DRUG RESISTANCE: ROLE OF
EXTRINSIC FACTORS IN LSC SURVIVAL AND CHEMORESISTANCE

The majority of leukemias respond to initial treatment; however,
relapse is common, indicating resistance of LSCs to current therapies.
There is emerging evidence that extrinsic components mediated by
the microenvironment play a pivotal role in survival and drug resis-
tance of LSCs. It is believed that environment-mediated drug resis-
tance is a transient state whereby LSCs are protected through signals
from the niche, which eventually leads to the selection of secondary
genetic changes and outgrowth of cells that acquired multiple mech-
anisms of pharmacologic resistance.31 These findings have generated
novel approaches targeting the microenvironment supporting the
LSC phenotype.

MICROENVIRONMENTAL NICHES OF NORMAL HSCS

To understand the role of the microenvironment in leukemia, it is
important to characterize the normal physiologic mechanisms of
niche-mediated support of HSC maintenance (Fig 1). HSCs reside
within specialized areas of the bone marrow (BM) microenviron-
ment, defined as two distinct microenvironmental niches: osteoblastic
(endosteal) and vascular.32 The osteoblastic niche, localized at the
inner surface of the bone cavity and with abundant bone-forming
osteoblasts, provides a microenvironment for long-term HSCs which
are capable of contributing to hematopoiesis as quiescent or slow-
cycling cells.32-35 The vascular niche, which consists of sinusoidal
endothelial cells lining blood vessels, is thought to promote prolifera-
tion and differentiation of actively cycling, short-term HSCs.36 Recent
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studies indicate that these niches work in concert. Xie et al37 demon-
strated that the endosteum forms a well-vascularized special zone that
frequently is localized near N-cadherin–positive preosteoblastic cells
and that this special niche promotes expansion of HSCs in response to
BM damage.

Hematopoietic cell development is tightly regulated by BM
stromal cells (BMSCs) through production of cytokines, chemo-
kines, and intracellular signals initiated by cellular adhesion.
BMSCs encompass a variety of cell types, including osteoblasts,
osteoclasts, endothelial cells, perivascular reticular cells, and mes-
enchymal stem or stromal cells (MSCs), all of which are critical for
the regulation of HSC maintenance and localization.38 Although
the nature of the true MSC remains enigmatic, CXC chemokine
ligand 12 (CXCL12) – expressing CD146� MSCs were recently
reported to be self-renewing progenitors that reside on the sinu-
soidal surfaces and contribute to organization of the sinusoidal
wall structure,39 produce angiopoietin-1 (Ang-1), and are capable
of generating osteoblasts that form the endosteal niche. These

CXCL12-abundant reticular cells may serve as a transit pathway for
shuttling HSCs between the osteoblastic and vascular niches where
essential but different maintenance signals are provided.32 Cyto-
kines and chemokines produced by BMSCs concentrate in partic-
ular niches secondary to varying local production and through
the effects of cytokine-binding glycosaminoglycans. Of these,
CXCL12/stromal cell– derived factor-1 alpha positively regulates
HSC homing, while transforming growth factors FMS-like ty-
rosine kinase 3 (Flt3) ligand and Ang-1 function as quiescence
factors. CXCL12-CXCR4 signaling is involved in homing of HSCs
into BM during ontogeny as well as survival and proliferation
of colony-forming progenitor cells.40,41 The CXCR4-selective
antagonist–induced mobilization of HSCs into the peripheral blood
further indicates a role for CXCL12 in retaining HSCs in hematopoi-
etic organs.42 BM engraftment involves subsequent cell-to-cell inter-
actions through the BMSC-produced complex extracellular matrix.
Thus, vascular cell adhesion molecule-1 (VCAM-1) or fibronectin
is critical for adhesion to the BMSCs.

Fig 1. Mechanisms of normal and acute myelogenous leukemia stem cell interactions with the niche. The normal and leukemic stem cells (LSCs) reside in either the
osteoblastic or vascular niche. In the osteoblastic niche at or near the endosteum, osteoblasts, octeoclasts, and stromal cells may provide a microenvironment for
normal cells and LCSs. In the vascular niche around sinusoids, CD146� mesenchymal progenitors facilitate transendothelial migration, homing, proliferation, and
differentiation of normal cells and LSCs. Oxygen tension gradually declines from the vascular niche to the osteoblastic niche, and LSC proliferation results in expansion
of hypoxic microenvironmental niches. MSC, mesenchymal stem or stromal cell.
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LEUKEMIC MICROENVIRONMENT: NICHE RETREATS FOR LSCS

Recent data indicate that, in parallel with leukemogenic events in the
hematopoietic system, the niche is converted into an environment
with dominant signals that favor cell proliferation and growth. The
microenvironment may have a role in determining the lineage com-
mitment of acute leukemia. MLL-AF9–transduced cord blood cells on
transplantation into immunodeficient mice generated AML, ALL, or
biphenotypic leukemia, depending on the mouse strain or cytokine
medium, hence demonstrating the influence of microenvironmental
cues for lineage differentiation.43

The molecular mechanisms for maintaining quiescence of nor-
mal stem cells may also facilitate LSC survival. For LSC survival,
proliferation, and differentiation, both the osteoblastic and vascular
niches are critical.33-35,39,44,45 Ninomiya et al46 modeled the homing,
proliferation, and survival sites of human leukemia cells and of cord
blood CD34� cells. The transplanted leukemia cells initially localized
on the surface of osteoblasts in the epiphysial region and then ex-
panded to the inner vascular and diaphysial regions. Eight weeks after
transplantation, the number of leukemia cells transiently increased by
as much as 50%, predominantly in the epiphysial region. After admin-
istration of high-dose cytarabine, residual leukemia cells clustered
and adhered to the blood vessels as well as to the endosteum, suggest-
ing that leukemia cells receive antiapoptotic signals not only from
osteoblasts but also from vascular endothelium.46

Suppression of normal hematopoiesis is observed frequently in
leukemia patients with relatively low tumor burden, which does not
necessarily reflect occupancy of the anatomic space by leukemic cells.
It has been demonstrated that leukemic cell growth disrupts normal
hematopoietic progenitor cell (HPC) BM niches and creates a tumor
microenvironment.47 Leukemic cells initially migrate toward the
CXCL12-positive vascular niches in the BM, which in the murine
model overlap with normal HPC niches.47,48 After 1 month of leuke-
mia growth in vivo, CXCL12 production in the tumor vascular niche
was markedly downregulated, and the normal human CD34� cells
transplanted in leukemic mice migrated to tumor niches through a
CXCL12-independent mechanism, by virtue of stem-cell factor abun-
dantly secreted by leukemic cells in the tumor niches. These findings
indicate that the alteration of signaling mechanisms of BM niches used
by normal HSC homing may be hijacked by LSCs.

One of the key initial steps of leukemia-stroma interactions in
vivo is homing and subsequent adhesion of LSCs to the protective
areas of BM microenvironment (Fig 2). The interaction between
CXCL12 (stromal cell–derived factor-1 alpha) and its receptor
CXCR4 on leukemic progenitor cells contributes to their homing to
the BM microenvironment. CXCR4 levels are significantly elevated in
leukemic cells from patients with AML,49 and CXCR4 expression is
associated with poor outcome.50,51 Administration of anti-CXCR4
antibody to mice engrafted with primary AML cells resulted in a
dramatic decrease in the levels of human AML cells in the BM, blood,
and spleen but did not significantly affect the levels of normal human
progenitor cells engrafted into NOD/SCID mice.52 Significantly in-
creased CXCR4 expression has been reported in Flt3/internal tandem
duplication AML compared with FLT3/wild-type AML.50 This find-
ing and additional preclinical data indicate that the Flt3 axis partici-
pates in the trafficking of transformed hematopoietic cells through
CXCR4. In turn, integrins are required for LSCs to lodge in the BM

niche. The attachment of AML cells to the BM microenvironment
through interaction between very late antigen-4 on leukemic cells and
fibronectin on MSCs has been shown to be crucial for the persistence
of minimal residual disease in AML.53 Integrin ligation triggers acti-
vation of prosurvival signaling cascades. As such, integrin-linked
kinase directly interacts with � integrins, phosphorylates Akt in a
PI3K-dependent manner, and promotes survival of leukemic cells.54

Another adhesion molecule, CD44, has been demonstrated to be a key
regulator of AML LSCs homing to microenvironmental niches and
maintaining a primitive state.55 CD44 mediates adhesive cell-cell and
cell–complex extracellular matrix interactions through binding to its
main ligand, hyaluronan, a glycosaminoglycan highly concentrated in
the endosteal region.56 Other ligands include osteopontin, fibronec-
tin, and selectin, all of which are involved in cell trafficking and
lodgment. Beyond its adhesion function, CD44 can also transduce
multiple intracellular signal transduction pathways when ligated with
hyaluronan or specific function-activating monoclonal antibodies.57

It has been shown that progression of leukemia in a rat model was
associated with marked expansion of hypoxia,58 compared with dis-
tinct subendosteal hypoxic areas of normal BM.59 Leukemic cells are
able to proliferate even under hypoxic conditions, indicating that the
cells are able to adapt to hypoxic conditions.58,60 In addition, overex-
pression of the key hypoxia mediator hypoxia-inducible transcription
factor-1 alpha (HIF-1�) has been observed in clusters of leukemic cells
in BM specimens from patients with primary ALL.61 Recently, muta-
tions in the gene encoding isocitrate dehydrogenase-1 and isocitrate
dehydrogenase-2 (IDH1, IDH2) were described in approximately
16% of AML.62,63 It remains to be established whether these mutations
may constitute a poor prognostic factor in distinct subtypes of AML
and may be associated with induction of the HIF-1� pathway as
described in glioma.64 Notably, CXCR4 expression was upregulated
under hypoxic conditions in AML cells.65 Consistent with the findings
that HIF-1� regulates CXCR4,66 these data suggest that a hypoxic BM
microenvironment represents a conditional stem and progenitor cell
niche in which HIF-1�–induced stabilization and activation of both
the trafficking stimulus (CXCL1267) and receptor (CXCR4) facilitate
recruitment and retention of leukemic progenitor cells. Hypoxia is the
major stimulus for angiogenesis through HIF-1�–mediated upregu-
lation of vascular endothelial growth factor (VEGF). Formation of
new vessels by angiogenesis represents an adaptive response to hyp-
oxia and involves endothelial cell proliferation, a process stimulated by
hypoxia-inducible growth factors, such as VEGF. Increased angiogen-
esis is observed in myelodysplastic syndrome (MDS),68 AML,69 and
ALL.70 The levels of circulating endothelial progenitor cells were
found to be increased in AML patients and, remarkably, endothelial
progenitor cells shared the genetic abnormalities with the leukemic
clone in AML,71 MDS,72 and CML.73 In turn, monoblasts from AML
patients from AML-M5 leukemias were capable of differentiating into
endothelial cells in vitro when cultured in the presence of VEGF and
Ang-1.74 These findings underscore the need for combining the strat-
egies aimed at elimination of both leukemic progenitor cells and
endothelial precursors. Hypoxia promotes a switch to glycolytic me-
tabolism via the activation of HIF-1�,75 and additional microenviron-
mental cues may be instrumental for the establishment of the
proglycolytic phenotype.76,77 In solid tumors, hypoxia induces a met-
abolic shift causing acidosis78 and promotes autophagy, which may
mediate cell survival response.79 Because these metabolic changes
have been linked to chemoresistance, it is tempting to speculate that
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targeting glycolytic pathways may provide additional therapeutic tools
for the treatment of hematopoietic malignancies.80

MOLECULAR AND GENETIC CHANGES WITHIN THE BM
MICROENVIRONMENT THAT CONTRIBUTE TO LEUKEMOGENESIS

The significance of the hematopoietic microenvironment to dis-
ease initiation has been suggested by studies81 with mice deficient
in phosphatase and tensin homolog (PTEN). PTEN deficiency in
both hematopoietic cells and the microenvironment resulted in
myeloproliferation that progressed to overt leukemia/lymphoma.
However, inducible PTEN deletion in hematopoietic cells in the
presence of a wild-type BM microenvironment promoted HSC
depletion without evidence of myeloproliferation or leukemic de-
velopment.81 These results suggest that PTEN deficiency in hema-
topoietic cells alone is not sufficient for malignant transformation.

Likewise, activation of NF-�B in myelopoietic cells and the absence
of its inhibitor I�B� are not sufficient for induction of hyper-
granulopoiesis, but these changes in the nonhematopoietic com-
partment, such as fetal liver, resulted in increased numbers of
dysplastic hematopoietic cells with progression into secondary
AML.82 Walkley et al83 have further demonstrated that dysfunction
of retinoblastoma protein or retinoic acid receptor gamma84 in the
BM microenvironment can contribute to development of preleu-
kemic myeloproliferative disease. Both retinoblastoma protein and
retinoic acid receptor gamma deficiency–induced expansion of
HSCs and progenitor cells may result from loss of inhibitory signals
normally provided by the osteoblastic niche. These findings criti-
cally underscore the importance of interactions between hemato-
poietic cells and the BM niche/microenvironment and indicate
that additional genetic mutations within the BM microenviron-
ment may be necessary for leukemic transformation.

Fig 2. Regulators of leukemic stem cell (LSC) niche interactions in microenvironmental niches. Within bone marrow niches, a complex interplay of cells, extracellular
matrix components, and secreted factors may modulate the biology of LSCs. Osteoblasts provide a source of osteopontin and stromal cell–derived factor-1 alpha
(SDF-1�), which may induce migration of CXCR4-expressing LSCs toward the osteoblastic niche. Similarly, mesenchymal stem cells (MSCs) also secrete SDF-1�, as
well as cytokines, which induce cell proliferation, activate prosurvival signaling cascades, and modulate the expression of the antiapoptotic molecules, potentially
resulting in drug resistance. In addition, activation of the self-renewal pathways (such as Wnt) has been postulated to result in enhanced LSC survival24 and may, in
part, be mediated through the niche.100 bFGF, basic fibroblast growth factor; IGF, insulin-like growth factor; IL-6, interleukin-6; VEGF, vascular endothelial growth factor;
LRP, leukocyte common antigen-related phosphatase.
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In confirmation of genetic aberrations in BM microenvironment
in leukemia, structural chromosomal changes have been found in
BMSCs from 44% of patients with MDS and 54% of those with
AML.85 Lopez-Villar et al86 reported the presence of cytogenetic aber-
rations on MSCs from MDS patients by array-based comparative
genomic hybridization and fluorescence in situ hybridization, some of
them specially linked to a particular MDS subtype, the 5q- syndrome.
These findings suggest enhanced genetic instability of BMSCs in MDS
and AML and indicate the potential involvement of BMSCs in the
pathophysiology of these conditions.

In a recent study,87 mice with osteoblast-specific deletion of Di-
cer1, a gene required for RNA and microRNA processing, showed
cytopenia, multilineage dysplasia, and increased proliferation and ap-
optosis of primitive hematopoietic progenitors, highly resembling a
clinical picture of MDS. Importantly, in some animals, the dyspoietic
changes lead to the development of clonal myeloid sarcomas and
AML, which provided the first proof that perturbations in niche sig-
naling may select for the acquisition of secondary genetic changes in
the neighboring HSCs.

Additional evidence of microenvironmental dysfunction comes
from recent findings in MDS. Marrow stroma from patients with
early-stage MDS, in contrast to that from more advanced stages of
MDS, such as chronic myelomonocytic leukemia, expressed 14- to
17-fold higher levels of interleukin-32 (IL-32) mRNA than healthy
controls, and this constitutive IL-32 expression promoted apoptosis in
MDS cells, reproducing the inefficient hematopoiesis and extensive
apoptosis in MDS marrows.88 These findings indicate two indepen-
dent mechanisms of stromal abnormalities in tumors: genetic changes
in stromal cells and secondary epigenetic changes arising in the niche
in response to tumor cells. These early preliminary studies require
further confirmatory investigations of the suspected genetic abnor-
malities in leukemic stroma by using stringent cell separation tech-
niques and modern high-throughput sequencing technologies.

THERAPEUTIC TARGETING OF LEUKEMIC
MICROENVIRONMENT: CONCEPTS AND APPROACHES

By elucidating the role of the BM microenvironment in the pathogen-
esis of hematologic tumors, recent studies have provided the frame-
work for identifying and validating novel therapies that target both
leukemic cells and cells in their surrounding microenvironment. Tar-
geting the leukemia microenvironment can be implemented through
several strategies: (1) affecting the key self-renewal pathways in LSCs
that are promoted by the niche; (2) blockading the prosurvival signal-
ing pathways induced by stromal cells in LSCs; (3) affecting homing
and adhesion through interference with chemokines and adhesion
molecules; (4) targeting the hypoxic milieu of leukemic microenvi-
ronment, and (5) inhibiting abnormally activated pathways within the
cells of niche (Fig 3). Activation of the principal self-renewal pathways
through Wnt/beta-catenin and notch signaling can be caused by mi-
croenvironmental stimuli and is amenable to therapeutic interven-
tions. Upregulation of the prosurvival Bcl-289 and Mcl-190 pathways is
a frequent event in leukemic cells growing in contact with BM-derived
stromal cells and is potentially treatable with drugs such as BH3
mimetics (Bcl-2, ABT-737) or kinase/Cdk inhibitors (Mcl-1, MEK
inhibitors/flavoperidol). Disruption of migratory and adhesion sig-
nals represents the strategy of blocking LSC homing to a BM niche

and/or sensitizing leukemic cells to chemotherapy or kinase inhibi-
tors. Targeting CXCR4 with small-molecule pharmacologic inhibitors
has been shown to be efficacious in preclinical models of CLL,91

ALL,92 and AML,93,94 presumably through recruitment of leukemic
cells out of their protective microenvironmental niches. In support of
the role of VLA-4 in the sensitivity of AML cells to chemotherapy, a
neutralizing VLA-4 antibody, in conjunction with cytarabine, pre-
vented the development of AML in a xenograft model.53 Although the
small-molecule inhibitors of VLA-4/VCAM-1 interactions caused im-
pressive mobilization of normal HPCs, alone or in combination with
granulocyte colony-stimulating factor or CXCR4 inhibitors,95 this
approach has yet to be explored in leukemias. Likewise, ligation of
CD44 with the H90 monoclonal antibody resulted in marked
reduction of the leukemic burden in NOD-SCID mice trans-
planted with primary AML cells through alteration of AML LSC
fate and abrogation of AML LSC homing.55 In addition, specific
antibodies against CD123 and CD47 have recently been reported
to reduce the growth of AML LSCs in xenograft models.96,97 The
mechanism of CD123-mediated targeting appears to be complex,
potentially acting through inhibition of homing, activation of in-
nate immunity, and/or inhibition of intracellular signaling events.
In contrast, antibodies that mask CD47 can trigger innate immune
responses via activation of phagocytosis.

Concerns have been raised over the potential toxicity of some
approaches outlined above, in particular, when combined with cyto-
toxic drugs, because mobilized normal HPCs that are usually pro-
tected in the BM microenvironment would be potentially exposed to
the toxicity of chemotherapy. A leukemia cell–targeted approach, such
as monoclonal antibodies (eg, anti-CD33, anti–CLL-1, anti-CD96,
anti-CD25, or anti-CD32) or selective kinase inhibitors (sorafenib,94

or imatinib98) in combination with CXCR4 antagonists could avoid
these potential adverse effects. In turn, targeting of stem-cell factor
may inhibit HPC interaction with tumor niches and conceivably
maintain normal progenitor cell function in the setting of malignan-
cy.47 Since normal stem cells and LSCs appear to frequently use iden-
tical pathways of microenvironmental protection, it remains to be
established in future prospective clinical trials whether these approaches
will provide a sufficient therapeutic window in targeting LSCs.

Targeting angiogenesis is arguably the most clinically advanced
approach for influencing the tumor/leukemia microenvironment.
The anti-VEGF monoclonal antibody that neutralizes VEGF-A—
bevacizumab—is the first antiangiogenic agent that has been validated
as a cancer therapy. Bevacizumab combined with cytarabine and mi-
toxantrone has been demonstrated to improve the overall response
rate of 48% in the phase II study.99 Other types of antiangiogenic
agents, such as tyrosine kinase inhibitors (sunitinib and sorafenib) and
anticytokine drugs (thalidomide and lenalidomide) have now entered
clinical practice. Although these agents may affect endothelial BM
niches, they may, in turn, enforce expansion of hypoxic niches and
possibly promote chemoresistance. In this context, HIF-1� may rep-
resent an important molecular target within the tumor microenviron-
ment. Several strategies specifically targeting HIF-1� are being
explored in solid tumor models. These include a novel antisense oli-
gonucleotide against HIF-1� and small-molecule HIF-1� inhibitors.
The applicability of these reagents to LSC niche biology remains to
be established.

In conclusion, we note that recent studies have elucidated multi-
ple intrinsic and extrinsic factors that provide potential opportunities
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to improve therapeutic targeting of LSCs. Going forward, the chal-
lenge will be to identify the optimal combinations of drugs to appro-
priately modulate such factors in the most selective fashion possible.
Although the potential algorithm for creating better regimens is not
entirely clear, a few key principles appear to be important. First, new
regimens must take into consideration the cell cycle status of LSCs,
which is mostly quiescent. Thus, therapies either must be capable of
killing quiescent cells or must include cell cycle activation of LSCs as
part of the overall strategy. Second, improved approaches should
target those properties that are most consistently aberrant in LSCs. To
date, studies show that increased oxidative state, constitutive activa-
tion of NF-�B, constitutive activation of PI3K signaling, and increased
reliance on Bcl-2 activity appear to be promising activities to target.
Third, new strategies should exploit potentially unique properties of
the LSC microenvironment to permit more selective and efficient
eradication of primitive cells. For example, targeting of the mecha-
nisms that mediate LSC adhesion within BM niches and stimulation

of niche-induced prosurvival and self-renewal pathways both appear
to be useful strategies. We propose that by profiling current and new
experimental agents with regard to the parameters outlined above, it
should be possible to design rational drug combinations that will more
effectively eradicate LSCs.
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Fig 3. Therapeutic targeting leukemic stem cell (LSC) niche interactions. Cytokines, chemokines, and the extracellular matrix activate the prosurvival signaling
pathways (phosphatidylinositol-3 kinase [PI3K]/Akt, mitogen-activated protein kinase [MAPK], signal transducer and activator of transcription 3 [STAT3], and nuclear
factor kappa B [NF-�B]) that regulate downstream components likely promoting survival and proliferation of LSCs. The therapeutic strategies designed to target the
LSC within their surrounding microenvironment include adhesion molecule and cytokine antagonists as well as inhibitors of intracellular prosurvival and self-renewal
pathways. These approaches may more selectively eradicate LSCs without adversely affecting normal stem-cell self-renewal. HA, hyaluronic acid; SDF-1, stromal
cell–derived factor 1; PTEN, phosphatase and tensin homolog; ILK, integrin-linked kinase; HIF-1�, hypoxia-inducible transcription factor-1 alpha; GSK3, glycogen
synthase kinase 3; LRP, leukocyte common antigen-related phosphatase; Bcl-2, B-cell lymphoma 2; Mcl-1, myeloid cell leukemia-1.
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