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Abstract

Metal ion-mediated electrostatic interactions are critical to RNA folding. Although considerable 

progress has been made in mechanistic studies, the problem of accurate predictions for the ion 

effects in RNA folding remains unsolved, mainly due to the complexity of several potentially 

important issues such as ion correlation and dehydration effects. In this chapter, after giving a brief 

overview of the experimental findings and theoretical approaches, we focus on a recently 

developed new model, the tightly bound ion (TBI) model, for ion electrostatics in RNA folding. 

The model is unique because it can treat ion correlation and fluctuation effects for realistic RNA 

3D structures. For monovalent ion (such as Na+) solutions, where ion correlation is weak, TBI and 

the Poisson–Boltzmann (PB) theory give the same results and the results agree with the 

experimental data. For multivalent ion (such as Mg2+) solutions, where ion correlation can be 

strong, however, TBI gives much improved predictions than the PB. Moreover, the model suggests 

an ion correlation- induced mechanism for the unusual efficiency of Mg2+ ions in the stabilization 

of RNA tertiary folds. In this chapter, after introducing the theoretical framework of the TBI 

model, we will describe how to apply the model to predict ion-binding properties and ion-

dependent folding stabilities.

1. Introduction

Because RNA backbone is highly charged, the formation of a compact RNA structure is 

accompanied by massive charge build-up. How does an RNA molecule overcome the strong 

charge–charge repulsion to form a stable structure? How do metal ions facilitate the folding 

process via electrostatic interactions? How to accurately predict the electrostatic forces for 

different ions and ion concentrations? The answers to these questions are essential for 

understanding and predicting the stability, cooperativity, and kinetics for RNA folding 

(Chen, 2008; Chu and Herschlag, 2008; Draper, 2008; Walter et al., 2009).

Mechanistic studies for RNA folding have revealed many important features of the ion-

dependence of RNA folding. Adding metal ions into the solution would cause an increased 

ion binding and a reduction in backbone charge repulsion, which would lead to a higher 

flexibility of the RNA chain and a higher stability of RNA helices. An important 

consequence of the reduced charge repulsion is that it allows more frequent close approaches 

between the different RNA segments, causing the tertiary contacts to be kinetically 

accessible and thermodynamically stable. Further experimental and theoretical studies for 
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specific systems have pointed to the importance of ion charge density (ion charge/ion size), 

in addition to the ion concentration, as a determinant for the ion effects in RNA stability 

(Heilman-Miller et al., 2001; Koculi et al., 2007; Takamoto et al., 2002; Weixlbaumer et al., 
2004).

Mg2+ ions play an essential role in RNA tertiary structure folding (Chen, 2008; Chu et al., 
2007; Draper, 2008; Walter et al., 2009). Extensive experimental studies have led to the 

conclusion that Mg2+ ions are unusually efficient than Na+ in stabilizing RNA tertiary folds. 

The effect of Mg2+ ions is unusual because it cannot be explained simply by the larger ionic 

strength of Mg2+ than Na+. Although considerable progress has been made in mechanistic 

studies for the Mg2+ effect, owing to the complexity of the electrostatic interactions 

involving Mg2+ ions, many problems about quantitative predictions for the Mg2+ ion-

mediated electrostatic interactions in RNA folding remain unsolved. For instance, how does 

[Mg2+] modulate the stability of specific intermediate structures? How do the ion size, 

charge, and charge density determine the ion-specific folding energy landscape? How to 

quantify the ion dehydration and ion correlation effects in Mg2+–RNA interactions? In this 

chapter, we describe a recently developed theory, namely, the tightly bound ion (TBI) theory 

(Tan and Chen, 2005), that aims to tackle these effects.

In parallel to the investigations on the ion-dependence of RNA folding, systematic 

thermodynamic measurements for simple RNA folding systems at a fixed ionic condition (1 

M NaCl) have led to quantitative insights into RNA folding energetics (Mathews and Turner, 

2006; Serra and Turner, 1995). However, using the thermodynamic data at 1 M NaCl to 

predict RNA folding at a general ionic condition, such as the physiological solution 

condition, requires a theory for the ion effects, such as the TBI theory to be described in this 

chapter.

In this chapter, we will give a brief overview for the experimental findings and the main 

theoretical approaches for the ion effects in RNA and DNA thermal stabilities. We will then 

describe the TBI theory. We will focus on both the theoretical formalism and the practical 

applications of the theory. Our aim here is to provide sufficient detail so that all the major 

issues in the theoretical derivations and numerical computations can be clearly understood 

and readily followed.

2. Overview of Experimental Results for the Ion-Dependence of RNA 

Thermal Stability

Extensive experimental studies (see Table 22.1 for a brief summary) on the ion effects for a 

broad range of nucleic acids, from small hairpins and pseudoknots to large tetrahymena 

group I intron, have led to several important conclusions as well as quantitative estimations 

for the ion-mediated electrostatic forces in RNA folding, as described below.

2.1. General properties of ion binding

Multivalent ions such as Mg2+ ions are much more efficient than monovalent ions to 

neutralize RNA backbone charges and to screen the Coulombic repulsions (Draper, 2008). 

For example, 10 mM Mg2+ is approximately equivalent to 1 M Na+ in stabilizing short DNA 
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and RNA oligomers (Tan and Chen, 2006a, 2007, 2008b; and references therein). Such 

unusually high efficiency of Mg2+ ions goes beyond the mean-field ionic strength effect.

Furthermore, the high efficiency of Mg2+ is more pronounced for more compact/complex 

structures. For example, for a simple 24-bp DNA duplex, 0.4 mM Mg2+ is equivalent to ~20 

mM Na+ in ionic neutralization, that is, 0.4 mM Mg2+ and 20 mM Na+ can cause the same 

neutralization for the phosphate charges. In contrast, the 76-nt yeast tRNAphe, a more 

complex structure, 0.4 mM Mg2+ is equivalent to ~32 mM, a much higher Na+ concentration 

(Bai et al., 2007; Romer and Hach, 1975).

2.2. Helix–helix assembly

Ions can mediate nucleic acid helix–helix interactions and consequently affect the structure 

and stability of the helix assembly. Osmotic pressure-based experiments (Rau and Parsegian, 

1992a,b) show that multivalent ions such as Co3+ can cause attraction between DNA helices 

(Rau and Parsegian, 1992a), while monovalent ions such as Na+ can only modulate the 

strength of helix–helix repulsion. For divalent ions, the experiments show that some ions 

such as Mn2+ can induce helix–helix attractive force, while others such as Ca2+ cannot. 

Mg2+ ions, with the addition of methanol in the solution, can cause attraction between DNA 

helices (Rau and Parsegian, 1992a). The different effects of the divalent ions may be 

attributed to the (solvent-mediated) ion-binding affinity to different groups of DNA.

Small angle X-ray scattering (SAXS) experiments for a system with two short helices 

tethered by a neutral loop indicate that high-concentration ions (including 1+, 2+, and 3+ 

ions) cause a random conformational state (Bai et al., 2005), where Coulomb repulsion 

between the helices is relaxed. Furthermore, quantitative measurements suggest that the 

attraction is ≤0.21 kBT/bp between two 24-bp helices in a 0.6 M Mg2+ solution (Bai et al., 
2005). Further measurements on the Mg2+-induced folding of the system show that [Mg2+] 

at the transition point is over 10 times lower than that predicted from the Poisson–

Boltzmann theory (PB) (Bai et al., 2008). Because PB neglects ion correlation effect, the 

experimental finding suggests the possibility for ion correlation to be responsible for the 

unusually high efficiency of the Mg2+ ions.

2.3. RNA tertiary structures and RNA–RNA complexes

One of the central issues for the ion effects in RNA tertiary structure folding is the unusually 

efficient role of Mg2+ ions. For example, for a short DNA/RNA helix, 10 mM Mg2+ and 1 M 
Na+ can cause similar folding stabilities (Tan and Chen, 2007), while for a complex RNA 

tertiary structure such as tetrahymena ribozyme, a much lower concentration 0.5 mM of 

Mg2+ would be sufficient to induce folding transition as 0.5 M Na+ (Heilman-Miller et al., 
2001). Even with high-concentration monovalent ion background, Mg2+ ions can make 

significant contribution to the folding stability of RNA tertiary structures. For example, for a 

58-nt ribosomal RNA fragment, in the background of 1.6 M monovalent ions, 0.05 M Mg2+ 

can contribute about −5 kcal/mol to the global tertiary folding stability (Bukhman and 

Draper, 1997).

Thermodynamic measurements for HIV-1 dimerization initiation signal (DIS) kissing 

complexes (Lorenz et al., 2006; Weixlbaumer et al., 2004) show that, compared to the 
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corresponding duplex of the same sequence at the kissing interface, (a) the melting 

temperature Tm for kissing complexes increases with ion (Na+ and Mg2+) concentrations 

much more rapidly and (b) the high efficiency of Mg2+ over Na+ is much more pronounced. 

Depending on the sequence, for a kissing complex, Mg2+ may bind to the specific site at the 

kissing interface. The specific binding can affect the [Mg2+]-dependence of stability of the 

kissing complex (Lorenz et al., 2006).

3. Overview of Theoretical Methods for Predicting Ion Electrostatics for 

RNA Folding

3.1. Counterion condensation theory

The counterion condensation (CC) theory was originally developed to treat an infinitely long 

line-charge system in an infinitely dilute ionic solution (Manning, 1978). The theory has led 

to several widely used conclusions such as the linear dependence of melting temperature Tm 

of nucleic helix on the logarithm of salt concentration (Manning, 1978). However, 

application of the CC theory to the interactions between two DNA helices predicts an 

attractive force between the helices even in a monovalent ion solution. This prediction as 

well as the predicted dependence of the attractive force on the ion charge (Ray and Manning, 

2000) are not consistent with the experimental measurements (Qiu et al., 2007; Rau and 

Parsegian, 1992a,b) and computer simulations (Luan and Aksimentiev, 2008; Lyubartsev 

and Nordenskiold, 1995).

3.2. Poisson–Boltzmann theory

The history of PB theory can be traced back to the Gouy–Chapmann theory and Debye–

Huchel theory in the early of 1900s (e.g., see Carnie and Torrie, 1984). These two theories 

represent special simplified forms of the PB theory: Gouy–Chapmann theory is a one-

dimensional simplification for electric double-layer, while the Debye–Huchel theory is a 

special solution for spherical symmetric system. The PB equation can be derived based on 

the Poisson equation with a self-consistent mean electric potential ψ and a Boltzmann 

distribution for the ions

(22.1)

where zαeψ is the electrostatic energy for an ion of species α with ionic charge zce in the 

mean electric potential ψ. ε is the dielectric constant, ρf is the charge density of fixed 

charges, and  is the bulk concentration of ion species α. With proper boundary conditions, 

the solution of the PB equation gives the electric potential and the ion distribution for 

realistic nucleic acid structures (Baker et al., 2000; Gilson and Zhou, 2007; Gilson et al., 
1987).

PB equation is based on the mean-field approximation, where ions are treated as continuous 

fluid-like particles moving independently in a mean electric potential. The theory ignores the 

discrete ion properties such as ion size, ion–ion correlation and ion fluctuations. Fail to 

consider these properties can cause inaccurate predictions for RNA folding, especially in the 
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presence of multivalent ions which are prone to ion correlation due to the strong, long-range 

Coulomb interactions. For example, PB cannot predict the experimentally observed 

attractive force between DNA helices in multivalent ion solutions.

3.3. Modified Poisson–Boltzmann theories

Several attempts have been made to improve the PB by accounting for the effects of ion size, 

ion correlation, and fluctuations of ion distributions. The resultant modified models have led 

to improved predictions for the ion effects in RNA/DNA folding stability.

3.3.1. Size-modified Poisson–Boltzmann theory—Motivated by the need to consider 

finite size of ions in the PB model, Chu et al. employed a lattice gas model for the ionic 

system, where ions of finite sizes are placed on the grid cells. In this way, the ion size can be 

conveniently represented by the cell size and the system can be treated with the lattice gas 

approximation (Chu et al., 2007). The modified PB theory gives notable improvements in 

predictions for ion-binding properties of monovalent counterions, especially at high salt 

concentration, which involves saturation effect for ion binding. However, for nucleic acid 

solution containing multivalent ions, the model may not be accurate because the model, like 

PB, does not treat long-range interion correlations (Chu et al., 2007).

3.3.2. Modified PB based on Kirkwood/BBGY hierarchy—Based on the Kirkwood/

BBGY hierarchy, a fluctuation potential and an ion-size-exclusion term in the potential of 

mean force are used to represent the effect of ion correlations (Carnie and Torrie, 1984; 

Grochowski and Trylska, 2008). The fluctuation potential is associated with the energy for 

charging an ion, therefore, it implicitly takes into account the interion Coulomb correlations. 

The theory gives improved predictions for multivalent ion distributions near macroions of 

ideal shapes such as cylinder, sphere or plane (Carnie and Torrie, 1984). However, for 

realistic nucleic acids structures, the three-dimensional numerical solution requires 

exceedingly large computational cost. This is because the effective fluctuation potential 

itself is coupled to the electrostatic potential. As a result, the theory is computationally 

impractical for applications to realistic nucleic acid structures (Gavryushov, 2008).

3.3.3. Correlation-corrected Poisson–Boltzmann model—Recently, Forsman 

developed a correlation-corrected PB model by introducing an effective potential between 

like-charge ions (Forsman, 2007). The effective potential at large ion–ion separation 

approaches the classical Coulomb potential and becomes a reduced effective repulsive 

Coulomb potential for small ion–ion separation. Such an effective potential represents 

liquid-like correlation behavior between the ions. For electric double layer with multivalent 

ions, the model makes improved predictions for the ion distribution and predicts an attractive 

force between two planes in the presence of multivalent ions (Forsman, 2007). However, for 

realistic nucleic acid structures, the model is computationally expensive. In addition, the ad 
hoc effective potential lacks validation for realistic nucleic acid structures.

In addition to the above modified PB models, theories based on other approaches such as the 

density functional theory (e.g., Wu and Li, 2007) and the integral equation theory (e.g., 

Vlachy, 1999) have been developed to account for the interion correlation effects. However, 
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the computational complexity for these approaches prohibits efficient applications to 

realistic RNA 3D structures.

Recently, inspired by the experimental findings for the significance of ion size, ion 

correlation and fluctuations, the TBI model (Tan and Chen, 2005, 2008a) was developed. 

Comparisons between the TBI theory predictions and the experimental data on ion-binding 

properties (Stellwagen et al., 2007; Tan and Chen, 2005), thermal stabilities of DNA and 

RNA helices and hairpins in Na+ and Mg2+ solutions (Tan and Chen, 2006a, 2007, 2008b), 

and electrostatic energy landscapes for helix bending (Tan and Chen, 2008a) and helix 

assemblies (Tan and Chen, 2006b,c) indicate that the TBI model gives much improved 

predictions than previous models such as PB. In the following, we will focus on the TBI 

model and describe the theoretical framework as well as the details in numerical 

computations and applications of the model.

4. Tightly Bound Ion Model

4.1. General formalism of the theory

Ion binding around a (polyanionic) nucleic acid structure causes counterion accumulation on 

the molecular surface. The strong, long-range Coulomb force between the ions cause the 

ions to become correlated (networked). Mathematically, the strong correlation can be 

characterized by the large correlation parameter Γ

(22.2)

where z is the valency of the ion, e is the electronic charge, ε is the dielectric constant of the 

solvent (≃78 for aqueous solvent), a is the Wigner–Seitz distance between the ions, and kB 

= 1.99 cal/mol K is the Boltzmann constant and T is the temperature. Γc = 2.6 is the critical 

value for the gas–liquid transition for an ionic system (e.g., Ichimaru et al., 1987). Control 

tests for different Γc values suggest that the model is quite robust against small variations of 

Γc.

The correlation strength distinguishes two types of ions: the tightly bound ions (TBIs) (Γ ≥ 

Γc, strong correlation) and the diffusive ions (Γ < Γc, weak correlation). The tightly bound 

and the diffusive ions are distributed in the vicinity of the nucleic acid (tightly bound region) 

and in the outer region (diffusive region), respectively. A central point in the TBI model is to 

treat the diffusive ions using the PB method while treating the TBIs with discrete ion 

distributions.

A direct implication of the ion correlation is that the likelihood of finding an ion at a 

location is sensitive to the locations of other ions. Therefore, to treat the ion correlation 

effect, we must consider an ensemble of discrete ion distributions (i.e., fluctuations) (Ha and 

Thirumalai, 2003). In order to enumerate the different distributions for the TBIs, we divide 

the tightly bound region into discrete phosphate cells, each around a phosphate group. We 

generate the ensemble of distributions for the TBIs by enumerating the different ways of 

Tan and Chen Page 6

Methods Enzymol. Author manuscript; available in PMC 2016 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



partitioning the TBI among the different cells. We call each such distribution of the TBIs as 

a mode.

The total partition function Z of the system is the sum of the partition function ZM for each 

mode M

(22.3)

A mode is defined by a set of numbers (not the coordinates) of the TBIs in the different 

cells. The partition function ZM is given by the average over all the different spatial 

coordinates of the ions for a given mode M:

(22.4)

where Z(id) is the partition function for the uniform ion solution (without the nucleic acid), 

Nb is the total number of the TBIs, cz is the bulk concentration of the z-valent counterions, 

and Ri denotes the coordinate of the ith TBI.  is the volume integral over the 

tightly bound region for the TBIs. ΔGb and  are the Coulombic free energy and the 

(Born) self-polarization energy for the charges in the tightly bound region and ΔGd is the 

free energy for the interaction between the diffusive ions and between the diffusive and the 

TBIs (Tan and Chen, 2008a).

From the partition function, we can predict the ion distribution from the probability 

distribution

of the ion-binding modes and the electrostatic free energy of the system:

(22.5)

4.2. Free energy of the tightly bound ions

Consider a TBI in a phosphate cell. Averaging over the possible positions in the respective 

phosphate cells for the TBIs (Tan and Chen, 2005, 2006c, 2008a) gives two useful potentials 

of mean forces: Φl(i) for the interactions between charges within the cell i and Φ2(i, j) for the 

interactions between different cells i and j:

(22.6)
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Here uii and uij are the Coulomb (generalized Born) potentials (Liu and Zou, 2006; Still et 
al., 1990) for the charges in cell i and between the charges in two different cells i and j, 
respectively. 〈…〉 denotes averaging over all the possible positions Ri (Rj) of the TBIs 

within the respective phosphate cells.

For a give mode, we can readily compute ΔGb, the free energy for the charges inside the 

tightly bound region, as the sum of the potentials of mean force:

(22.7)

Because we can pretabulate the potentials of mean force before enumerating the modes, the 

computation of ΔGb for a give mode is efficient.

4.3. Free energy of the diffusive ions

With the mean-field approximation for the diffusive ions, we compute ΔGd from the 

following equation (Tan and Chen, 2005):

(22.8)

where ψ(r) and ψ′(r) are the electric potentials at position r for the system with and without 

the diffusive ions, respectively. cα(r) and  are the concentrations of ion species α at 

position r and in the bulk solvent, respectively. We use ψ′(r) here because ψ(r) − ψ′(r) gives 

the contribution to the electrostatic potential from the diffusive ions. With the given charge 

distribution of the TBIs, we calculate ψ(r) and ψ′(r) from the nonlinear PB (with salt) and 

the Poisson equation (without salt), respectively.

4.4. Polarization energy of charges inside the tightly bound region

The free energy  in Eq. (22.4) is the change in Born energies for the charges 

transferred from the bulk solvent to the tightly bound region. We compute  as a sum 

for all the charges, including the phosphates and the TBIs, inside the tightly bound region:

(22.9)

where Φ0(i) is the Born energy for the charges inside the ith tightly bound cell. Assuming 

there is a TBI in the ith cell, we compute Φ0(i) by averaging over all the possible positions 

Ri of the ion (Tan and Chen, 2008a):

(22.10)

where  and  are the (generalized Born) self-

energies of the phosphate i and of the ion (at position Ri), respectively. 〈…〉 denotes 

averaging over all the possible ion positions Ri within the cell.
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5. Enhancing the Computational Efficiency for the Numerical Calculations 

of the TBI Model

5.1. A hybrid treatment for the tightly bound modes

The computational efficiency of the TBI model is limited by the enumeration of the large 

number of the binding modes, which scales with the number N of nucleotides as ~2N, 

assuming each phosphate cell contains 0 or 1 tightly bound (multivalent) ions. Therefore, an 

exhaustive enumeration of all the modes for a large nucleic acid molecule is extremely 

computationally expensive. To improve the computational efficiency, we developed a hybrid 

method. The strategy of the hybrid method is to consider the complete ensemble of the low-

energy modes and treat the vast number of the high-energy modes through a computationally 

efficient random sampling algorithm.

The partition function is calculated from the following equation (Tan and Chen, 2006b):

(22.11)

where Nb is the number of TBIs, M0 and Ml are the total number of the modes and the 

number of the low-energy modes for a given Nb, respectively, and Mr is the number of the 

high-energy modes that are selected for random sampling.

The method is reliable because the most important modes, namely, the low-energy modes, 

are treated exactly. Because the low-energy modes form only a small fraction of the total 

ensemble of the modes, this approach leads to drastic improvements in the computational 

efficiency.

5.2. Computation of the free energy ΔGd for the diffusive ions

Strictly speaking, the free energy of the diffusive ions is dependent on the TBI mode. For 

each mode, the computation of ΔGd requires the result for the electric potentials solved from 

the nonlinear PB and Poisson equations (see Eq. 22.8). Given the large number of the 

modes, the computation of ΔGd can be time-consuming. To improve the computational 

efficiency, we use a coarse grained method for the computation of ΔGd. The basic strategy of 

the method is to precalculate ΔGd for several typical number of the TBIs Nb (averaging over 

the different modes with the same Nb), then use the results to fit ΔGd as a polynomial 

function of Nb (Tan and Chen, 2005, 2007). For any given mode with Nb TBIs, we can 

efficiently compute ΔGd from the polynomial.

6. Applications of the TBI Model

In this section, we show how to apply the TBI model to predict the ion-dependent 

thermodynamic properties, such as ion-binding numbers and electrostatic free energies for 

realistic RNAs and DNAs. For illustrative purpose, we choose a short DNA duplex as a 

paradigmatic system.
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6.1. General procedure for the numerical computations for the partition function

The computational procedures for the numerical calculations of the TBI model for specific 

systems were described in several previous publications (Tan and Chen, 2005, 2008a). Here, 

we summarize the general computational procedure using a 12-nt DNA duplex as an 

example. We assume temperature T = 25 ° C, dielectric constant ε = 78 for solvent and 20 

for the nucleic acid interior, and the radii of the (hydrated) ions 4.5 Å for Mg2+ and 3.5 Å for 

Na+. The numerical calculations of the TBI model involve the following five steps:

1. To construct the 3D structural model. We construct a 3D structure for the 12-nt 

DNA duplex. The current form of the TBI model is base on a coarse-grained 

structural model—grooved primitive model (Montoro and Abascal, 1995; Tan and 

Chen, 2005), where each nucleotide consists of two “united atoms” (spheres), 

representing the electrically neutral group and the charged phosphate group, 

respectively (see Fig. 22.1A).

2. To identify the tightly bound region. For the nucleic acid structure immersed in a 

given ionic solution, we solve the nonlinear PB equation for the spatial distribution 

of the ion concentration, from which we calculate the spatial distribution of the 

ion–ion distance (a in Eq. (22.2)). From the criteria for strong correlation (Eq. 

(22.2)), we determine the tightly bound region. For a 12-nt DNA helix immersed in 

a 0.01 M Mg2+ solution, we find that the tightly bound region is a thin layer of 

average thickness ~1.7 Å surrounding the helix (Fig. 22.1A).

3. To calculate and tabulate the pair-wise potentials of mean force Φ1(i), Φ2(i, j) (Eq.

(22.6)) and the Born energy Φ0(i) (Eq.(22.10)). A key issue in the calculations for 

the average over ion positions inside the respective phosphate cells is to take into 

account the finite size (excluded volume) of the ions and the detailed shape of the 

molecular surface. For the 12-nt helix in 0.01 M Mg2+ solution, Φ1(i) is ~−2.0kBT, 

Φ0(i) is ~0.36kBT, and Φ2(i, j) for the interaction between phosphate cells i and j 
varies with i and j; see Fig. 22.1B. Φ2(i, j) < 0 (attractive interaction) if one of the 

cells is vacant and the other is occupied by a tightly bound (Mg2+) ion (denoted as 

(1, 0) in Fig. 22.1B). Φ2(i, j) < 0 (repulsive interaction) if both cells are occupied 

(denoted as (1, 1) in Fig. 22.1B).

4. To calculate the free energy ΔGd for the diffusive ions (Fig. 22.1C). In order to fit a 

polynomial for ΔGd as a function of the number of the TBIs Nb, for a general 

structure of N nucleotides (phosphates), we evaluate ΔGd for a set of Nb’s, such as 

Nb = 0, N/8, N/4, 3N/8, N/2, 2N/3, 5N/6, and N. From such an eight-point dataset, 

we can readily calculate ΔGd for an arbitrary Nb through either polynomial-fitting 

or interpolation.

5. To compute the partition function. Using the above hybrid treatment for the 

ensemble of ion-binding modes, we calculate the partition function from the sum of 

the modes (Eq. (22.11)). For each mode, the free energies ΔGb and  for the 

TBIs are directly given by the pretabulated potentials of the mean force (Eqs. (22.7) 

and (22.9)).
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From the partition function, we can predict a variety of ion-dependent folding properties 

such as the ion-binding properties and the ion-dependence of the folding stability.

6.2. Ion-binding properties

From the partition function Z, we can predict any experimentally measurable property A 
from the statistical average Ā:

(22.12)

where AM is the result of property A for mode M. An important application of the above 

general equation is the computation of the mean number of the TBIs Nb from the partition 

function Z. The experimentally measured number of bound ions includes both the TBIs and 

the diffusively bound ions:

(22.13)

(22.14)

here c(r) and c0 are the local concentration at position r and the bulk concentration, 

respectively. c(r) is solved from the PB equation for the diffusive ions. The integrals account 

for the contributions from the diffusive ions. Because the correlation effect is weak and 

negligible for monovalent ions, Nb ≃ 0 for Na+.

For an illustrative calculation, we apply the TBI model to predict the number of bound ions 

(Eq. (22.14)) for a 24-bp DNA duplex immersed in an ionic solution with fixed 2 mM [Na+] 

and different [Mg2+]. As shown in Fig. 22.2, comparison with the experimental data (Bai et 
al., 2007; Chu et al., 2007) shows that the predictions from the TBI model are more accurate 

than the results from PB. For example, for 2 mM [Mg2+], the improvement for Mg2+-

binding number is ~20%.

6.3. Folding stability

Folding stability, as quantified by the free energy difference between the folded state and the 

ensemble of the unfolded states, is determined by the free energy landscape—the 

distribution of the free energy for different structures. To predict the ion-dependent free 

energy landscape, we need to generate all the possible conformations, including all the 

folded and unfolded conformations, and compute the free energy, including the electrostatic 

free energy (Eq. (22.5)), for each conformation. For example, for a system of two helices 

tethered by a loop, we need to enumerate all the conformations with different helix 

orientations and interhelix distances as well as the different loop conformations (Bai et al., 
2008; Tan and Chen, 2006c). From the ion dependence of the free energy landscape, we can 

predict how ions change the conformational distribution and folding stability to cause the 

structural transitions.
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To predict the ion-dependent folding stability for a short DNA helix, we use a two-state 

model. Specifically, we assume that the conformational ensemble of the system consists of 

two states: double-stranded (ds) helix as the folded state and single-stranded (ss) helices 

(stabilized by the single-stranded self-stacking) as the unfolded state. For a given ionic 

condition (Na+, Mg2+) and temperature T, using the TBI model (Fig. 22.1), we compute the 

electrostatic free energies for the duplex  and the unfolded state , respectively. The 

electrostatic contribution to the folding stability is

(22.15)

The ion-dependence of ΔGE shows how the ionic condition affects the folding stability and 

how the changes in ionic conditions induce the folding/unfolding transition.

To predict the total folding stability also requires the result for the nonelectric part of the free 

energy difference ΔGNE. Assuming the ion-independence of ΔGNE, we can estimate ΔGNE 

from the empirical parameters measured at 1 M Na+ (SantaLucia, 1998):

(22.16)

Here ΔGT is the total folding free energy, including the electric and nonelectric free 

energies.

From the folding free energy ΔGT(Na+/Mg2+), we can predict the ion-dependent melting 

temperature Tm from the following equation:

(22.17)

where R (=1.987 cal/K mol) is the gas constant, CS is the strand concentration. CS is 

replaced with CS/4 for noncomplementary sequences.

Figure 22.2 shows the TBI-predicted folding free energy ΔGT and melting temperature Tm 

for short DNA duplexes as functions of [Mg2+] (Tan and Chen, 2006a). Comparisons with 

the experimental data indicate that the TBI model gives much improved predictions than the 

PB theory (Fig. 22.3).

7. Summary

Ion correlation can be potentially important for RNA folding. Because correlated states can 

reach energies much lower than the mean-field energy, correlation can significantly enhance 

stability. Neglecting correlation (such as in the PB theory) can cause notable under-

estimation of the folding stability (Chen, 2008). Furthermore, the correlation effect may 

make significant contributions to the unusually high efficiency of the multivalent Mg2+ ions 

in RNA stability, especially for tertiary structures. In RNA tertiary structure folding process, 

the close approach of the helices and other structural units causes significant build-up of the 

phosphate charges, inducing a strong correlation for the multivalent counterions. The strong 

correlation results in a further correlation-enhanced stabilizing force for tertiary folds. Such 
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a correlation-induced enhancement in RNA stability goes beyond the classical charge 

neutralization/screening effects predicted by the mean-field theories. Therefore, multivalent 

ions can have much higher efficiency in stabilizing RNA structures than that predicted from 

the PB theory, and the high efficiency is more pronounced for tertiary structures. This causes 

a correlation-induced force from the multivalent ions to promote the formation of the tertiary 

folds.

The TBI model tackles ion correlation/fluctuation effects by evaluating the energetics based 

on the discrete all-ion distributions for the TBIs. This is contrastingly different from the 

mean-field (correlation-free) approaches which are based on an average distribution for a 

system of independent ions. The TBI model also accounts for the volume exclusion effects 

due to the finite sizes of the ions. Control tests indicate that the excluded volume correlation 

is weak as compared with the Coulomb correlation. For systems with weak correlation, such 

as RNAs in monovalent ion solutions, the TBI gives nearly identical results as the PB and 

both the TBI and PB results agree with the experiment. But for RNAs/DNAs in Mg2+ 

solutions, where correlation can be strong, the TBI theory gives much improved predictions 

than the PB as shown by the experimental comparisons.

The TBI model is not based on any of such preassumptions, while other models such as the 

PB are based on a priori assumptions about the nonexistence of the ion correlation/

fluctuation effect. If the ion correlation and fluctuation effects are strong, the TBI model will 

capture them, otherwise, the model gives identical predictions as other (PB-based) models. 

Therefore, the TBI model can effectively complement the PB-based methods.

Ion dehydration effects can be responsible for a variety of ion-dependent RNA folding 

properties, especially for the tertiary structure folding (Draper, 2008). Refinement of the TBI 

model should include a more accurate treatment for the possible ion dehydration effect. 

Further development of the model should also consider the all-atom details of the RNA 

structure and the improvements of computational efficiency.
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Figure 22.1. 
A 12-nt DNA duplex in 0.01 M MgCl2 is used to illustrate the computational procedure of 

the TBI model. (A) The 3D structure and the tightly bound region (green region). The two 

strands are labeled from i = 1 to 6 and from i = 7 to 12, respectively. The molecule contains 

totally N = 12 nucleotides (phosphate groups). The red and blue spheres surrounding the 

central cylinder represent the charged and neutral groups of the nucleotides, respectively. 

v(i) denotes the volume of each tightly bound cell i (1 ≤ i ≤ 12). (B) The results for the 

potentials of mean force (in kBT). For Φ2(i, j) (i, j = 1, 2, …, N = 12), the row and column 

correspond to i and j, respectively. (C) The results for the free energy ΔGd.
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Figure 22.2. 
The mean number of the bound Mg2+ and Na+ ions per nucleotide for a 24-bp DNA duplex, 

as functions of Mg2+ concentration in the presence of 20 mMNa+. Symbols, the 

experimental data (Bai et al., 2007; Chu et al., 2007); solid lines, the TBI theory predictions; 

dotted lines, the PB predictions with exclusion layer of width 4.5 Å (=radii of hydrated 

Mg2+); dashed lines, the PB predictions with exclusion layer of width 3.5 Å. In the 

calculation, the radii of hydrated Na+ is taken as 3.5 Å. The mean number of the bound ions 

per nucleotide is calculated as the total number.
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Figure 22.3. 
The folding free energy ΔG37 at 37 ° C (A) and the melting temperature Tm (B) as functions 

of [Mg2+]. (A) The upper lines are for sequence GCATGC, and the bottom lines are for 

sequence GCCAGTTAA (Tan and Chen, 2006a; and references therein). (B) The upper lines 

are for sequence AGAAAGAGAAGA with total strand concentration CS = 6 µm, and the 

bottom lines are for sequence GCCAGTTAA with strand concentration CS = 8 µm (Tan and 

Chen, 2006a; and references therein). Here, the data for AGAAAGAGAAGA are taken from 

the duplex melting in the study of the triplex melting in Mg2+ and CS = 6 µm is the total 

strand concentration for triplex formation. Tm is calculated from ΔG − RT ln CS/6 = 0 (Tan 

and Chen, 2006a).
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Table 22.1

Measurements for the nucleic acids thermodynamics in ionic solutionsa

Nucleic acids References Ionic conditions Thermodynamic quantities

24-bp DNA duplex Bai et al. (2007) Mixed Na+/Mg2+ fNa+, fMg2+

Bai et al. (2007) Mixed monovalent ions f’s

Bai et al. (2007) Mixed divalent ions f’s

24-bp DNA triplex Bai et al. (2007) Mixed Na+/Mg2+ fNa+, fMg2+

Poly(AU) Krakauer (1971) Mixed Na+/Mg2+ fMg2+

Calf thymus DNA Clement et al. (1973) Mixed Na+/Mg2+ fMg2+

RNA duplexesb Tan and Chen (2007) Na+, Mg2+ ΔG, Tm

DNA duplexesb Tan and Chen (2006a) Na+, Mg2+ ΔG, Tm

DNA and RNA hairpinsb Tan and Chen (2008b) Na+, Mg2+ ΔG, Tm

DNA duplexes (10–30 bp) Owczarzy et al. (2004) Na+ Tm

RNA hairpins (49–124 nt) Vieregg et al. (2007) K+, Na+ ΔG

BWYV pseudoknotc Soto et al. (2007) Na+, mixed Na+/Mg2+ ΔH, ΔS, fMg2+

58-nt rRNA Bukhman and Draper (1997) Mixed NH+/Mg2+ ΔG

Grilley et al. (2007) Mixed K+/Mg2+ fMg2+

Yeast tRNAphe Romer and Hach (1975) Mixed Na+/Mg2+ ΔG, fMg2+

Rialdi et al. (1972) Mixed Na+/Mg2+ fMg2+

HIV-1type kiss complex 1 Weixlbaumer et al. (2004) Na+, mixed Na+/Mg+ Tm

HIV-1type kiss complex 2 Lorenz et al. (2006) Na+, mixed Na+/Mg2+ Tm

T2 pseudoknot Nixon and Giedroc (1998) K+, mixed K+/Mg2+ ΔG

MMTV pseudoknotd Theimer and Giedroc (2000) Na+, mixed K+/Mg2+ Tm

T4-35 pseudoknot Qiu et al. (1996) Mixed Na+/Mg2+ ΔG, Tm

T4-32 pseudoknot Qiu et al. (1996) Mixed Na+/Mg2+ ΔG, Tm

T4-28 pseudoknot Qiu et al. (1996) Mixed Na+/Mg2+ ΔG, Tm

Tetrahymena ribozyme Heilman-Miller et al. (2001) K+, Na+, Mg2+, spermidine Fraction folded

Takamoto et al. (2002) Na+, Mg2+ RH

Koculi et al. (2007) Mg2+, Ca2+, Sr2+, Ba2+ Fraction folded

Hairpin ribozyme Walter et al. (1999) Mg2+, Na+ Fraction folded

Pljevaljcic et al. (2004) Mg2+ Fraction folded

Bokinsky et al. (2003) Na+, Mg2+ Fold and unfold rates

A RNA three-way junction Kim et al. (2002) Na+, Mg2+ Fold and unfold rates

a
The table summarizes the ion-dependent thermodynamics of nucleic acid secondary and tertiary structures, including ion-binding numbers f, 

folding free energy ΔG, melting temperature Tm, Stokes radius RH, fraction folded, and other folding properties.

b
The ion-dependent thermodynamic data and corresponding experimental references for the various DNA duplexes, RNA duplexes, and DNA and 

RNA hairpins are collected/summarized in (Tan and Chen, 2006a, 2007, 2008b and references therein).

c
BWYV: beet western yellow virus.

d
MMTV: mouse mammary tumor virus.
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