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Abstract

This paper studies the estimation of stepwise signal. To determine the number and locations of 

change-points of the stepwise signal, we formulate a maximum marginal likelihood estimator, 

which can be computed with a quadratic cost using dynamic programming. We carry out extensive 

investigation on the choice of the prior distribution and study the asymptotic properties of the 

maximum marginal likelihood estimator. We propose to treat each possible set of change-points 

equally and adopt an empirical Bayes approach to specify the prior distribution of segment 

parameters. Detailed simulation study is performed to compare the effectiveness of this method 

with other existing methods. We demonstrate our method on single-molecule enzyme reaction data 

and on DNA array CGH data. Our study shows that this method is applicable to a wide range of 

models and offers appealing results in practice.
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1 Introduction

In signal measured at successive times or locations, abrupt changes are often present. Such 

changes reflect the evolution of the underlying system and effectively break the signal into 

segments. Within a segment, the observations are homogeneously distributed; between 

adjacent segments the signal has distinct characteristics. One notable case is stepwise signal, 

characterized by, but not limited to, the shift of means between successive segments, as often 

encountered in modern biophysical experiments. For example, in the study of single-

molecule enzymology, the fluorescence intensity of an enzyme molecule fluctuates in a 

stepwise fashion in response to the conformational change of molecule over time (Lu, Xun 

and Xie, 1998; English et al., 2006; Kou, 2008). In eukaryotic cells, kinesin, a molecular 
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motor protein, moves along a micro-tube in discrete steps; its movement displays a stepwise 

pattern (Yildiz et al., 2004). Similar examples also occur in various other disciplines, such as 

organizing DNA sequences into homogeneous segments (Braun and Müller, 1998), detecting 

chromosomal aberration in the DNA array data (Lai et al., 2005), studying neuromuscular 

activation patterns and control in electromyography (Johnson, Elashoff and Harkema, 2003), 

probing the layered rocks from nuclear-magnetic response in oil drilling (O Ruanaidh and 

Fitzgerald, 1996), estimating the market structural changes in equity markets (Bai and 

Perron, 1998, 2003; Bekaert et al., 2002), analyzing the changes of coal mine disasters in 

Britain (Jarrett, 1979), etc..

In statistics literature, the time points or the locations where the abrupt changes take place 

are often referred to as change-points. The term “change” in the broad sense not only refers 

to the change of distributional parameters, but also includes all other possible variations of 

the underlying model, such as the changes of explanatory variables in linear regression (Bai 

and Perron, 1998, 2003) and the parameter changes in hidden Markov models (Fuh, 2003, 

2004). Our study in change-points problems is mainly motivated by the aforementioned 

biophysical applications, where extracting information about the length of segments from 

experimental data is often the key and first step to understand the underlying complex 

biological system. Therefore, our discussion will focus on estimating the number and 

locations of change-points in stepwise signals.

The early study on change-point problems started with the assumption of at most one 

change-point. The change of means in a series of normally distributed variables was studied 

in Chernoff and Zacks (1964). The location of a single change-point can be inferred using 

frequentist MLE (Hinkley, 1970) or Bayesian posterior distribution (Smith, 1975; Carlin, 

Gelfand and Smith, 1992). Hypothesis testing on the existence of the change-point was 

developed as well (Bhattacharya, 1994).

In multiple-change-point problems, most frequentist methods draw inference through 

optimizing a fitness or cost function, such as log-likelihood or sum of squared errors over all 

possible segmentations. As the total number of change-points is usually unknown, model 

selection tools, often in the form of a penalty function, are implemented alongside the 

optimization procedure to avoid over-fitting. For normally distributed data with constant 

variance, the BIC criterion (Yao, 1988; Yao and Au, 1989) or its modification (Zhang and 

Siegmund, 2007) can be used. Braun, Braun and Müller (2000) generalized the BIC 

approach to include a broader distribution family in which the variance is proportional to a 

function of the mean. Under the equal-variance assumption, the sum of squares with an 

appropriate penalty term works as well (Boysen et al., 2009). In the fused lasso method 

(Tibshirani et al., 2005; Tibshirani and Wang, 2008), an L1 penalty which penalizes 

differences between successive segment means is added to the least-squares term. Recently, 

Frick, Munk and Sieling (2014) estimated the unknown step function through minimizing 

the number of change-points over the acceptance region of a multiscale test. The formidable 

task of searching over an astronomical number of change-points configurations can be 

handled by heuristic methods such as binary segmentation (Scott and Knott, 1974) and 

circular binary segmentation (Olshen et al., 2004; Venkatraman and Olshen, 2007) methods, 

genetic algorithm (Davis, Lee and Rodriguez-Yam, 2006) or exact dynamic programming 
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algorithms (Bellman and Roth, 1969; Bement and Waterman, 1977; Auger and Lawrence, 

1989; Jackson et al., 2005; Killick, Fearnhead and Eckley, 2012).

From a Bayesian perspective, imposing priors over the locations of change-points and 

segment parameters would automatically penalize unnecessary model complexity. The 

inference can then be handled by MCMC sampling. Gibbs sampling is commonly employed 

as the conditional distributions of the target density are generally well defined (Barry and 

Hartigan, 1993; Chib, 1998). Other sampling techniques include reversible jump MCMC 

(Green, 1995), sequential importance sampling and particle filtering (Koop and Potter, 2007; 

Fearnhead and Liu, 2007), and adaptive Metropolis-Hastings algorithm (Giordani and Kohn, 

2008). Still, for problems with many change-points, MCMC algorithms may fail due to non-

convergence or the strong dependence between the samples. Marginal likelihood can be used 

to integrate out the segment parameters to reduce the sampling dimension, as in the binary 

segmentation procedure of Yang and Kuo (2001) and the MCMC algorithm of Wyse and 

Friel (2010). Fearnhead (2005, 2006) proposed an algorithm based on recursive computation 

for sampling from the exact posterior distribution of change-points. Similar scheme can also 

be applied to deduce the exact posterior means of segment parameters (Lai and Xing, 2011).

Theoretical investigations of the estimation of change-points are mainly conducted from the 

frequentist perspective. The consistency of frequentist change-point estimators can often be 

established if the added penalty terms meet certain criteria. A detailed theoretical study on 

the penalty criteria, the asymptotic consistency and rates of convergence of the estimators, 

can be found in Boysen et al., (2009). These asymptotic results typically require that the 

observed data follow certain distribution family. In practice, cross validation is often 

necessary in choosing penalty terms, but the use of cross validation presents additional 

theoretical challenges, such as the effect of adaptation.

In contrast, Bayesian approaches utilizing prior distributions are more flexible and can be 

applied to broad classes of models. The theoretical properties of Bayesian methods, 

however, have received less investigation. In this article, we take (empirical) Bayesian 

perspective. We formulate a maximum marginal likelihood estimator for stepwise signal 

estimation. As we discussed in the preceding paragraphs, various aspects have been 

considered in the literature. In this article, we carry out a comprehensive investigation of the 

marginal likelihood method. (1) We conduct detailed investigation on the choice of prior. For 

the prior distribution of change-point locations, we impartially treat each possible 

configuration of change-points as an individual model to minimize the influence of the prior. 

For the prior distribution of segment parameters, we study its impact on the estimator and 

propose an effective empirical Bayesian method for the prior specification. (2) The 

asymptotic properties of the estimator, including the asymptotic consistency, are established. 

(3) We study efficient computation, outlining fast dynamic programming methods. (4) The 

finite-sample performance of the estimator is studied in depth, which offers guidelines for 

the practical use of the method. (5) We address the problem of evaluating different change-

point estimators, which has not been well studied due to the fact that there is no simple one-

to-one mapping between the estimated change-points and the true change-points. We 

propose criteria for this evaluation and compare our method to a number of existing 

methods.
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This article is organized as follows. In Section 2, we define notations used throughout this 

article and outline our method. Asymptotic theory of our method is discussed in Section 3. 

In Section 4, we discuss the role of prior in our method and provide guidelines for choosing 

the prior, especially when the data follows a normal or Poisson distribution. We then 

perform extensive simulation experiments to compare our method to six existing methods in 

Section 5. In Section 6, we apply our method to real examples, including the array CGH data 

and the fluorescence intensity trajectory of a single enzyme molecule. This article ends in 

Section 7 with a summary and concluding remarks. The R and Matlab packages that 

implement our marginal likelihood method can be downloaded at http://

www.people.fas.harvard.edu/~skou/publication.htm.

2 The marginal likelihood method for stepwise signal

2.1 Basic notations

Assume that we have a data set x = {x1, x2, …, xn}, measured at successive times t = {t1, t2, 

…, tn}, t1 < t2 < ⋯ < tn. Such data are not necessarily limited to time series since they can 

also represent a spatial sequence, but for simplicity we will use terms and notations usually 

associated with temporal dimension throughout this article. Also, there is no restriction on 

the dimension of xi.

The underlying parameter θ ∈ Θ determines the distribution of  through a family 

of densities f(x|θ). There is no restriction on the dimension of parameter θ either. We assume 

that θ is a step function of time whose transitions are determined by m − 1 change-points 

τ1:(m−1) = {τ1, ⋯, τm−1}:

(2.1)

where τj ∈ [t1, tn] for j ∈ {1, ⋯, m − 1}. The m − 1 change-points split the signal into m 

segments. We refer to  as the segment parameters. We also assume that the 

adjacent θj’s are distinguishable through f(·|·), that is, the measure of the set {x : f(x|θj) ≠ f(x|

θj+1)} is greater than 0 for all 1 ≤ j < m. Given the change-points τ1:(m−1) and the associated 

segment parameters θ1:m, the observations are assumed to be independently distributed:

(2.2)

The observations up to time τ1 have density f(·|θ1); the observations after time τ1 but up to 

τ2 has density f(·|θ2); …; the observations after time τm−1 are characterized by parameter θm. 

Please note that we set τ0 ≡ 0 and τm ≡ tn for notational ease.

Although it is not necessary that the change-points can only take discrete values from the set 

, it is often pointless to work on a higher resolution without further model 

assumption. Hence, unless specifically stated otherwise, we will assume that τj ∈ {t1, ⋯, 

tn−1} for j ∈ {1, ⋯, m − 1}.
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Assume that only  and  are available and that the parametric form of f(x|θ) is 

known. The estimation goal is to determine the number m and positions  of the 

change-points along with the segment parameters θ1:m from the observations.

2.2 The maximum marginal likelihood estimator

We approach the problem by utilizing the marginal likelihood in which θ1:m are integrated 

out. We assume that, given the set of change-points τ1:(m−1), θ1:m are independently and 

identically drawn from a prior distribution π(·|α). In the literature, the hyperparameter(s) α 

can be either modeled as constant (Chib, 1998; Fearnhead, 2005, 2006), or with a hyperprior 

distribution (Carlin, Gelfand and Smith, 1992; Barry and Hartigan, 1993; Pesaran, 

Pettenuzzo and Timmermann, 2006; Koop and Potter, 2007). The latter approach, though 

can be potentially handled by MCMC sampling, introduces dependence between the 

segments and, thus, undermines the possibility of applying recursive algorithms to accelerate 

the computation (Fearnhead, 2005, 2006; Lai and Xing, 2011). For this reason, we model α 

as pre-set constants; the choice of α will be discussed in Section 4.

We can express the marginal likelihood, given the set of change-points, as

(2.3)

where, in general, D(x(a,b]|α) denotes the probability of obtaining the observations during 

the period (a, b] with no change-point in between. A closed form of D(x(a,b]|α) can be 

obtained if conjugate priors are used. Otherwise, we may estimate D(x(a,b]|α) through 

numerical methods or approximation schemes such as Laplace’s method.

We take each distinctive set of change-points τ1:(m−1) as a specific model, and we estimate 

the set of change-points as the maximizer of P(x|τ1:(m−1)) over all feasible combinations of 

change-points, restricted by an upper bound M ≤ n on the number of segments. Such an 

upper bound often arises in biological data; for instance, in chemical experiments, reaction 

rate considerations typically limit the number of reaction cycles in a given time window. In 

the extreme case of M = n, every observation ti can be a segment itself.

Note that if we assign a uniform prior P(τ1:(m−1)) ∝ 1, (m ≤ M) on the set of change-points, 

which is proper since the total number of change-points is bounded, then

Thus, our approach of maximizing the marginal likelihood is equivalent to finding the 

maximum a posteriori estimate of the change-points with a uniform prior.

The prior we impose here can be viewed as “non-informative” in the sense that it implies 

that the prior probability of observing a change-point at ti is the same for all i ∈ {1, ⋯, n 
− 1} (less than M/n). We choose this prior to minimize the impact of prior on the 

segmentation of signal. In contrast, priors employed in various Bayesian methods tend to 
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impose certain transition structures or favor certain locations. For example, Chib (1998) 

modeled the change-points locations through a one-way hidden Markov chain, which 

implied a near geometric distribution on the segment length. Koop and Potter (2009) also 

pointed out that such prior favors change-points near the end of the time window and 

suggested a non-informative prior so that the conditional prior distribution p(τj|τj−1) is 

uniformly over a finite support of constant length. This prior, however, is still not entirely 

“uniform”, as there is a slightly larger chance of observing change-point at t2 than at t1, for 

example. To construct a prior free of specific transition structures, it seems natural to assign 

a prior, flat or not, over the total number of change-points and then treat all the 

configurations with the same number of change-points equally likely, as in Fearnhead (2005) 

and Moreno, Javier Girón, and García-Ferrer (2013). The prior probability of a specific 

configuration with m change-points would then equal the prior probability of having m total 

change-points divided by the total number of distributing m change-points. Consequently, 

for m1 > m2, a configuration with m1 change-points would receive much heavier penalty 

than a configuration with m2 change-points (as long as m1 < n/2). In this regard, a 

configuration with more change-points is penalized not directly because it represents a more 

complicated model, but because of the existence of many more models with the same 

number of change-points (this echoes what physicists call “entropic effect”). This is the 

rationale behind our choice of the prior. It must be admitted, though, the notion of “non-

informative” in the setting of multiple-change-points problem is ambiguous at best, and our 

choice is only one in many ways to interpret it. Nonetheless, we will demonstrate in the 

subsequent sections, that such construction does yield proper estimation of the change-

points.

2.3 Fast computation through dynamic programming

In our formulation of change-points model, P(x|τ1:(m−1)) can be expressed as a product of 

non-overlapping D(x(a,b]|α). Thus, dynamic programming (Bellman and Roth, 1969; Bement 

and Waterman, 1977; Auger and Lawrence, 1989) can be applied. Suppose that M ≤ n is an 

upper bound for the number of segments, we suggest the following algorithm.

Step 1 For 1 ≤ i ≤ n: H(x1, ⋯, xi|1) = D(x1, ⋯, xi|α)

Step m For m ≤ i ≤ n: 

Step M For M ≤ i ≤ n: 

Using the above recursive functions, we can obtain the following estimators with 

computational cost O(n2M) and storage O(nM):

• the maximum marginal likelihood estimator τ̂
1:(m−1) with exactly m segments (m ≤ 

M)
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(2.4)

• the maximum marginal likelihood estimator τM with up to M segments

(2.5)

Jackson et al. (2005) developed a more efficient but less flexible algorithm in which the 

maximum marginal likelihood estimator τ̂ (with up to n segments) can be computed with 

computational cost O(n2) and storage O(n). This algorithm is based on the following 

recursive functions.

Step 1 G(x1) = D(x1|α)

Step i 

Step n 

Generally speaking, for a large value of M, we expect that τ̂
M from the first algorithm is 

identical to τ̂ from the second algorithm. Thus, the second algorithm is the algorithm of 

choice for large M. On the other hand, if there is a strong restriction on the number of 

segments M or one needs to compare models with different number of change-points, the 

first algorithm should be used.

It is possible to further speed up the dynamic programming algorithms. One possibility is to 

reduce the computation by imposing restrictions on the potential change-point sequence. For 

example, we could put a lower or an upper bound to the size of segments. Such restriction 

can be easily adapted into dynamic programming and may speed up the computation without 

sacrificing much accuracy. Another possibility is to try to eliminate unnecessary steps in the 

algorithm. Killick, Fearnhead and Eckley (2012) proposed a pruned exact linear time 

(PELT) method in which the computational cost could be improved up to O(n). However, in 

order to apply PELT in our setting, there must be a positive constant C such that 

 for all 1 ≤ i < j < k ≤ n. Unfortunately, it is 

impossible to find a general C for this inequality in the case of marginal likelihood. Still, we 

would like to examine this possibility in our future work.

3 Asymptotic study of the marginal likelihood method

Before we start rigorous theoretical investigation, we would like to present an intuitive 

explanation of why the estimator based on marginal likelihood would not over-estimate the 

number of change-points. Suppose that there is no change-point for the sequence (x1, …, 
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xn), then based on the consistency of the maximum a posteriori estimator θ̂, the associated 

marginal likelihood can be approximated by the Laplace method as

where l(x|θ) = log f(x|θ). The logarithm of the marginal likelihood can thus be perceived as 

the logarithm of maximum likelihood with an additional term . This terms in effect 

places a heavy penalty on models with unnecessary change-points since log n1 + log n2 > 

log(n1 + n2). This is why we do not have to explicitly put a penalty term in our estimation.

Similarly, if the sequence (x1, …, xn) can be divided into m segments and the ith segment 

contains ni observations, omitting the terms that correspond to the prior, the logarithm of 

marginal likelihood can be approximated by the logarithm of maximum likelihood plus a 

penalty . Following the parametrization used in Zhang and Siegmund 

(2007), this penalty can be rewritten as

where ki = ni/n. In this expression, the first term is identical to the classical BIC penalty, 

while the second term is minimized when the change-points are evenly spaced and 

maximized when the change-points are placed as close as possible. Thus, in light of this 

penalty function, our maximum marginal likelihood method modifies BIC by penalizing not 

only too many change-points but also the placement of change-points. Similar penalty term 

was proposed by Zhang and Siegmund (2007) in the form of 

 in which more weight is placed on the BIC penalty.

The rest of this section is devoted to a rigorous study of the asymptotic properties of the 

maximum marginal likelihood estimator. We shall prove that, under suitable conditions, the 

set of estimated change-points would converge to the set of true change-points in probability.

Without loss of generality, we assume that all observations are made within the time interval 

(0, 1]: 0 < ti ≤ 1. We assume that there are m0 segments in total, which are defined by the m0 
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− 1 true change-points . For technical reason, we will also treat 

 and  as change-points. We denote . The true segment parameters 

will be denoted as . In the case of no change-point in (0, 1), according to our 

definition, the true set of change-points would be τ0 = {0, 1} and the associated parameter is 

θ1. The prior density of θj is represented by π(·|α) where α is the hyperparameter. We denote 

the number of observations within a given interval as n(a,b] = #{i : a < ti ≤ b, 1 ≤ i ≤ n}. In 

addition, we also define the shortest distance between two consecutive change-points in 

change-point sequence  as

We let our maximum marginal likelihood estimator be

where Δ̅(n) > 0 serves as a lower bound for the time lag between two consecutive change-

points.

We shall prove that, under the following regularity conditions, the estimated change-points 

 converge to the true change-points  in location and in total number.

1. The prior density π(θ|α) is continuous and positive at all θj (1 ≤ j ≤ m0).

2. For any adjacent θj and θj+1 (1 ≤ j ≤ m0 − 1), there exists a neighborhood Nj(δ) = 

{θ : ‖θ − θj‖ < δ} of θj and a neighborhood Nj+1(δ) = {θ : ‖θ − θj+1‖ < δ} of θj+1 

such that Nj(δ) ∩ Nj+1(δ) = ∅.

3. Given any interval (a, b] (0 < a < b ≤ 1), n(a,b]/n → C(a,b] > 0 as n → ∞, where the 
constant C(a,b] depends on a and b. Moreover, inf{C(a,b]/(b − a) : 0 < a < b < 1} > 0.

4. The segment parameters θj and the density function f(·|·) satisfy conditions (A1)–
(A5) and (B1)–(B4) listed in the Supplementary Material.

5. Δ̅(n) → 0 and nΔ̅(n) → ∞, as n → ∞.

The first regularity condition ensures the proper behavior of the prior around the true 

parameter values. The second regularity condition ensures that adjacent parameters are 

distinguishable. The third regularity condition defines what we mean by “asymptotics” for 

stepwise signal: the number of observations within any interval should approach infinity as 

the total number of observations goes to infinity. However, there is no requirement for the 

observational density to be uniform. The fourth group of regular conditions are to ensure the 

usual asymptotic consistency and normality of the MLE of θj. The last condition ensures that 

the estimated number of change-points would converge.
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Under these conditions, we have the following asymptotic results.

Lemma 3.1

Assume regularity conditions 1)– 4). If the true set of change-points , i.e., 

there is only one segment and no real change-point, then as n → ∞, for any given set of 

change-points , we have the ratio of marginal likelihood

where .

Lemma 3.2

Assume regularity conditions 1)–4). If the true set of change-points , i.e., 

there is at least one real change-point, then as n → ∞, we have the ratio of marginal 
likelihood

where , and c > 0 is a constant.

Lemma 3.1 and Lemma 3.2 indicate that maximizing the marginal likelihood would not 

result in over-fitting or under-fitting. Using them, the consistency of our estimator τ̂ is 

established in the next theorem. The proofs are deferred to the Supplementary Material.

Theorem 3.3

Assume regularity conditions 1)–5). Let τ̂ be the estimated set of change-points, and τ0 be 

the true set of change-points. Then, as n → ∞, , and

(3.1)

The theorem assumes fixed hyperparameter(s) α. In fact, it can be strengthened to cover 

empirical Bayes maximum marginal likelihood estimators in which the hyperparameter(s) 

are themselves estimated from the data.

Corollary 3.4

Assume regularity conditions 1)–5). Let α̂
n be a sequence of hyperparameter estimators. 

Suppose , and π(θ|α) is continuous at α*. Then, all the results in Theorem 3.3 hold 
when π(θ|α) are replaced by π(θ|α̂

n).
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Remark 1

The restriction on the time lag Δ̅ is a relatively minor condition. Similar condition can be 

also found in Frick, Munk and Sieling (2014). To see why such a condition is necessary 

simply consider the case where ti are ordered i.i.d. sequence from Unif(0; 1). Then the 

independence of xi implies that there would be a positive probability that the algorithm set a 

change-point on t1. The Δ̅ restriction is to asymptotically avoid this kind of situation. In 

practice, one could simply assume that Δ̅ is smaller than min{tj+1 − tj : j = 0, …, n − 1}, 

which essentially removes the condition.

4 The choice of prior distribution

Section 3 shows that, given the regularity conditions, the asymptotic consistency of the 

maximum marginal likelihood estimator does not depend on the specific choice of the prior. 

For finite sample, however, the choice of prior or the choice of hyperparameters could affect 

the final estimation. In this section, we will discuss the role of the prior distribution and the 

choice of hyperparameters.

Intuitively speaking, in the marginal likelihood approach, the prior serves as a ruler in 

deciding whether two adjacent segments of data are similar enough to be regarded as from 

the same distribution. Consider the following example as an illustration: two observations x1 

and x2 follow normal distributions with variance 1 and unknown means. Let the prior of the 

unknown mean be . Then, for a relative large , the ratio of marginal likelihood is 

approximately

For fixed x1 and x2, a strong prior (i.e., a small ) leads to a large ratio, favoring the model 

with one change-point than the model without. More importantly, this ratio is determined by 

both  and x1 − x2: the strength of the prior is always relative to information contained in 

the data.

The same phenomenon can be also observed in more sophisticated and realistic examples. 

Figure 1 shows a stepwise signal, the solid line, which contains five high-level segments 

(with value 1) and baseline segments (with value 0). This example is motivated by the array 

Comparative Genomic Hybridization (CGH) data, where the high-level segments correspond 

to abnormal regions in a genomic DNA sequence. We will discuss this example in greater 

details soon. Here we use this example to investigate the effect of prior on the estimation. 

The dots in Figure 1 are 500 simulated observations , where 

and μj is either 0 or 1. Note that the shortest high-level segment contains only two 

observations while the longest contains 40 observations.

Suppose one uses the conjugate prior: 

. Then the four hyperparameters 
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μ0, , κ0 and ν0 will affect the final estimation. To study their impact, we first fix κ0 = 1/2, 

ν0 = 3, and μ0 = x̄, where x̄ denotes the sample average, and then take , where σ̂2 

represents the sample variance. We let l0 vary, which changes the spread and the relative 

strength of the prior. Figure 2 shows the estimated change-points and the corresponding 

signal for fifteen different values of l0. As revealed in Figure 2, the estimated number of 

change-points decreases as the value of l0 increases, that is, as the prior becomes weaker. 

When the value of l0 is smaller than 1, although the five high-level segments are correctly 

identified, the estimated step function contains many false spikes since the strong priors tend 

to direct the estimator to treat any observation with large deviation from the main sequence 

as a separate segment. When the value of l0 is between 1 and 5, the estimators match the 

truth well. As the value of l0 grows beyond 5, the estimator starts to miss the high-level 

segments. The segment with the shortest length is the first to be missed, since it contains 

least information; the longest high-level segment is more resilient to the change of priors and 

is missed only under extremely high values of l0.

In our next investigation, instead of changing the spread of the prior, we simply shift it. We 

fix κ0 = 1/2, ν0 = 3, and  but let μ0 take 15 different values, as shown in Figure 3. It is 

seen that when the value of μ0 is close to the sample average — between −1.5 and 2 — the 

estimated step functions match the truth well. However, as the value of μ0 shifts away from 

the sample average, the relative strength of prior grows weaker and the estimator starts to 

miss the high-level segments. Similar to the previous picture, the long segments are more 

resilient.

In summary, the behavior of the maximum marginal likelihood estimator depends on the 

relative strength of the prior to the data. A relative strong prior tends to over-fit the data, 

yielding too many change-points, while a relative weak prior tends to under-fit the data, 

missing the real change-points. Therefore, in order to ensure a proper performance of the 

maximum marginal likelihood estimator, great care should be taken in choosing the 

hyperparameters.

For the choice of hyperparameters, Fearnhead (2005) suggested that hyperparameters can be 

chosen so that the summary statistics based on the prior distribution match the statistics 

based on the posterior of the preliminary study. However, this approach would require a 

number of iterations before the summary statistics converge, leading to a significant increase 

of the computational cost. It is also suggested in the literatures that the hyperparameters are 

chosen based on expert knowledge so that the prior can be relatively consistent with the data 

(Chib, 1998; Fearnhead, 2005, 2006). However, it is often ambiguous on how we should set 

prior according to the expert knowledge, and such knowledge may not always be available in 

practice.

We recommend to use an empirical Bayes approach to set the hyperparameters so that the 

prior could carry appropriate information to effectively function. Since the estimation is 

relatively robust to the choice of prior within a reasonably wide range as shown in Figures 2 

and 3, there is some flexibility in choosing a good prior. Furthermore, Corollary 3.4 
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guarantees the asymptotic consistency of the empirical Bayes maximum marginal likelihood 

estimator. In particular, the following guidelines can be used to choose the hyperparameters:

1. Derive the expectation and variance of a single observation as functions of α, the 

hyperparameter: E(x|α) and Var(x|α).

2. Set the value of α so that E(x|α) = μ̂, the sample average, and that Var(x|α) is a 

large multiple of σ̂2, the sample variance.

Next, for normal and Poisson data, we recommend the following priors for practical data 

analysis. We found them worked well in our simulation (Section 5) and real data (Section 6) 

studies.

Normal Data

For normal data , we use the conjugate prior: 

.

a. When the variability of the segment means μj is low or moderate (for example, if it 

is known that the range of μj is moderate), we recommend two conjugate priors 

with hyperparameters:

(4.1)

(4.2)

Under the prior Norm-A,  and . 

Under the prior Norm-B,  and 

. The prior Norm-A (as will be shown in the 

following section) is good at locating short segments. However, it may over fit the 

data, giving too many small segments, especially when outliers are common. The 

Norm-B prior is a more conservative choice. In practice, it is recommended to 

apply the Norm-A prior first. If the resulting step function appears to be over-

fitting, Norm-B prior can be applied to re-analyze the data. It must be noted, 

though, due to the fact that different priors essentially reflect different prior 

knowledge regarding the nature of the data, the comparison between estimators 

under different priors often goes beyond pure statistical analysis and requires 

specific domain scientific knowledge.

b. When the variability of the segment means μj is large (for example, if the range of 

μj is large), we recommend the following conjugate prior:

(4.3)
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where τ̂2 is the average within-segment sample variance based on the change-points 

estimator obtained through prior Norm-A (i.e., τ̂2 is the average of , where  is 

the sample variance within the jth segment identified by first applying the prior 

Norm-A). The rationale behind this prior is that the total variance Var(X) can be 

thought as the sum of Var(μj) and , the variance between segments and the 

variance within segments. In the construction of Norm-A and Norm-B priors, 

 is taken to be a multiple of σ̂2 (3σ2̂ and 7.5σ̂2, respectively). Since σ̂2 

measures the overall variance Var(X) rather than the variance within segments, if 

 (for example, when the range of μj is large), Norm-A and Norm-

B priors then might match  to a considerable large value, resulting in a 

relatively week prior which underestimates the number of change-points. Under 

Norm-C prior,  is matched to τ̂2 to avoid this problem, and we have 

 and 

.

Remark 2

Under the conjugate prior, which has density

the marginal likelihood has a closed form

where all the sums are over the set {i : ti ∈ (τj−1, τj]}, and nj = n(τj−1, τj].

Poisson Data

When the data consist of counts, such as fluorescence or photon counts from biophysical 

experiments, modeling them as Poisson, xi|λj ~ Poisson(λj), is more appropriate. We 

recommend conjugate prior λj|α, β ~ Γ(α, β) with hyperparameters:

(4.4)

With this prior we have E(x|α, β) = x̄ and Var(x|α, β) = x̄(1 + 2σ̂2). We found this prior to 

work well in our simulation and real data analysis.
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Remark 3

Under the conjugate prior λj|α, β ~ Γ(α, β), which has density , 

the marginal likelihood has a closed form

where the sums are over {i : ti ∈ (τj−1, τj]}, and nj = n(τj−1, τj].

5 Simulation study

In this section, we carry out simulation to compare the maximum marginal likelihood 

estimator to six other estimators. We set up three testing scenarios to explore different 

patterns of stepwise signal. In each scenario, 1000 independent data sets are generated and 

the change-points and step signal are estimated. Several criteria are then employed to assess 

the performance of different estimators. First, we briefly discuss the other six methods:

1. Fused lasso (Tibshirani et al., 2005; Tibshirani and Wang, 2008). Under equal-

segment-variance assumption (i.e., ), the change-points are estimated by 

minimizing sum of squares with two constraints that penalize the L1-norm of both 

the means and their successive differences. This method was implemented in the R 

package “cghFLasso” (http://www-stat.stanford.edu/~tibs/cghFLasso.html). We 

will use the default setting and use “Lasso” to label this method.

2. The second method is based on Boysen et al. (2009). Under the equal variance 

assumption, the change-points are estimated by minimizing a Potts functional, 

defined as the mean squared error plus a penalty term γn J, where γn is a function of 

sample size and J is the number of change-points. We adopt the recommended 

penalty term γn = 2.5 log n and use “Potts-func” to label this method.

3. The third method is based on Yao (1988) and Braun, Braun and Müller (2000). Yao 

(1988) discussed the change-point estimation for normal data with equal variance. 

Braun, Braun and Müller (2000) generalized this method to cases where the 

variance can be expressed as a product of an over-dispersion parameter σ2 and a 

known function of means. The change-points are estimated by minimizing 

, where  is the MLE of σ2, R is the number of change-points, and 

Cn is a function of the sample size. We will use the recommended formulas of Cn. 

For normal data, Cn = 0.5 log n (Yao, 1988). For Poisson data, Cn = nα (Braun, 

Braun and Müller, 2000), and α = 0.42 (based on cross-validation). We will use 

“quasi-lik” to label this method.

4. The fourth method is based on Zhang and Siegmund (2007), in which the change-

points are estimated using a modified BIC procedure. The penalty function that 

adds to the likelihood function is of the form , 

where m is the number of segments and ni is the length of the i th segment. The 
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assumption used in this paper is that the data are normally distributed. We will use 

“mBIC” to label this method.

5. The fifth method is based on Frick, Munk and Sieling (2014), where the change-

points are estimated by minimizing the number of change-points over the 

acceptance region of a multiscale test. This method was implemented in the R 

package “stepR” (http://www.stochastik.math.unigoettingen.de/index.php?id=189). 

Distribution families implemented in this package include Poisson and normal 

distribution with constant variance. In the simulation, we adopt the default setting 

for Scenario I, and apply a less conservative setting by choosing significant level 

alpha = 0.9 for Scenarios II and III. We will use “SMUCE ” to label this method.

6. The sixth method is named circular binary segmentation (CBS), proposed in Olshen 

et al. (2004) and Venkatraman and Olshen (2007). In contrast to the binary 

segmentation method, CBS can detect a small changed segment buried in the 

middle of a large segment using a likelihood ratio test. As the corresponding p -

value is determined based on the permutation reference distribution, this method 

does not require specific distributional assumption. This method was implemented 

in the R package “PSCBS” (http://cran.r-project.org/web/packages/PSCBS/

index.html). We will use the default setting and use “CBS” to label this method.

Note that the equal-variance assumption is needed to establish the asymptotic consistency of 

the first four aforementioned estimators; and no asymptotic result is available for the sixth 

method. In contrast, there is no such restriction for us to establish the asymptotic properties 

of the maximum marginal likelihood estimator.

When we compare the estimated change-points sequence with the true sequence, common 

Euclidean metric cannot be used since there is no one-to-one correspondence between each 

estimated change-point and the true one. This fact makes the evaluation of change-point 

estimators challenging. To the best of our knowledge, no single distance metric can provide 

a satisfactory result. Without a proper metric, the variability of estimated change-points 

sequences is not defined either. Thus, we will use the following three criteria in which the 

discrepancy between the estimated and the true sequences of change-points are examined 

from different angles.

• Criterion I: The difference between the estimated number of change-points and 

the true number of change-points.

• Criterion II: The frequency of correctly identifying certain segment of interest, or 

the overall proportion of segments correctly identified by the change-point 

estimator. For a segment to be considered correctly identified, the two change-

points that define a given segment need to be exactly estimated with no other 

change-point estimated in between.

• Criterion III: The distance between the estimated change-points and the true 

change-points:

A. The distance from a true change-point to the estimated set of change-points

B. The distance from an estimated change-point to the true set of change-points.

Du et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2016 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.stochastik.math.unigoettingen.de/index.php?id=189
http://cran.r-project.org/web/packages/PSCBS/index.html
http://cran.r-project.org/web/packages/PSCBS/index.html


Criterion I is straightforward: the closer the number of estimated change-points to the truth, 

the better. The distance in criterion III (A) can be thought of as a measure of the false 

negative rate, or under-fitting of the model. A short distance in III (A) would suggest that the 

true change-point is roughly contained in the estimated change-point set, while a large 

distance is a sign that the true change-point is not detected by the estimator. Similarly, the 

distance in criterion III (B) is a measure of the false positive rate, or over-fitting of the 

model. A short distance in III (B) would suggest that the estimated change-point is close to 

one of the true change-points, while a large distance suggests that the estimated change-

point is simply an over-fit.

5.1 Scenario I: Stepwise signal with fixed change-points

The first scenario we explore is borrowed from Lai et al. (2005) in which 13 different 

algorithms used in analyzing array Comparative Genomic Hybridization (CGH) data were 

evaluated. Each simulated data contain 500 indexed observations, divided between 

alternating “normal” and “abnormal” regions. The signal in the “abnormal” regions is higher 

than that in the “normal” regions. The five abnormal segments are at indexes 49–50, 147–

151, 245–254, 340–359 and 430–469. The lengths of the abnormal segments are 2, 5, 10, 20 

and 40, respectively, so we could study the performance of different estimators on detecting 

segments with different lengths. Figure 1 shows one such data set along with the step 

function. For the data distribution, we consider three different settings.

i. Normal distribution with equal variance (EV).

This is the original assumption used in Lai et al. (2005). Observations follow N (0, 

0.252) in normal regions and N (1, 0.252) in abnormal regions.

ii. Normal distribution with unequal variance (UEV).

Observations follow N (0, 0.252) in normal regions and N (1.5, 0.52) in the 

abnormal regions so that high-level signal is associated with large noise.

iii. Poisson distribution.

Observations follow Pois (25) in normal regions and Pois (50) in abnormal regions.

1000 independent data sets are generated under each distributional assumption. Change-

points are estimated using our maximum marginal likelihood estimator (employing both 

Norm-A and Norm-B priors for normal data, and Pois-P Prior for Poisson data) and the six 

methods previously described. The results are tabulated according to the three criteria. Table 

1 shows the mean and the standard deviations (in parentheses) of the difference between the 

estimated and the true numbers of change-points. The frequencies of correctly identifying 

each abnormal segment are listed in Table 2. The average distances based on Criterion III 

(A) (B) are summarized in Tables 3 and 4, respectively.

As indicated by Tables 1 and 4, the fused lasso method tends to overestimate the number of 

change-points under all the three data distributions. In addition, performance of the fused 

lasso method significantly deteriorates when the equal variance assumption does not hold. 

The Potts functional method performs well under the equal-variance normal case and the 

Poisson case, but tends to overestimate the number of change-points under unequal-variance 
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normal case. The quasi-likelihood and mBIC methods both work well under the equal-

variance normal and Poisson cases, but with smaller chances to detect the shortest abnormal 

segment with length 2 than the Potts functional method (Table 2); and both tend to 

underestimate the number of change-points (Tables 1 and 3). Under the unequal-variance 

case, the performance of quasi likelihood method is quite good and better than the mBIC 

method. For the SMUCE estimator, its power of detecting the shortest abnormal segment is 

even weaker than the quasi-likelihood and mBIC estimators, but still stronger than the CBS 

estimator which misses the shortest abnormal segment most of the time (Table 2). 

Otherwise, the performance of both SMUCE and CBS estimators is quite good.

Under Poisson data, the performance of our method is comparable to the quasi-likelihood 

and mBIC methods and better than the Potts functional, SMUCE and CBS methods, 

especially with regard to identifying the shortest segment with length 2. Under Poisson data, 

our method slightly inclines to over-fit the data, while the quasi-likelihood, SMUCE and 

CBS methods tend to under-fit, as suggested by Tables 1, 3 and 4. Under the normal cases, 

the Norm-B prior is more conservative than the Norm-A prior and can be expected to be 

more effective for signal with long segments and few change-points. This is supported by the 

results summarized in Tables 1, 3 and 4, where the Norm-B prior often gives the best results, 

especially with unequal-variance data. However, the Norm-B prior is not as good as the 

Norm-A prior in detecting the shortest abnormal segment with length 2 (Table 2) and tends 

to under-fit the data (Table 3). The power of the Norm-A prior lies in detecting short 

segments, which makes it an option worthy of consideration when the false negative may 

bring undesirable consequences. Performance of the Norm-A prior is also comparable or 

better than the other methods under unequal variance normal data.

It can then be concluded that, overall speaking, our method based on the Norm-B prior is the 

most effective method under this scenario – step signal with fixed change-points. The Norm-

A and Pois-P priors are most effective in identifying short segments. Finally, our method 

(with both Norm-A and Norm-B priors) is able to handle the unequal-variance case better 

than the other methods.

5.2 Scenario II: Stepwise signal with randomized Markov change-points

The scenario explored in this section is inspired by the enzymatic cycle of a single enzyme 

molecule, in which the enzyme switches between different conformations. The fluorescence 

marker on the enzyme molecule releases a high-intensity photon stream when the enzyme is 

in one conformation but releases fewer photons when the enzyme is in another 

conformation. This system is often modeled as a two-state Markov chain (Lu, Xun and Xie, 

1998) but more complex patterns have been discovered and studied as well (English et al., 
2006; Kou, 2008; Du and Kou, 2012).

To emulate such systems, we employ a two-state discrete-time Markov chain to simulate the 

change-points sequence. The probabilities of staying in state 1 and 2 are 0.9 and 0.95 

respectively, so the mean sojourn times (i.e., the average length) for states 1 and 2 are 10 = 

1/(1 − 0.9) and 20 = 1/(1 − 0.95), respectively. The starting state is drawn from the stationary 

distribution.

Du et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2016 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In each simulation run, we first simulate the change-points according to the two-state 

Markov process and then generate 500 observations on top according to each of the three 

sets of distributional assumptions described in Scenario I. The average number of change-

points is around 30. As a result, there are more short segments, and the inference is thus 

harder than that of Scenario I. Figure 4 shows an realization of such data with the mean 

function plotted as a solid line.

The estimation results are summarized in Tables 5 to 8. Note in this scenario all the change-

points are random so we list the overall proportion of correctly identified segments in Table 

6.

Table 5 shows that the Potts functional method performs quite well under equal-variance 

normal case, but the over-estimation biases are huge in other cases. The fused lasso method 

also overestimates the number of change-points under equal-variance normal case and 

Poisson case and is not accurate in identifying the segments (Table 6). The quasi-likelihood, 

mBIC, SMUCE and CBS methods work better for the unequal-variance data than the lasso 

method, but all these four methods tend to ignore short segments and thus underestimate the 

number of change-points (Tables 5, 7).

Owing to the existence of many short segments in the stepwise signal, our method with the 

conservative Norm-B prior also tends to underestimate the number of change-points (Table 

5). Yet the results obtained through the Norm-B prior are still reasonably good compared to 

the other approaches: under unequal-variance case, our estimator using Norm-B prior is only 

clearly outperformed by the mBIC estimator and is comparable or better than other 

estimators; under equal-variance case, our estimator using Norm-B is not as good as the 

Potts functional, quasi likelihood and mBIC estimators but comparable to SMUCE estimator 

and better than fused lasso and CBS estimators. Our estimator based on the Norm-A prior 

dominates all other methods under unequal-variance case and is comparable to the Potts 

functional method under equal-variance case. Performance of our method with Pois-P prior 

is also significantly better than the other approaches for Poisson data. Thus, simulations in 

this scenario again points out the effectiveness of our method (with Norm-A and Pois-P 

prior) in analyzing stepwise signal with short segments and unequal variance.

Based on the discussion in Scenarios I and II, it can be seen that, while the Norm-A prior is 

more sensitive to short segments, it is also sensitive to the extreme values found in the long 

segments. The Norm-B prior, on the other hand, is more robust and yields more conservative 

outcomes. We suggest both priors be used in practice and that comparison with domain 

scientific knowledge can then be made to make a final choice.

5.3 Scenario III: Stepwise signal with many levels

In this scenario, we explore a setting where the variance of the segment means dominates the 

within-segment variance: . This scenario is partly inspired by the linear 

stepwise movement of a molecular motor along a microtubule (Yildiz et al., 2003; Nan, Sims 

and Xie, 2008). A molecular motor is a biomolecule that carries cargo loading back and 

forth in (and out of) a cell. A fluorescence marker attached to the motor molecule can be 

used to track its trajectory along the microtubule. The plot of the molecular motor's 
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movement against time follows a stairwise pattern, where the length of a segment represents 

the waiting time in a particular location.

To emulate such a system, we establish a fixed step function with 6 different levels and the 

total number of change-points is 16. Figure 5 shows a realization of such data together with 

the step function. We employ three distributions for testing:

i. Normal distribution with equal variance (EV).

Observations follow normal distributions with means 1, 2, 3, 4, 5, 6 for the six 

different levels and a common variance 0.252.

ii. Normal distribution with unequal variance (UEV).

Observations follow normal distribution with means 1.5, 3, 4.5, 6, 7.5, 9 for the six 

different levels. The variances are 0.252 and 0.52, alternating.

iii. Poisson distribution.

Observations follow Poisson distributions with means 25, 50, 75, 100, 125, 150 for 

the six levels.

As we have discussed in Section 4, given that , we will use the Norm-C 

prior for the normal data. For the Poisson data, the Pois-P prior is still applicable. The 

simulation and estimation results are summarized in Tables 9 to 12.

Based on the numerical results, both the fused lasso and Potts functional methods 

significantly overestimate the number of change-points (Tables 9, 10 and 12). On the other 

hand, the estimators based on quasi-likelihood, mBIC, SMUCE, CBS and our method yield 

much better results under all criteria for all three data distributions. These five different 

estimator exhibit roughly similar performance. Among these five, quasi-likelihood and 

mBIC estimators hold a slight edge over the other three estimators for equal-variance normal 

data and Poisson data; under unequal-variance normal data, quasi-likelihood and our 

estimators show better results than the others.

In summary, it appears that our marginal likelihood method is the most versatile among all 

the methods tested here. Its performance is at least comparable to the best of the other 

methods under the scenarios and data distributions tested. In addition, our method has 

considerable advantage when the variances vary and can be good at detecting short segments 

with appropriate prior setting. Finally, our method is adaptable in the sense that it is 

essentially an empirical Bayes method that self adjusts to the data and that the users can 

choose the appropriate prior based on the domain knowledge and the context. In the next 

section, we will apply our method to two real data sets.

6 Analyzing real data

6.1 Array CGH data

Locating the aberration regions in a DNA sequence is important for understanding the 

pathogenesis of cancer and many other diseases. Array Comparative Genomic Hybridization 

(CGH) is a technique developed for such a purpose. A typical array CGH sequence consists 
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of the log-ratios of normalized intensities from disease versus control samples, indexed by 

the genome numbers. The regions of concentrated high or low log-ratios departing from 0 

indicate amplification or loss of chromosomal segments. Thus, a key question in analyzing 

array CGH data is to detect those abnormal regions.

Here we will use our marginal likelihood method to study two samples of array CGH data 

analyzed in Lai et al. (2005) (http://compbio.med.harvard.edu/Supplements/

Bioinformatics05b.html). The data are normalized from the raw data from Bredel et al. 
(2005), which concerns primary glioblastoma multiforme (GBM), a malignant type of brain 

tumor. In particular, the two samples represent chromosome 7 in GBM29 from 40 to 65 Mb 

and chromosome 13 in GBM31. We apply both Norm-A and Norm-B priors to analyze these 

two samples. The estimated step functions along with the CGH data are shown in Figure 6 

for sample GBM29 and Figure 7 for sample GBM31.

In sample GBM29, three regions of high amplitude amplifications exist and have been well 

studied. Based on Figure 6, both estimators successfully identify all three high 

amplifications even though the first two regions are separated only by four probes. In sample 

GBM31, a large region of low magnitude loss exists, as indicated by comparing the 

estimated signal with the dashed reference line in Figure 7. Both estimators pick up spikes 

with unusual log-ratios. In either case, our result provides solid evidence that the magnitudes 

of signal are lower than the reference line on the left 2/3 the data sequence (except for 

occasional spikes). Furthermore, our estimators, especially the estimator based on the Norm-

B prior, suggest that the magnitudes of loss are not constant within this region. For example, 

the magnitude of loss of the left most segment is clearly less than the magnitude of loss of 

the segment near the center.

Although our estimators based on different priors produce largely similar results, 

discrepancy is apparent. However, it is often insufficient to determine which estimator is 

superior purely based on statistical grounds. For instance, in sample GBM 29, the difference 

of the estimators based on the two priors originates from a single-probe outlier. This outlier 

can either be a real aberration or the result of experimental error, and specific scientific 

knowledge would be necessary to determine its nature.

It is also worthy noting that, in Lai et al. (2005), thirteen different CGH data analysis 

algorithms were also used to analyze those two samples, and our method is comparable to 

the best of those algorithms. Our method thus can be a useful tool to detect aberrations in 

array CGH data.

6.2 Enzymatic cycle of a single cholesterol oxidase molecule

A cholesterol oxidase is an enzyme that catalyzes the oxidation of cholesterol. The active 

site of the enzyme (E) binds a flavin adenine dinucleotide (FAD), which is naturally 

fluorescent, but the fluorescence is lost when FAD is reduced by a cholesterol to FADH2. 

The resulting complex E-FADH2 will then be oxidized by O2 and return to the fluorescent 

state E-FAD, starting the next cycle. This enzymatic cycle can be represented by the 

following diagram:
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(6.1)

where k1 and k−1 represent the corresponding kinetic reaction rates, measured in second−1. 

This cycle is often modeled as a two-state continuous-time Markov chain in which k1 and 

k−1 serve as the transition intensities (so that the dwell times in states E-FAD and E-FADH2 

have exponential distributions with rates k1 and k−1, respectively).

New advances in nanosciences in the last two decades have opened the door for scientists to 

study such processes on a microscopic molecule-by-molecule basis (Nie and Zare, 1997; Xie 

and Lu, 1999; Xie and Trautman, 1998; Tamarat et al., 2000; Weiss, 2000; Moerner, 2002; 

Kou, 2009; Qian and Kou, 2014). In such experiments, a single enzyme molecule is 

immobilized and its fluorescence intensity over time is recorded (Lu, Xun and Xie, 1998). 

Figure 8(a) shows the experimental fluorescence intensity trajectory of a single cholesterol 

oxidase.

In agreement with equation (6.1), the observed trajectory clearly suggests the existence of 

two different states with high and low fluorescence intensities (corresponding to the two 

states E-FAD and E-FADH2 respectively). The exact segmentation of this stepwise signal is 

unknown due to the noise but can be estimated with our method.

It is common to model the fluorescence intensity by a Poisson distribution. However, we 

found that the variance of the intensity in each state is much larger than the mean. As a 

result, the unequal variance Gaussian assumption appears to be more appropriate, and we 

apply the conservative Norm-B prior due to the large noise. The estimated step function is 

shown in Figure 8(b).

Our estimate suggests that this signal can be divided into 33 segments. 17 segments with 

high intensities are associated with state E-FAD, while the other 16 segments are associated 

with state E-FADH2. Based on this segmentation, k1 and k−1 can be estimated as 0.279 

± 0.133 s−1 and 0.231 ± 0.113 s−1, respectively.

If one assumes a two-state Markov process (Wang and Wolynes, 1995), then the 

autocorrelation function of the fluorescence intensity trajectory for (6.1) is exp(−(k1 + k−1)t). 
Thus, the sum k1 + k−1 can also be inferred from the empirical autocorrelation function 

(without segmenting the signal) under the Markov model. The best exponential fitting of the 

autocorrelation estimates k1 + k−1 to be 0.431, in good agreement with our estimate. The 

autocorrelation method, however, can only estimate their sum, not k1 or k−1 individually. 

Furthermore, the estimation based on the autocorrelation strongly depends on the two-state 

Markov model. In contrast, our method does not require any assumption on the underlying 

mechanism and provides direct segmentation of the stepwise signal. The information learned 

through our method can be used to test models, estimate the model parameters, offering 

valuable insight to validate, modify and improve existing models.
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7 Conclusion

In this article we formulated a maximum marginal likelihood estimator for stepwise signal 

estimation. We investigated the impact and the choice of prior, as well as the asymptotic 

properties of our estimator. We also carried out an extensive simulation study and applied 

this method to two real data problems.

Our analytical results shown that, under mild conditions, our maximum marginal likelihood 

estimator of change-points is asymptotically consistent. In the finite-sample scenario, our 

investigation in Section 4 illustrated the importance of choosing an appropriate prior. In the 

simulation, our maximum marginal likelihood estimator coupled with an empirical Bayes 

choice of the hyper-parameters were demonstrated to be competitive compared to the other 

methods, specially in the following cases: 1) when the equal-variance assumption does not 

hold; 2) when many short segments are present. In addition, our method works well for two 

real data examples discussed in Section 6.

Stepwise signal appears in many applications in both natural and social sciences. In 

particular, in biology, chemistry and biophysics, fluorescence stepwise signal is often the 

main source researchers rely on to infer the time evolution of the underlying systems. 

Locating the change-points is often the first and key step in such quests. Much research has 

been devoted to create algorithms for this purpose. However, important questions are not 

thoroughly discussed, including how to configure and auto-adjust the algorithms so that it 

can work for a broad range of real-data problems, and how to judge the estimation outcome. 

We hope our discussion on these questions, along with our proposed method, will generate 

further interest in research along this direction. For example, an interesting question is to 

quantify the variability of change-point estimates.

The R and Matlab packages of our marginal likelihood method can be downloaded at http://

www.people.fas.harvard.edu/~skou/publication.htm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A stepwise signal with five high-level segments.
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Figure 2. 
The data and change-points estimated by the maximum marginal likelihood method for 

fifteen different values of l0. From left to right, top to bottom, the values of l0 are 0.2, 0.4, 

0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 12, 17, 22, 27, respectively.
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Figure 3. 
The data and change-points estimated by the maximum marginal likelihood method for 

fifteen different values of µ0. From left to right, top to bottom, the values of µ0 are −7, −4, 

−3, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 3, 4, 7, respectively.
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Figure 4. 
One realization of the step function and the observations, Scenario II.
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Figure 5. 
One simulation realization and the stepwise mean function, Scenario III.
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Figure 6. 
Array CGH data of GBM29, with the estimated step functions based on Norm-A and Norm-

B priors. A horizontal dashed line with intercept 0 is also plotted for reference.
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Figure 7. 
Array CGH data of GBM31, with the estimated step functions based on Norm-A and Norm-

B priors. A horizontal dashed line with intercept 0 is also plotted for reference.
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Figure 8. 
(a) The experimental trajectory of the fluorescence intensity of a single cholesterol oxidase. 

(b) The estimated step function based on the Norm-B prior.
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