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ABSTRACT
The cephalopod olfactory organ was described for the first time in
1844 by von Kölliker, who was attracted to the pair of small pits of
ciliated cells on each side of the head, below the eyes close to the
mantle edge, in both octopuses and squids. Several functional
studies have been conducted on decapods but very little is known
about octopods. The morphology of the octopus olfactory system has
been studied, but only to a limited extent on post-hatching specimens,
and the only paper on adult octopus gives aminimal description of the
olfactory organ. Here, we describe the detailed morphology of young
male and female Octopus vulgaris olfactory epithelium, and using
a combination of classical morphology and 3D reconstruction
techniques, we propose a new classification for O. vulgaris
olfactory sensory neurons. Furthermore, using specific markers
such as olfactory marker protein (OMP) and proliferating cell
nuclear antigen (PCNA) we have been able to identify and
differentially localize both mature olfactory sensory neurons and
olfactory sensory neurons involved in epithelium turnover. Taken
together, our data suggest that the O. vulgaris olfactory organ is
extremely plastic, capable of changing its shape and also proliferating
its cells in older specimens.
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INTRODUCTION
Cephalopods are considered ‘advanced invertebrates’ for many
reasons, particularly the size of their brain that represents a
conspicuous fraction of their body mass (Packard, 1972). They
have evolved a complex nervous system (Nixon and Young, 2003)
while maintaining the basal molluscan plan of tetraneury
(Wanninger, 2009; Moroz, 2009). Their brain is encapsulated in a
cartilaginous cranium and lies between the eyes. The supra- and
sub- esophageal masses show a multi-lobed organization and lie
between two large optic lobes. This complex structural organization
functions hierarchically: motoneurons of the lower and intermediate
motor centers, situated for the most part in the suboesophageal
mass, innervate effectors. These centers are controlled by the higher
motor centers, by neurons of the basal lobes which in turn are
controlled by the optic lobes (Boycott, 1961; Young, 1971). This
complex nervous system allows cephalopods to display
discriminative (Cole and Adamo, 2005), observational (Suboski
et al., 1993), associative learning (Agin et al., 2006a), and

imprinting (Darmaillacq et al., 2006). These learning abilities are
associated with long-term memory (Sanders, 1975; Agin et al.,
2006b; De Lisa et al., 2012a,b) and spatial memory (Alves et al.,
2007).

The sense organs of cephalopods are the most sophisticated of all
the invertebrates (Packard, 1972; Young, 1977, 1989; Budelmann,
1995, 1996; Messenger, 1977; Anderson et al., 2010). Cephalopods
have been known for well developed eyes and complex visual
behavior (Hanlon and Messenger, 1996; Grable et al., 2002; Zylinski
et al., 2009; Yoshida et al., 2015), for highly developed vestibular
system, a ‘lateral line analogue’, and for a primitive ‘hearing’ system
(Bleckmann et al., 1991; Budelmann and Williamson, 1994; King
et al., 2003; Williamson and Chrachri, 2007).

Cephalopods possess chemoreceptors in the epidermis (see
Budelmann, 1996) including numerous isolated sensory neurons all
over the body surface (Graziadei, 1964; Sundermann-Meister,
1978; Boletzky, 1989; Fioroni, 1990; Mackie, 2008; Baratte and
Bonnaud, 2009) and mostly in the hundreds of suckers of octopods
as well as, but in less concentration, on squid and cuttlefish suckers,
lips and mouth (Wells et al., 1965; Wells, 1978; Boyle, 1983;
Anraku et al., 2005).

In coleoid cephalopods a small pit of ciliated cells is present on
either side of the head below the eyes close to the mantle edge.
These structures represent the olfactory organs as recognized by von
Kölliker (1844) and Watkinson (1909). While several functional
studies have been conducted on decapods, demonstrating their role
in mate choice of squid and cuttlefish and the improvement of
predation on crabs by cuttlefish (Boyle, 1983, 1986; Chase and
Wells, 1986; Lee, 1992; Lucero et al., 1992, 1995, 2000;
Budelmann et al., 1997; Boal and Golden, 1999; Piper and
Lucero, 1999; Mobley et al., 2007, 2008a,b; Villanueva and
Norman, 2008), very little is known about octopods (Walderon
et al., 2011). The Octopus vulgaris olfactory organ has the typical
morphology of a chemoreceptor structure (Woodhams and
Messenger, 1974; Wildenburg, 1995, 1997) resulting in a ciliated
epithelium lying in a pair of pits, one on each side of the head, as in
other cephalopods and it has been considered the homologue of
Nautilus rhinophore, a specialized short hollow tentacle lodged
below the eye (Young, 1965; Basil et al., 2000; Ruth et al., 2002;
Jereb and Roper, 2005).

From the olfactory pit nerve fibers arise and form a defined
olfactory nerve, which crosses the floor of the orbit and enters the
olfactory lobe.

This lobe, situated on the optic tract, close to optic gland, organized
in three interconnected lobules, receives fibers also from dorsal basal
and optics lobes and sends fibers to the basal and subpedunculate
lobes (Messenger, 1967). For these neuroanatomical connections it
constitutes a center of convergence and interception of fibers coming
from lobes involved in the control of motor program and reproduction.
(Di Cosmo andDiCristo, 1998; De Lisa et al., 2012a,b; Di Cosmo and
Polese, 2013, 2014; Di Cristo, 2013; Polese et al., 2015).Received 29 February 2016; Accepted 24 March 2016
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Our group demonstrated in O. vulgaris functional differences
among the lobules of the olfactory lobe based on differential
distributions of peptidergic neurons in these brain regions (Di Cosmo
and Di Cristo, 1998; Di Cosmo and Polese, 2013, 2014). Recently
Polese et al. (2015) discovered the presence of APGWamide,
FMRFamide, NPY and GnRH in the olfactory sensory neurons
(OSNs) and fibers of theO. vulgaris olfactory organ proposing a new
model of control of reproduction based on chemical cues.
Cephalopods, as suggested by several studies, are able to detect

chemical cues either through contact or distant chemoreception
(Boyle, 1983, 1986; Chase and Wells, 1986; Lee, 1992; Boal and
Golden, 1999; Alves et al., 2007). The behavioral evidence for
distant chemoreception show that the addiction of fish juice to the
water causes, in octopus (Wells, 1963) and cuttlefish (Messenger,
1977), active movements. In this context, cephalopods produce the
ink that they use as direct deterrent of predators and as an alarm cue
for conspecifics (Palumbo et al., 1999; Di Cosmo, 2003; Di Cosmo
et al., 2006; Derby, 2014).
Boal (1997) argued that female mate choice in cuttlefish was

more likely to be based on olfactory cues rather than visual cues.
Adding dilute extracts of crabs to the water supply increased the
ventilation rate of octopus (Boyle, 1983) and typical signs of alarm
are shown by octopus when exposed to seawater in which a moray
eel had been living (Mac Ginitie and Mac Ginitie, 1968).
Furthermore the ability to detect the sex of conspecifics at a
distance, in octopuses, could facilitate reproduction and also
problem solving ability (Boal, 2006; Anderson et al., 2010).
Nevertheless a blinded octopus will move towards a scent it
perceives as a food source (Chase and Wells, 1986). Recently
Walderon et al. (2011) demonstrated that octopuses respond to
chemical signals from conspecifics and detect a wide range of odors
as food or non-food (seaweed). However as most coleoids are
nocturnal or live at depths where little light is present, the ability to
track prey, partner and predator by scent is crucial to their success
(Joll, 1977; Budelmann, 1996). This strongly suggests that the
coleoid cephalopods, octopods, cuttlefishes and squids use distance
chemoreception and the ability to integrate chemical signals with
the stimuli perceived by other their sense organs allowing them to
shape their sophisticated behavior in the sea.
To date the morphology, the plasticity, the proliferation capability

of olfactory sensory neurons (OSNs), and the sensory characterization
of the O. vulgaris olfactory organ remain to be elucidated.
In order to shed more light on these crucial features here we

provide: a detailed description of olfactory epithelium (OE) of young
male and femaleO. vulgaris; three-dimensional reconstruction of the
OE; the localization of proliferating cell nuclear antigen (PCNA) as a
molecular marker of cell cycle progression and DNA replication; the
first time localization of olfactory marker protein-like (OMP) in the
O. vulgaris olfactory epithelium as a marker of mature olfactory
chemosensory neurons.

RESULTS
Overview of olfactory organ morphology
The paired olfactory organs of O. vulgaris are localized on each side
of the head at the inhalant entrance to the mantle cavity. They are
hidden in skin folds and appear to be small white patches when the
skin is stretched, due to the absence of chromatophores (Fig. 1). The
olfactory organs of 12 young octopuses were used in this study
because they afforded better visualization of the organs respect to
larger animals. Young olfactory organswere not yet fully covered and
enclosed in the skin folds. With further growth and development, the
olfactory organs become hidden in the skin folds.

Histology and cell types
The olfactory organs are composed of sustentacular and epithelial
sensory cells. The surface of the OE is organized in a pseudo-
stratified, columnar and ciliated epithelium and bulges into the
olfactory pit to form the olfactory protuberance (OP). EachOE appear
capable of erection to expose the sensory epithelium (see below).

The surface layer is characterized by different types of OSNs and
sustentacular cells, below which a multilayer of a ring shaped OSNs
are arranged.

Mayer’s haematoxylin/eosin stained slices of the OE revealed five
different type of cells, three of them classified as typical olfactory
sensory neurons, onewith a ring shaped aspect and the last onewith a
columnar morphology interspersed among the sensory types (Fig. 2).

The first sensory cell type (type 1) has an elongated piriform
nucleus, minimal cytoplasm and its apical area is equipped with
terminal cilia. Sensory cell type 2 appears characterized by a soma
almost totally occupied by the nucleus located in the middle layer of
the epithelium, with a broad dendritic process ending with a tuft of
cilia on the epithelium surface. The type 3 sensory cells lie deepest
within the olfactory epithelium with a large nucleus that fills almost
all the soma from which a long dendritic process reaches the
epithelial surface with a ciliated terminal.

Under the surface layer of the epithelium, the so called ‘ringed
shaped cells’ (Woodhams and Messenger, 1974) (type 4) are
characterized by a single large cytoplasmic vacuole, up to 60 µm
diameter.

Finally the sustentacular cell type (SC) has a continuous apical
brush border of microvilli without cilia. According to previous works
on the O. vulgaris olfactory organ (Wildenburg, 1997), sustentacular
cells are interspersed between OSNs and are jug-shaped with a
cytoplasmic process that reaches the epithelial surface. They are
characterized by large basal nuclei, occasionally observed in the
middle region of the cell (Fig. 2). Still in agreement withWildenburg
(1997) no mucus cells were detected in the O. vulgaris OE.

Measurement of sensory epithelial surface area
The epithelial surface in male and female of O. vulgaris is 15±
0.5 mm2. No significant differences in the structure and morphology
of the young male and female olfactory organ were observed.

Fig. 1. Overview ofO. vulgaris olfactory organ. (A) Entry to mantle cavity of
a young O. vulgaris in its natural environment: the arrow indicates the position
of the olfactory organ and the direction of water flow. (B) Magnification of the
olfactory organ in relaxed position. (C) Magnification of the erect olfactory
organ when extended out of the olfactory pit. Scale bar=1000 µm.
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3D reconstruction
Analyzing the histological sections of the two considered postures,
the 3D reconstruction of the olfactory organ appears to be radially
symmetrical with a mobile central OP surrounded by a fold with
raised edges.
Fig. 3 shows the 3D reconstruction resulted from the assemblage

of the olfactory epithelium histological sections.

Proliferating cell nuclear antigen (PCNA) localization
PCNA immunoreactive OSNs appear mainly located on the
peripheral folds of the OE, and just a few scattered cells in the
central OP area. All the labeled cells are concentrated within
the superficial layer of the epithelium. The PCNA immunoreactivity
is specifically restricted to the nuclei of type 1 and type 2 OSNs
(Fig. 4).

Olfactory marker protein-like (OMP) localization
TheOMP, which in vertebrates ismarker formature olfactory sensory
neurons (Margolis, 1980), is expressed in the cytoplasm, the emerging
axon and the dendritic process of types 2 and 3 OSNs only. No OMP
immunoreactivity has been observed in types 1 and 4 OSNs. The 3D
distribution of OMP immunoreactive OSNs is uniformly scattered in
the central OP in which the type 2 cells occupy the upper layer while
the type 3 cells occupy the layer below (Fig. 5).

Characterization of antibodies
OMP western blot analysis
On SDS-PAGE of membrane proteins from O. vulgaris OE the
antibody revealed a distinct OMP immunopositive protein at

∼100 kDa (Fig. 6). O. vulgaris arm, optic lobe, subesophageal
mass and supraesophageal mass extracts treated with the same
antibody showed a negative result (Fig. 6).

Dot blot assay
A dot blot assay for anti-OMP showed positive immunoreactivity with
protein extract from O. vulgaris OE, but negative immunoreactivity
with protein extract from supra- and suboesophageal masses, as well
as from optic lobe and arm. Negative immunoreactivity was observed
when protein extract from OE was incubated with pre-absorbed
antibody (Fig. S1).

Sequence alignment
Alignment of mouse PCNA whole protein sequence with PCNA
protein sequence annotated in Octopus bimaculoides genome
(Albertin et al., 2015), showed an identity of 77% (Fig. S2).

DISCUSSION
In this study we provide an unprecedented view of the olfactory
epithelium of O. vulgaris in term of anatomy and turnover
capabilities. We describe the detailed morphology of young male
and female octopus olfactory epithelium, and using a combination
of classical morphology and 3D reconstruction techniques we
propose a new classification for O. vulgaris OSNs. Furthermore
using specific markers such as OMP and PCNAwe has been able to
identify and differentially localize, both mature olfactory sensory
neurons (OMP immunoreactivity) and olfactory sensory neurons
involved in epithelium turnover (PCNA immunoreactivity).

Histology and cell types
We recognize a pseudo-stratified, columnar and ciliated epithelium that
revealed the presence of four OSNs and just one sustentacular cell type.

Fig. 2. Transverse section ofO. vulgaris olfactory organ. Top: the olfactory
epithelium (scale bar=100 µm), arrowheads indicate vacuolated cells (type 4).
The sensory cells are shown below: type 1 sensory cells have an elongated
nucleus and minimal cytoplasm; type 2 sensory cells have a central nucleus
and project to the epithelial surface and to the basal lamina; type 3 sensory
cells have a soma occupied by a large nucleus and a long process directed to
the surface; type 4 sensory cells are pear shaped cells with a large vacuole, an
eccentric nucleus, minimal cytoplasm and a long projection which appears to
terminate in cilia. Cylindrical sustentacular cells (SC) emerge onto the
epithelial surface with an apical brush border of microvilli. Scale bars=5 µm.

Fig. 3. 3D reconstruction of the O. vulgaris olfactory organ.
(A) Reconstruction in the relaxed position with the protuberance in the middle
of the epithelium surface. (B) Reconstruction of the erect olfactory organ
resulting in rotation of the epithelium inside the olfactory pit. Scale
bars=100 µm.
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We partially agree with previous descriptions of olfactory cell
types observed respectively in the decapodiformes Lollingula brevis
(Emery, 1975), Loligo vulgaris (Wildenburg and Fioroni, 1989) and
Sepia officinalis (Wildenburg, 1990), and octopodiformes, adult
O. vulgaris (Woodhams and Messenger, 1974), Octopus joubini
(Emery, 1976) and post-hatchingO. vulgaris and Eledone moschata
(Wildenburg, 1997).
We found just one epithelial cell non-sensory type (SC) in contrast

with what was found in decapodiformes and some octopodiformes in
which two epithelial non-sensory cells have been described. However
our SC type corresponds to epithelial cell type 1 described in
decapodiformes and octopodiformes by Wildenburg (1990, 1997)
(Table 1).
Of the four OSN types we discovered, the type 3 in our

classification corresponds to type 1 described by Wildenburg (1990,
1997), while our type 2 corresponds to type 2 and its variations
(Table 1). The types 1 and 4 in our classification appear characteristic
ofO. vulgaris and they correspond respectively to type 5 described by
Wildenburg (1997) and to ring shaped cells described by Woodhams
and Messenger (1974) (Table 1).
Differently from what was described in previous works on

decapodiphormes and in agreement with Wildenburg (1997), we
have observed that both cell types 3 and 4 are located in the deep OE
forming a layer under the epithelium surface (Table 1). Interestingly
the cell type 5 that Wildenburg (1997) defined characteristic of

O.vulgaris planktonic stage only, occurs in our preparations
classified as type 1 in both male and female young benthic
O.vulgaris OE (Table 1).

Our cell type 1 in the benthic stage (cell type 5 planktonic
stage; Wildenburg, 1997) represents the simplest OSNs letting
us speculate that all the OSNs could possibly have evolved
from them according to our PCNA immunoreactivity results in
which the majority of the immunoreactive cells are type
1. This contrasts with the hypothesis advanced by Wildenburg
(1997) witch the type 4 cells are the precursor of all the
others.

The sensory cells evolve and differentiate in more complex forms
(Graziadei, 1965; Boyle, 1986) in which the cells that lack a pore
leading to the external environment were previously considered
as either immature chemoreceptors or as mechanoreceptors
(Wildenburg and Fioroni, 1989; Wildenburg, 1997). In our view

Fig. 4. PCNA immunoreactivity on a transverse section of O. vulgaris
olfactory organ. (A) Overview of the olfactory epithelium with several olfactory
sensory neurons labeled. The arrowed oval indicates the most proliferative
area with a concentration of PCNA immunoreactivity nuclei on the peripheral
fold of the epithelium, the arrowheads indicate some scattered PCNA
immunoreactivity nuclei on the central epithelium area. (B,C) Magnifications
with PCNA immunoreactivity cells in the fold and into the olfactory
protuberance, respectively, of the olfactory epithelia. Scale bars=100 µm in A,
10 µm in B,C.

Fig. 5. OMP immunoreactivity on transversal section of O. vulgaris
olfactory organ. (A) Overview of the olfactory epithelium, arrowheads indicate
many labeled olfactory sensory neurons. (B) Type 2 olfactory sensory neuron
OMP immunoreactivity. (C) Type 3 olfactory sensory neuron OMP
immunoreactivity. Scale bar=100 µm in A, 10 µm in B,C.

Fig. 6. Western blot analysis of OMP from O. vulgaris. OE: Olfactory
epithelium extract showing an immunoreactive band of about 100 kDa. No
immunoreactive bands are detected in: arm, optic lobe (o. lobe),
subesophageal mass (sub.) and supraesophageal mass (sup.).
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the cells that lack a pore leading to the external environment
represent a more derived and specialized form that may originate
from type 1 in our classification (Table 1).
The type 4 cells, classified also as ‘ring shaped’ cells (Woodhams

and Messenger, 1974), deserve particular attention given that their
shape is quite specific. Besides their uncommon size, they possess a
large vacuole and are mainly distributed in the deeper layer of
the central part of the OE where they appear to give turgor to the
OP that characterizes the olfactory organ shape. Previous electron
moicroscopic studies on O. vulgaris and other species of
cephalopods, revealed the presence of cilia in the vacuole. For
their shape and position in the OE some authors (Emery, 1976;
Woodhams andMessenger, 1974) hypothesized that the type 4 cells
could work as mechanosensory cell type suggesting a double
function of the olfactory organ (Table 1). However, we suggest that
the function of this cell type is related to the architecture and
structural plasticity of the whole organ (see 3D reconstruction) and
thus determines whether it is relaxed or erect but this hypothesis
remains to be experimentally tested.

3D reconstruction and structural plasticity
The 3D reconstruction provides a useful tool to understand the
spatial configuration of the olfactory organ. Following the virtual
representation obtained by reassembling the histological sections
from what appear to be relaxed and erect postures of the organ we
argue that it has an intrinsic capability of movement that allows the
animal to orientate it to detect the spatial gradient of chemical cues.
This could help their navigation and spatial memory abilities
(Huffard, 2013). However, touch and olfaction are a part of a
multimodal system of information transfer. The synchronous use
and integration of different signals using different channels (touch
and olfaction) have the advantage to improve recognition,
discrimination and memory of inputs by the environment (Partan
and Marler, 2005).

The olfactory organ in cephalopods has been described often as a
pit or an OP. Wildenburg (1990) even hypothesized an adaptive
evolution of the organ related to different hatchling types of
different species: a pit shaped organ in bottom living hatchlings, and
a bulging organ in pelagic hatchlings such as O. vulgaris. Based on

Table 1. Olfactory sensory neurons

Octopus vulgaris
benthic stage
present study Type 1 Type 2 Type 3 Type 4

Localization Marginal and superficial area
of OE folds

Central and superficial area
of OE OP

Located in the deeper OE
OP

Located in the deepest
layer of the OE OP

Shape Elongated piriform nucleus,
minimal cytoplasm and its
apical area equipped with a
small cluster of cilia.

Soma almost totally occupied
by the nucleus located in
the middle layer of the
epithelium, with a broad
dendritic process ending
with a tuft of cilia on the
epithelium surface

With a large nucleus that
fills almost all the soma
from which a long
dendritic process reach
the epithelium surface
with a ciliated pocket

Characterized by a single
large cytoplasmic
vacuole which can
reach 60 µm diameter

Size ∼5-6 µm ∼10 µm ∼15 µm Up to 60 µm
Suggested
function

Simplest OSN that could be
precursor of mature OSNs

Mature OSNs Mature OSNs To give turgor to for
erection of the
protuberance
underlying the
epithelium

O. vulgaris
planktonic stage
Wildenburg,
1997 Type 5 Type 2 (and 3) Type 1 – Type 4 Not classified

Localization Marginal area of olfactory pit Superficial localization Cell body located below
cell type 2 and 5

_

Shape Cell with one chinocilium and
stereocilia (microvilli)

Cells with large ciliated cavity
in some cases sealed by a
dense granule

Cells with a long process _

size ∼6 µm ∼10 µm ∼15 µm _
Suggested
function

suggest a mechanosensitive
function based on the cilia
characteristics

sensory function sensory function

O. vulgaris benthic
stage
Woodhams and
Messenger,
1974 No description provided for OSNs typology Ring Shaped Cell

Localization Subepithelial position
Shape Characterized by an oval

spacious ciliated cavity
(vacuole)

Function Mechanosensory

A comparison of OSNs typology of O. vulgaris described in this and previous works.
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our 3D reconstruction we define theO. vulgaris olfactory organ as a
pit with an erectile internal OP.

Epithelial proliferation
Proliferating cell nuclear antigen (PCNA) localization
Olfactory sensory cells in all vertebrates are characterized by cycles
of birth, maturation, and death (Graziadei and Monti Graziadei,
1978). This proliferation is remarkable given that the olfactory
receptor cells are neurons, cells that are not generally considered to
undergo neurogenesis in adults. The same labeling technique used
to document turnover in vertebrates shows that OSNs in the anterior
tentacles (olfactory organs) of snails also turn over (Chase and
Rieling, 1986). Functional constancy in diverse groups of animals
argues that turnover is a common adaptive property of OSNs. We
verify the presence of OSNs proliferation inO. vulgaris based on the
presence and distribution of PCNA immunoreactivity.
PCNA is a nuclear protein synthesized in the G1 and S phases of

the cell cycle and, therefore, correlated with the cell proliferative
stage (Jaskulski et al., 1988; Tsurimoto, 1999; Wullimann and
Puelles, 1999; Rankin et al., 2004), thus represents a valuable
marker of cell proliferation (Derenzini et al., 1990, 1995; Öfner
et al., 1992). PCNA has been recently localized in octopus arm
regeneration process (Fossati et al., 2013).
We have observed that PCNA immunoreactive OSNs are mainly

located in the external layer of the olfactory epithelium lateral folds,
with sporadic immunoreactive OSNs observed on the central OP.
This observation suggests a migratiory wave from the top/lateral
layer of the epithelium to the central/deeper one. No positive cells
were found in deeper layers. Since the majority of PCNA
immunoreactive cells are type 1, and they are mainly located in
the marginal region of the OE, we suggest that the epithelial
proliferation starts from the periphery of the organ up to the center. It
is also intriguing to observe that the type 1 cells do not have any sign
of further sensory specializations such as the presence of a ciliated
pore or internal vacuole (Fig. 2), implying that this type of cell may
be a precursor of all the OSNs in contrast to Wildenburg (1997)
when he described cell type 4 (ring shaped cells) as the ‘ontogenetic
stage of other sensory cell types’. Cell type 4 has never been
observed to be positive to the PCNA antibody.

Chemosensory function
Olfactory marker protein-like (OMP) localization
TheOMP is a highly abundant small cytoplasmic protein whose gene
expression is highly restricted to mature olfactory chemosensory
neurons and is phylogenetically conserved among vertebrates
(Margolis, 1980; Danciger et al., 1989; Reisert et al., 2007).
In invertebrates an olfactory sensory neuron-specific protein has

been cloned in the mollusk land snail Eobania vermiculata
(Mazzatenta et al., 2004).
The OMP immunoreactivity has been here detected for the first

time in the olfactory organ of invertebrate OSNs suggesting an even
more conserved function of this protein. The presence of OMP
immunoreactive OSNs in O. vulgaris supports the chemosensory
function of the ‘so called olfactory organ’ (Woodhams and
Messenger, 1974).
The OMP immunoreactivity results are mainly confined to the

cytoplasm, including the emerging axon and the dendritic process,
of types 2 and 3 OSNs. This selective localization strongly supports
the hypothesis that these cell types are the mature form of OSNs
deriving from the type 1 cells.
The absence of OMP immunoreactivity in the lateral side of the

organ suggests a turnover of this epithelium with mature OSNs

located in the medial OP. Furthermore the fact that cell type 4
never shows OMP immunoreactivity strongly suggests that the ‘ring
shaped cells’ do not have an olfactory function. Moreover, both
controls of anti-OMP specificity, western and dot blot analyses
clearly showed that immunoreactivity is restricted to just the
OE protein extract strongly supporting its conserved function.
The protein that cross reacts with anti-OMP has a molecular weight
of about 100 kDa, and that homologue and heterologue pre-
absorption tests performed with proteins extracts from O. vulgaris
OE, as well as recombinant rat OMP, abolished completely
OMP immunoreactive band in western and dot blot analysis. This
biochemical data further support the contention that the
immunoreactivity reported here is due to the presence of an OMP
isoform.

Our previous finding about the presence of neuropeptides
involved in the regulation of food intake and reproduction (Di
Cosmo and Polese, 2014; Polese et al., 2015) mainly localized in
cell type 2 and 3, together with the data presented in this study where
the OMP immunoreactivity is confined to these two types of OSNs,
strongly suggests that OSNs change their position and role as they
mature.

In conclusion this work represents the first attempt to characterize
the olfactory organ of O. vulgaris (summarized in Fig. 7) opening
new perspectives about the role-played by the olfaction in the
complex behavioral patterns shown by this fascinating animal. In
the near future we will try to confirm the functional role of the
olfactory organ performing behavioral experiments.

Fig. 7. Overview of the O. vulgaris olfactory organ. Starting from the top,
showing the anatomical position of the organ, followed by its 3D reconstruction.
Below, the different type of OSNs are represented. The red arrows indicate the
pathway of maturation and differentiation of OSNs.
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MATERIALS AND METHODS
Animals, dissection, and fixation
Specimens of young O. vulgaris males and females (n=12, 6 males and 6
females, weight, ±400 g) were collected from Bay of Naples and maintained
in aquarium tanks under the same conditions as reported in Fiorito et al.
(2014) and Polese et al. (2014).

Our research conformed to European Directive 2010/63 EU L276, the
Italian DL. 4/03/2014,n. 26 and the ethical principles of Reduction,
Refinement and Replacement (protocol n. 0124283-08/11/2012).

Animals were anesthetized by isoflurane vaporized into the bathing
medium as reported previously (Polese et al., 2014) and the olfactory organs
were dissected in sterile conditions.

The tissues were fixed in Bouin’s solution for 24 h at room temperature,
then washed and dehydrated in ethanol, cleared in Bioclear (Bio-WORLD),
and embedded in paraffin.

Histology protocol
Transverse sections (7 µm) were cut on microtome and mounted on albumin-
coated slides, cleared, rehydrated and processed for routine Mayer’s
hematoxylin and eosin staining.

3D reconstruction
Two different positions of the olfactory organ were considered for 3D
reconstructions. The first is assumed to be the relaxed position when the
organ seats at the base of the pit. The second position is when the organ is
erected out of the pit (Fig. 1).

The 3D reconstruction of the O. vulgaris olfactory organ results from the
overlapping of 370 serial histological sections of 7 µm thick and stained with
haematoxylin/eosin, obtained from two olfactory organs fixed in the two
considered postures. Pictures of each serial histological section were taken
using a Leica DM-RB microscope equipped with Canon power shot S50
digital camera. All the pictures taken were assembled and analyzed (Blender
and 3D Coat software).

Basic immunohistochemical protocol
We used methods based on those reported previously for studying the
nervous system of O. vulgaris (Di Cosmo and Di Cristo, 1998) and Sepia
officinalis (Di Cosmo et al., 2004). Transverse sections of olfactory organs
from both sexes were cleared, rehydrated, washed in phosphate saline buffer
(PBS) and treated for immunohistochemical analyses.

After incubation with both primary (Table 1) and biotinylated secondary
antibodies, and several rinses in PBS, streptavidin conjugated to horseradish
peroxidase (dilution 1:200, from Life Technologies Carlsbad, CA, USA)
was placed on the sections for 1 h. Then 3% DAB (3.30-diaminobenzidine
tetrahydrochloride; Sigma Aldrich, St. Louis, MO, USA) with 0.03%
hydrogen peroxide (Sigma Aldrich) in Tris buffer (0.05 M, pH 7.6) was
used as chromogen and slides were dehydrated and mounted in Permount
(Thermo Fisher Scientific, Waltham, MA, USA).

Anti-proliferating cell nuclear antigen immunohistochemistry
(anti-PCNA)
Anti-PCNA antibody was used as a molecular marker of cell cycle progression
and DNA replication. Proliferating cell nuclear antigen was detected using
monoclonal mouse anti PCNA (dilution 1:10,000; Sigma Aldrich; #P8825
RRID: AB_477413). Sections were incubated for 20 min with 1% normal
horse serum (Life Technologies) and then rinsed in anti-PCNA at 4°C
overnight in humid chamber. The sections after many washes in PBS were
incubated with horse anti-mouse secondary antibody biotin conjugated
(dilution 1:200; Thermo Fisher Scientific) for 1 h at room temperature.

Anti-olfactory marker protein immunohistochemistry (anti-OMP)
Anti-OMPwas used as a molecular marker of mature olfactory chemosensory
neurons. Olfactory marker protein was detected using polyclonal goat anti-
OMP (dilution 1:10,000; Wako, Richmond, VA, USA; #019-2229 RRID:
AB_664696). After incubation for 20 min with 1% normal rabbit serum (Life
Technologies), sectionswere rinsed in anti-OMPat 4°C, overnight, in a humid
chamber. After many washes in PBS the sections were incubated in rabbit

anti-goat biotin-conjugated secondary antibody (dilution 1:200; Thermo
Fisher Scientific) for 1 h at room temperature.

Characterization of antibodies
Anti-OMP specificity has been supported by loss of labeling in controls
treated with antibody pre-absorbed with the antigen at 5 µM final
concentration (recombinant rat OMP kindly provided by F. Margolis,
University of Maryland School of Medicine, USA). Given that an OMP has
not been annotated inO. bimaculoides genome, specificity was tested with a
western blot and dot blot assay. Specificity of both secondary antibodies has
been tested with omission of primary antibody.

Western blot analysis
Total proteins were extracted from homogenate of olfactory epithelium (n=8),
as well as from arm, optic lobe, sub-supraoesophageal masses, and quantified
byBradford ProteinAssay, using a BSA standard, according tomanufacturer’s
instructions (Bio-Rad Laboratories, Inc., Hercules, CA). After 10% sodium
dodecylsulphate (SDS)-polyacrylamide gel electrophoresis, proteins were
transferred on nitrocellulose membrane (Whatman) and incubated for 30 min
in a blocking solution (non-fatmilk 5% inPBS).Membraneswere incubated in
antibody solution (1:1000 anti-OMP in non-fat milk 5%) at 4°C overnight.
After several rinses with PBS-T (PBS with 0.1% of Tween 20), membranes
were incubated with secondary antibodies (1:5000) for 1 h at room
temperature. Immunopositive band was visualized using the SuperSignal
West Pico Chemiluminescent Substrate in accordance with the manufacturer’s
instructions (Pierce Biotechnology, Inc., Rockford, IL, USA) using a
Chemidoc EQ System (Bio-Rad).

Dot blot assay
2 µl (200 ng/μl) of total protein extract from O. vulgaris tissues respectively:
olfactory epithelium (OE), supra- and suboesophageal masses, optic lobes
and arm were applied on nitrocellulose membrane (Whatman) and let dry at
room temperature. After 1 h incubation with non-fat milk 5% blocking
solution, we incubated with anti-OMP (dilution 1:500; Wako; #019-2229
RRID: AB_664696) overnight at 4°C. The membrane was then washed
extensively using Tris buffer with Tween 20 (Sigma Aldrich) 0.05% (TBS-T)
and subsequently incubated with a rabbit anti goat horseradish peroxidase
conjugated (dilution 1:5000; Thermo Fisher Scientific) for 1 h. After several
rinses with TBS-T, immunopositive dots were visualized using the
SuperSignal West Pico Chemiluminescent Substrate (Pierce Biotechnology)
in accordance with the manufacturer’s instructions using a Chemidoc EQ
System (Bio-Rad).

Anti-PCNA specificity has been determined in a recent study on octopus
arm regeneration (Fossati et al., 2013) and supported by loss of labelling in
controls with the antibody pre-adsorbed with its antigen. Furthermore, using
CLUSTALW2 database, we performed an alignment of mouse PCNAwhole
protein sequence with PCNA protein sequence annotated in Octopus
bimaculoides genome recently published (Albertin et al., 2015).

Data imaging
Images were obtained as described above and were processed using
Photoshop CS2 (Adobe Systems, San Jose, CA). Further processing was
restricted to image-wide intensity and contrast adjustment. Schematics and
multi-panel figures were created, assembled and labeled in Keynote (Apple
Inc. Cupertino, CA, USA).

Measurement of sensory epithelial surface area
The epithelium surface areas were calculated measuring the external margin
of the epithelium in the most central section of the processed organs. Since
the OE is circular, its area was calculated, after linearizing the epithelial
margin, using the formula for the area of the circle (πr2).
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