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Insects show long-lasting antimicrobial immune responses that follow the

initial fast-acting cellular processes. These immune responses are discussed

to provide a form of phrophylaxis and/or to serve as a safety measure against

persisting infections. The duration and components of such long-

lasting responses have rarely been studied in detail, a necessary prerequisite

to understand their adaptive value. Here, we present a 21 day proteomic

time course of the mealworm beetle Tenebrio molitor immune-challenged

with heat-killed Staphylococcus aureus. The most upregulated peptides are

antimicrobial peptides (AMPs), many of which are still highly abundant

21 days after infection. The identified AMPs included toll and imd-mediated

AMPs, a significant number of which have no known function against

S. aureus or other Gram-positive bacteria. The proteome reflects the selective

arena for bacterial infections. The results also corroborate the notion of

synergistic interactions in vivo that are difficult to model in vitro.

This article is part of the themed issue ‘Evolutionary ecology of arthropod

antimicrobial peptides’.
1. Introduction
Persistent infections are not only of medical importance, but are also very

common throughout the animal kingdom. Studying organisms that use antimi-

crobial peptides (AMPs) as important components of their defence cascade can

provide interesting insights into understanding persistent infections. Many

pathogens establish persistent infections. Examples from insects include gregar-

ines [1], Plasmodium [2] and a variety of intracellular bacteria such as Wolbachia
[3]. While intracellular pathogens are in immune-privileged sites, even pathogens

exposed to the immune system sometimes go unrecognized. Examples include

the bacterium Spiroplasma, which can be prevalent in the haemolymph of

Drosophila, but is cleared if the immune system is upregulated by another chal-

lenge [4]. Microsporidia can form persistent infections in the haemocoel,

sometimes without apparent fitness costs to the host [5].

Persistent associations between hosts and microbes are often not pathogenic;

mutualists in insects, for example, establish persistent colonization of host

organs and provide benefits to the hosts [6]. Such persistent associations by

mutualists are maintained by AMPs [7].

Infections, persistent or not, can result in long-lasting upregulation of immune

defences, as exemplified by a study in the mealworm beetle, Tenebrio molitor.
Upon infection, antimicrobial activity in the haemolymph is elevated for at

least three weeks [8], which constitutes a third of adult lifespan before the onset
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Figure 1. Long-lasting immune responses in insects. These are reported data that depict the minimum duration, as all but one of the studies have not been
designed to investigate the duration of antimicrobial immune responses (references for data are in [10]). Insect silhouettes from phylopic.org.
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of senescence under laboratory conditions [9]. Upregulation of

antimicrobial defences for more than five days has only been

described for a very limited number of insect species from sev-

eral orders (figure 1). Most of these studies were not designed

to estimate the duration of upregulated immune function and

hence immune responses reported there lasted at least as

long, but almost certainly longer, than reported. For most

insect species that are commonly used to study immunity

or infection, data on the duration of antimicrobials are not

available. Given that the available data are spread across dif-

ferent taxa, we propose that the phenomenon of long-lasting

antimicrobial responses is rather common.

Given that maintaining an immune response is costly [11],

what are the adaptive benefits of such sustained immune

responses? Using T. molitor, Moret & Siva-Jothy [12] found

that beetles immune-challenged with LPS (bacterial cell wall

components) better survived fungal infections that were applied

up to seven days after the immune challenge. They proposed

some form of ‘adaptive prophylaxis’. This notion hinges on the

assumption that a first infection is an honest signal for a second-

ary infection: an infection mirrors the risk of future infections in

the individual’s environment. An alternative explanation is to

assume that wounding, which happens not only during artificial

infections but, for example, also during parasitoid attack, may

result in opportunistic bacterial infections.

This has led us to propose, using the beetle T. molitor as a

model, that the function of long-lasting antimicrobial immu-

nity and hence a main role of AMPs is mopping up and

policing persistent infections, a proposal already mentioned

by Dunn [13]. Haine et al. [14] reported that the vast majority

of a high-dose Staphylococcus aureus infection is cleared

within minutes and the inducible AMP-related response is

only measurable after several hours but subsequently main-

tained for several days. Johnston et al. [15] using RNA-seq

supported this view.

This view also suggests a two-stage immune response, where

cellular and constitutive components act as the fast-reacting

means, and the inducible AMP-based immune response deals

with the surviving pathogens (a view recently also considered

for vertebrate innate immunity [16]). Recent work in Drosophila
on growth-blocking peptides (GBP) supports this notion [17].

GBP mediates cellular immune responses and simultaneously

suppresses AMP expression via Pvf2 or Pvr. Noh et al. [18]
studied the upregulation of apolipohorin at 72 h in T. molitor
and found also patterns consistent with a fast-acting cellular

response separated from the antimicrobial response. Work in

other insects has also shown that apolipophorin contributes to

the induction of AMP and suppression of nodule formation.

AMPs were first identified in T. molitor over 20 years ago.

The known repertoire of AMPs varies in the specificity of

their antimicrobial activity, but collectively exhibits activity

against Gram-negative and -positive bacteria, as well as

fungi. Tenecin-1, an AMP which is active specifically against

Gram-positive bacteria, was first identified by purifying the

peptide from a haemolymph fraction showing antimicrobial

activity [19]. Tenecin-2 was identified simultaneously [20] and

is active against Gram-negative bacteria. Tenecin-3 is antifungal

[21], while Tenecin-4 is anti-Gram negative [22]. These induci-

ble humoral defences complement the activity of constitutive

immune effectors such as haemocytes and oxidative enzymes

[23], including components of the phenoloxidase system,

which have been characterized biochemically more comple-

tely in T. molitor than in other insects [24]. The discovery of

long-lasting immune responses prompted more systematic

study of T. molitor’s immune system, complementing what

had been discovered by biochemical studies. By sequencing

mRNAs that were over-expressed in Tenebrio larvae infected

with S. aureus, Dobson et al. [25] identified an upregulation

of number of novel immune-induced transcripts, including

two AMPs (a coleoptericin and an attacin), a range of redox

enzymes, and some genes that may suppress bacterial

growth metabolically, e.g. iron-chelating ferritins and trans-

ferrins. The coupled upregulation of AMPs that kill both

Gram-positive and -negative bacteria, in response to infection

with only a Gram-positive bacterium, indicates that expression

of the Imd and Toll pathway may be molecularly coupled.

Long-lasting immunity in insects at the transcriptomic level

has hardly been studied. Also, transcriptomics of immune func-

tion and proteomics have surprisingly rarely been studied in the

same system [26]. While the transcriptomic approach certainly

contributes to our understanding of the host side of an infection,

a proteomic approach, by determining the amounts and concen-

trations of antimicrobials, allows better to capture the selective

arena in which pathogenic bacteria are situated. Here, we pro-

vide a three-week proteomic time course of immunoproteins

in T. molitor infected with S. aureus from whole beetle
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2. Material and methods
(a) Insect culturing
Final-instar T. molitor larvae purchased from a commercial supplier

(Futtertier-shop, Germany) were reared in open boxes containing

wheat bran (Wilhelm Ströh jun. GMBH & Co. KG, Lübeck,

Germany) supplemented with fresh apple at 308C under dark

conditions. When the animals reached the pupal stage, females

were selected and placed individually into compartments of

lidded grid boxes. Emergence of adults was checked bi-daily.

After emergence, each beetle was provided with wheat bran, 5 �
5 mm2 of filter paper and a 2 � 2 mm slice of apple. Animals

aged 7–14 days post-eclosion were used for the immune challenge

experimental procedures.

(b) Bacterial cultures
Heat-killed S. aureus strain SH1000 was used as inoculum for bac-

terial injections. Bacterial culture of S. aureus was grown overnight

at 378C and 220 r.p.m. in LB medium, then centrifuged at 10 000 g
for 10 min at 48C, washed, and resuspended in the same volume

with sterile PBS, heat-killed at 958C for 5 min, dispensed into

1-ml aliquots, and stored at 2808C until further use.

(c) Immune challenge experiments
Adult female beetles aged 7–14 days were split into three treatment

groups—non-injected control group, procedural control (PBS-

injected) group and immune-challenged (injected with heat-killed

S. aureus) group—and were followed for 21 days. Five microlitres

of inoculum or sterile PBS were injected using sterile glass capillary

needles into each beetle’s haemocoel into the space between the

second and third abdominal sternites that were first swabbed

with 70% ethanol. Injected beetles and healthy controls were

maintained individually as described above until collection. Ten

individuals per time point per treatment were collected at 30 min,

7 days and 21 days post-inoculation, flash-frozen in liquid nitrogen

and stored at 2808C until further use.

(d) Protein extraction
Frozen beetles (two individuals per biological replicate) were

pulverized in liquid nitrogen. Approximately 20 mg of ground

tissue were transferred into 1.5 ml tubes containing 200 ml of

denaturation buffer (6 M urea/2 M thiourea in 10 mM HEPES,

pH 8.0) supplemented with 20 mM DTT, incubated for 5 min

and centrifuged for 10 min at 48C and 20 000 g. Ten microlitres

of the supernatant were used for sample preparation for mass

spectrometry.

(e) Preparation of protein samples for mass
spectrometry

Four biological replicates per treatment per group were used for

mass spectrometry. In total, 20 ml of denaturation buffer were

added to 10 ml of protein samples and used for in-solution protein

digestion as described previously [27]. Briefly, proteins, solubil-

ized in denaturation buffer, were reduced with 10 mM DTT for

30 min, followed by alkylation with 55 mM iodoacetamide for

20 min, and overnight digestion with 1 mg lysyl endopeptidase

(LysC) (catalogue number 125-05061, Wako, Japan), resuspended

in 50 mM ammonium bicarbonate (ABC). After pre-digestion

with LysC, protein samples were diluted fourfold with 50 mM

ABC and subjected to overnight trypsin digestion using 1 mg of
sequencing-grade modified trypsin (catalogue number V5111,

Promega, Madison, USA), diluted in 50 mM ABC buffer. All

in-solution protein digestion steps were performed at room temp-

erature and after addition of iodoacetamide the samples were

protected from light. After trypsin digestion overnight at room

temperature, the reaction was stopped by adding an equal

volume of Buffer A* (5% acetonitrile, 3% trifluoroacetic acid).

Samples were then desalted using Empore C18 SD 4 mm/1 ml

solid phase extraction (SPE) cartridges (catalogue number

66871-U, SIGMA-Aldrich, Taufkirchen, Germany).
( f ) Mass spectrometry and statistical analyses
Peptides were separated by reverse-phase chromatography using a

Dionex Ultimate 3000 nanoLC (Thermo Fisher Scientific, Bremen,

Germany) with a 5–60% acetonitrile gradient (90 min) and 0.1%

formic acid at a flow rate of 350 nl min21 on in-house manufactured

25 cm fritless silica microcolumns with an inner diameter of 100 mm

packed with ReproSil-Pur C18-AQ 3 mm resin (Dr Maisch GmbH,

Ammerbuch-Entringen, Germany). Eluting peptides were ionized

online by electrospray ionization and transferred into an LTQ

Orbitrap Velos mass spectrometer (Thermo Fisher Scientific,

Bremen, Germany). The LTQ Orbitrap was operated in the positive

mode to simultaneously measure full scan MS spectra (from m/z
300–1700) in the Orbitrap analyser at resolution R ¼ 60 000 follow-

ing isolation and fragmentation of the 20 most intense ions in the

LTQ part by collision-induced dissociation (CID).

MS and MS/MS data from each LC/MS run were analysed

using MaxQuant software (v. 1.5.3.30). Identification of proteins

was performed using the MaxQuant-implemented Andromeda

peptide search engine and the in-house prepared protein database

of T. molitor, which was based on the reverse-translated RNA-seq

data for predicted proteins [15]. Label-free quantification of proteins

was performed using the label-free quantification algorithm

MaxLFQ of the MaxQuant software package [10]. Statistical analy-

sis was performed with PERSEUS software (v. 1.5.2.4), using the

Kolmogorov–Smirnov test, and all values with p � 0.05 were

considered significant.
3. Results
The proteome analysis identified 1669 proteins in total, of

which 306 proteins were differentially expressed when com-

paring samples from infected beetles and procedural controls

with no treatment controls. Of those differentially expressed

proteins, 184 were upregulated and 117 were downregulated

in infected beetles, whereas only 3 and 2 were up- and down-

regulated, respectively, in the procedural controls. Thirty

minutes after infection only two proteins were up- or downre-

gulated in infected beetles. At day 7 post-inoculation, 87

proteins were upregulated and 80 proteins were downregu-

lated, while 97 and 35 proteins were up- and downregulated

at 21 dpi, respectively. However, in terms of AMP expression,

the strongest effects were visible on day 7 (figure 2) in infec-

ted beetles, while no expression of AMPs was detected in

sham-injected individuals.

Here, we focus on the expression of AMPs (figure 2;

electronic supplementary material, tables S1–S3). All three

previously described inducible Tenecins (1,2,4) were highly

expressed at day 7. In addition, our study revealed four other

AMPs, mostly attacins. These AMPs overlapped with the tran-

scriptomic data on day 7 (figure 3), though it has to be noted

that the proteomic data were based on whole-body lysate.

The expression of AMPs dropped on day 21 but remained

significantly upregulated, whereas phenoloxidases were no
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Figure 2. Peptide abundance of AMPs in T. molitor over 21 days after immune challenge with heat-killed S. aureus. Depicted are the known AMPs Tenecin 1 – 4 and
putative AMPs.
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Figure 3. Gene expression of AMPs in T. molitor over a 7 day time course of infection with S. aureus. Depicted are the known AMPs Tenecin 1 – 4 in for which
functional data are available (see text), and putative AMPs and an attacin described [25]. Adapted from Johnston et al. [15].
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longer differentially expressed (see electronic supplementary

material, figure S1).

A gene ontology analysis for the proteins with increased

and reduced abundance yielded four main groupings

(figure 4). The two categories capturing the most abundant

peptides were defence against bacteria and regulation of haemo-

cyte differentiation. ‘Fatty acid metabolic process’ and ‘cellular

amino acid metabolism’ accounted for the majority of proteins

with decreased abundance (for a more detailed description,

see electronic supplementary material, table S4).
4. Discussion
The main inducible and characterized AMPs of Tenebrio, as

well a significant number of putative AMPs, were highly

abundant for up to three weeks. This corroborates the results

of Haine et al. [8], who found, using zone of clearance assays,

that the haemolymph after infection shows long-lasting

antimicrobial activity mostly resulting from a cocktail of

AMPs. Such long-lasting upregulation results in an anti-

microbial environment for persistent infections. A very
small proportion (more than 1% of the original inoculum)

of S. aureus persists for at least 21 days in T. molitor, both in

phagocytes and in the haemocoel, [28]. We have shown

before at the transcript level [15] that AMPs are expressed

for at least 7 days, and studies in other insects (figure 1)

based on mostly functional clearance assays found long-

lasting immunity. Here, we present the first comprehensive

study on AMP abundance over a three-week time course.

The AMPs identified here show a strong overlap with the

AMPs identified in the transcriptomic study by Johnston et al.
[15]. Though both studies were carried out in Tenebrio, the

proteomics used whole-body homogeneates, while the tran-

scriptomic study was based on fat bodies, the organ that

synthesizes AMPs. The number of AMPs discovered by both,

proteomics and RNA-seq, is comparable to the number of

AMPs in many other insect species [29]. Recently, a new group

of very short AMPs was described in Drosophila dubbed

Bomanins [30]. We could not find any evidence for the existence

of this type of peptides either in our transcriptomic or in our

proteomic data.

That several AMPs are simultaneously expressed upon

infection has been shown in earlier studies. Sun et al. [31], for
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example, reported co-expression of attacins in a moth. If AMPs

occur in cocktails, this could be explained either by a lack of

specific pathogen recognition or alternatively by synergistic

interactions between AMPs. Strain-specific responses have

been described in bumblebees [32], yet the degree and mechan-

ism of specificity is unknown. Work by Westerhoff et al. [33]

found synergistic interactions between AMPs on frog skin;

recent work in insects has demonstrated synergisms between

AMPs against bacteria as well as trypanosomes [34,35]. These

studies, in the light of our results showing long-lasting high

abundance of AMPs in Tenebrio, are consistent with the idea

that the composition of the antimicrobial cocktails reflects

synergistic interactions. Using a suite of commercially available

AMPs, including cecropin and mellitin as insect AMPs, it was

found that AMPs are broadly synergistic [36]. Synergism was

even more pronounced in mixtures of three AMPs in compari-

sons with combinations of two AMPs. In this issue, Baeder et al.
[37] expand on these findings and develop a theoretical

approach to capture the nature of interactions between AMPs.

AMP genes are exceptional immune genes, as they do not

display any signatures of fast evolution that is typical for
immune genes [38]. Lazzaro & Unckless by reanalysing data

from several Drosophila species found that AMPs are under sta-

bilizing selection. The nature of the selective forces is currently

unclear. Synergisms between AMPs might well contribute to

such stabilizing selection. An intriguing aspect of our proteo-

mics data and the one-week transcriptomic time course [15]

is that some of the AMPs that are upregulated have no

known activity against the infective agent in our experiments.

This is of interest because the toll-regulated coleoptericin

Tenecin-2 seems to interact synergistically in vivo with Tenecin
1 (C. Zanchi, P. Johnston, J. Rolff, unpublished data, 2016).

The gene ontology analysis revealed that the majority of

peptides with reduced abundance are categorized either as

‘metabolic’ or ‘catabolic’. This finding is highly consistent

with the notion of a metabolic cost of mounting an immune

response [11]. Again, the data are very consistent with the

findings of our previous transcriptomic study.

Persistent infections are causing major problems in the

treatment of infectious diseases [39,40]. While more

and more mechanisms enabling bacterial cells to persist

in antimicrobial environments have been elucidated [41],

much less is known about effective treatments of persis-

tent infections. One important avenue of current research

aims to use drugs that target the bacterial membranes [39].

This is based on the notion that it is harder to evolve resist-

ance against drugs targeting the membranes, and also

because some recent studies yielded promising results in

treating biofilms with membrane-targeting drugs such as

lipoglycopeptides and AMPs. Studying the interactions

of AMPs in natural systems such as the insect immune

system has the potential to inform our understanding and

application of AMPs.
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