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Cairé Barreto5, Jeremie Vidal-Dupiol7, Guillaume Mitta1,2,3,4,
Yannick Gueguen1,2,3,4 and Evelyne Bachère1,2,3,4
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Aquaculture contributes more than one-third of the animal protein from

marine sources worldwide. A significant proportion of aquaculture pro-

ducts are derived from marine protostomes that are commonly referred to

as ‘marine invertebrates’. Among them, penaeid shrimp (Ecdysozosoa,

Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economi-

cally important. Mass rearing of arthropods and molluscs causes problems

with pathogens in aquatic ecosystems that are exploited by humans.

Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems

also suffer from devastating infectious diseases that display intriguing simi-

larities with those affecting farmed animals. Infectious diseases affecting

wild and farmed animals that are present in marine environments are pre-

dicted to increase in the future. This paper summarizes the role of the

main pathogens and their interaction with host immunity, with a specific

focus on antimicrobial peptides (AMPs) and pathogen resistance against

AMPs. We provide a detailed review of penaeid shrimp AMPs and their

role at the interface between the host and its resident/pathogenic microbiota.

We also briefly describe the relevance of marine invertebrate AMPs in an

applied context.

This article is part of the themed issue ‘Evolutionary ecology of arthropod

antimicrobial peptides’.
1. Economic relevance of marine invertebrates
Oceans and seas cover two-thirds of our planet; provide ecosystem services,

such as fishing, aquaculture, carbon sequestration, regulation of water quality

and nutrient storage; and support numerous recreational activities, all of

which significantly contribute to employment and economic activity [1]. In

2012, aquaculture provided an unprecedented total of 66.6 million tons of

seafood, including 175 species of ‘marine invertebrates’, mainly crustaceans

(Ecdysozosoa, Arthropoda) and molluscs (Lophotrochozoa, Mollusca) [2].

Farmed crustaceans accounted for 9.7% (6.4 million tons) of the seafood pro-

duction by volume, but 22.4% (30.9 billion USD) by value. Shrimp is

currently the largest single commodity in terms of value, with the main culti-

vated species being Litopenaeus vannamei and Penaeus monodon. In 2012,

molluscs, such as oysters, mussels, scallops and clams, accounted for 20.5%

(13.7 million tons) of seafood production. Molluscs are essentially produced

for food, but they also contributed to 22 400 tons of non-food products, such

as pearls and seashells for ornamental and decorative uses. However, disease

outbreaks have impacted heavily on this intensifying production over the

past few years, and emerging infectious diseases are predicted to increase in

the future in both wild and farmed animals as a result of climate change [3].
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2. Infectious diseases affecting marine
invertebrates

The health status of marine invertebrates is intimately related to

the microbial communities that are present in the aquatic

environment, which include both commensals and opportunis-

tic pathogens. While microorganisms hosted by invertebrates

help maintain homeostasis, under stressful conditions some

can become highly virulent and severely damage their host

[4]. In coastal environments and lagoons, marine invertebra-

tes are exposed to multiple abiotic stresses, which can be of

anthropogenic origin. Thermal stress, high density [5] and

nutrient-rich environments [6] are factors favouring infectious

diseases in the wild as well as in intensive farming. Remarkably,

while marine invertebrates are incredibly diverse in terms of

phylogeny and ecological niche, disease patterns are repeatedly

found across species. These diseases include temperature-

dependent vibrioses [7,8] and polymicrobial diseases [9,10].

Differences are observed in the susceptibility of the animals,

from larvae to juveniles and adults, and in the diversity of the

pathogens (vibrios, viruses, etc.) that affect each developmental

stage. Relevant examples of infectious diseases are presented

below within three different phyla of marine invertebrates

(Arthropoda, Mollusca and Cnidaria) that are directly/

indirectly and intensively/extensively exploited by humans in

a diversity of ecosystems.

Arthropods. Diseases in marine arthropods are dominated

by those described in penaeid shrimp aquaculture, which is

characterized by intensive cultural practices favouring disease

development. Twenty viruses are known to infect penaeid

shrimp. Two types of viruses cause major viral diseases,

namely, DNA viruses, such as the monodon baculovirus [11],

the white-spot syndrome virus (WSSV) [12], the hepatopan-

creatic parvovirus and the infectious hypodermal and

haematopoietic virus [13], and RNA viruses, such as the

yellow-head virus, the Taura syndrome virus [14] and the

infectious myonecrosis virus [15]. WSSV is the most severe

threat for farmed adult shrimp worldwide and is one of the

best-studied crustacean viruses [16]. Bacterial infections,

particularly vibrioses, are a major concern for the produc-

tion of shrimp larvae and juveniles. Vibrio harveyi and

V. vulnificus are associated with larvae mortality [17], whereas

V. damsela, V. alginolyticus, V. parahaemolyticus, V. penaeicida and

V. nichripulchritudo cause disease outbreaks in shrimp nur-

series or grow-out ponds [17]. In 2010, a new shrimp disease

that affects postlarvae has emerged from Asia [18]. This acute

hepatopancreatic necrosis disease is caused by a highly viru-

lent strain of V. parahaemolyticus, which has acquired a

virulent plasmid encoding a pore-forming bacterial toxin that

is as toxic as the insecticidal Bacillus Cry toxin [18].

Molluscs from the shellfish industry are affected by a var-

iety of infectious diseases whose importance largely depends

on the degree of exploitation and ecosystem health. The most

significant epizootic events are caused by bacteria from the

Vibrio genus [19,20], viruses from the Malacoherpesviridae

family [21], and protozoans from the Perkinsus, Marteilia,

Bonamia and Haplosporidium genera [17]. Some of these micro-

organisms can affect a broad range of mollusc species at all

life stages around the world, while others are highly

species-specific. The epizootic events that they cause are fre-

quently devastating. Over the past few decades, abnormal

mortalities of juvenile C. gigas oysters have affected the

USA, Japan, Australia and Western Europe. Those mortalities
of complex aetiology are due to a temperature-dependent

polymicrobial disease that involves pathogenic Vibrio strains

of the Splendidus clade and the ostreid herpes virus OsHV-

1 mvar [9,17,22]. Vibrios also cause diseases at other oyster

developmental stages. Vibrio aestuarianus is responsible for

mortality of adult oysters [23], whereas V. tubiashi causes a

necrotic disease in hatcheries [24].

Cnidarians, which live in coastal marine systems and

lagoons, also suffer from infectious diseases. Among the

known pathogens, all of the classical agents (eubacteria, cyano-

bacteria, fungi and viruses) have been described [25,26]. Most

diseases were observed in corals. One of the most famous

coral diseases is Type I White Band Disease (WBD). Described

for the first time in the 1970s, WBD caused the loss of up to 95%

of the acroporids found throughout the great Caribbean area

[27]. However, as with many coral diseases, the causative

agents of Type I WBD are unknown and do not fully satisfy

the Koch postulate or correspond to microbial consortia [25].

Another well-known example is Black Band Disease, which is

caused by cyanobacteria assemblages and other unidentified

heterotrophic microbes [10,28]. Many of the known coral patho-

gens belong to the Vibrio genus. While V. harveyi/charcariae is the

causative agent of Type II WBD and other ‘White Syndromes’

[29,30], V. shiloi and V. coralliilyticus are responsible for bac-

teria-induced bleaching in corals and tissue lysis in several

other cnidarians [31–34].
3. Antimicrobial peptides in marine invertebrate
immunity, a focus on penaeid shrimp

The economic consequences of infectious diseases affecting

farmed bivalve molluscs and arthropods (crustaceans) have

motivated a substantial research effort, which has considerably

enriched our knowledge of the immune system of protostomes.

Similarly, coral diseases are a threat for society and have

inspired studies on the interaction of the immune system of cni-

darians with its resident microbiota and pathogens. To date,

antimicrobial peptides (AMPs) are among the best-described

immune effectors of marine invertebrates.

(a) Diversity and specificity of AMPs in the immune
response of marine invertebrates

Similar to AMPs from other phyla [35], most of the AMPs charac-

terized in marine invertebrates including arthropods, molluscs

and cnidarians are cationic and hydrophobic, and target essen-

tial components of microbial cell walls and membranes, which

determines their spectrum of activity [36]. A high diversity of

mechanisms of action has been reported for AMPs from

marine invertebrates and is described in detail for some families.

For example, mollusc defensins, which are essentially active

against Gram-positive bacteria, bind to lipid II, the precursor

of peptidoglycan [37]. Arthropod anti-lipopolysaccharide fac-

tors (ALFs) and mollusc bactericidal/permeability-increasing

protein (BPI), which are essentially active against Gram-

negative bacteria, bind to lipopolysaccharide (LPS) [38–40].

Finally, crustacean PvHCt, which is strictly antifungal,

permeabilizes the fungal plasma membrane [41].

Those AMP families have been generated through differ-

ent patterns of diversification (gene duplication, gene copy

number variation, recombination and allelic polymorphisms)

[36] due to multiple evolutionary drivers and have given rise
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to functional divergence, as also observed for insect AMPs

[42]. Some families appear to have evolved within specific

phyla or species [31], whereas others are found in a diversity

of phyla [32]. Most AMP families from molluscs, including

defensins, big defensins and BPI (for recent review, see

[33]), are also found in other protostomes (Ecdysozoa) and/

or in deuterostomes (Mammalia). By contrast, in cnidarians,

taxonomically restricted AMPs have been described, such

as arminins, which are among the most highly expressed

genes in Hydra [34], or damicornin in the coral Pocillopora
damicornis [43]. In marine arthropods, the pioneering studies

in Chelicerata (horseshoe crabs) have identified both taxonomi-

cally restricted (tachyplesins, ALFs) and more widely

distributed AMPs (big defensins) [39,44,45]. Finally, in deca-

pod crustaceans, highly diverse AMPs were characterized

that are specific to penaeid shrimp (penaeidins, stylicins)

or more widespread among arthropods (crustins, ALFs)

[42,46,47]. The best-known AMPs from crustaceans were

characterized in penaeid shrimp, and many of them are com-

posed of structural domains that have distinct biological

functions [46,48]. A description of the major AMP families in

shrimp is provided below. Unlike in insects, there is still little

knowledge about the molecular regulation of AMPs in

marine invertebrates. In shrimp, which is one of the best-

described organisms, some AMP families are controlled by

NF-kB signalling pathways. Alternatively, mature AMPs can

be stored in immune cells and are released upon challenge

(see below).

(b) Gene-encoded AMPs from penaeid shrimp
(i) Penaeidins
Penaeidins were the first AMPs characterized in shrimp [49].

Those peptides, which are restricted to species of penaeid

shrimp, are abundant in the circulating immune cells (the

haemocytes) of L. vannamei [49]. They are cationic peptides

(4.7–7.2 kDa; pI approx. 9) composed of an unconstrained

N-terminal proline/arginine-rich domain followed by a

C-terminal domain that contains an amphipathic helix and

two coils stabilized by three disulfide bonds (table 1)

[49,50]. Penaeidins can carry post-translational modifications,

such as an N-terminal pyroglutamic acid and an amidated

C-terminus. AMPs from this diverse family fall into four sub-

groups (PEN1/2, PEN3, PEN4 and PEN5; table 1), whose

specific sequence signature and biochemical features have

been used to standardize their nomenclature after the name

of the shrimp species and the penaeidin subgroup [51].

Each subgroup is encoded by distinct genomic sequences

[51,52]. While the PEN3 gene is widely distributed among

species of penaeid shrimp, PEN1/2, PEN4 and PEN5 genes

are restricted to a given species of shrimp [53]. PEN genes

are highly and constitutively expressed in haemocytes of

healthy individuals [54,55]. Penaeidins, which are stored in

haemocyte granules, are released in response to microbial

challenge [55].

Penaeidin sequence diversity translates into diverse biologi-

cal activities [56]. Most penaeidins from subgroups PEN1/2,

PEN3 and PEN4 are active against Gram-positive bacteria

and filamentous fungi, but not Gram-negative bacteria. By con-

trast, a PEN5 member (Fenchi PEN5) from Fenneropenaeus
chinensis is active against Gram-negative bacteria [52]. Penmon
PEN5 from P. monodon also participates in the shrimp antiviral

defence against WSSV [57]. Although little is known about the
mechanism of action of penaeidins, the function of the proline/

arginine-rich domain was investigated in different penaeidins.

This domain was devoid of antimicrobial activity in PEN3

[55], but possessed both antifungal and antibacterial activity

in PEN4 [58]. Interestingly, this domain was also reported to

behave as a cytokine by attracting haemocytes towards sites

of injury [59]. In addition, the cysteine-rich domain of PEN3

was proposed to mediate penaeidin antifungal activity by bind-

ing to chitin [55]. The ability of penaeidins to bind to the chitin

exoskeleton suggests that penaeidins could play a role in

wound healing and/or moulting in shrimp [48].

(ii) Anti-lipopolysaccharide factors
ALFs form a diverse family of AMPs that are composed of both

cationic and anionic polypeptides. First identified in horseshoe

crabs and later in penaeid shrimp [60] and other crustaceans

[53], ALFs were named ‘anti-LPS factors’ for their immunomo-

dulatory function. ALFs are able to inhibit the LPS-mediated

activation of the limulid coagulation system [39,40]. ALFs con-

tain a hydrophobic N-terminal region with two conserved

cysteine residues. The disulfide bond delimits a b-hairpin struc-

ture that is referred to as the LPS-binding domain [61]. Most

ALFs bind to Lipid A from Gram-negative bacteria, but they

can also interact with lipoteichoic acid (LTA) from Gram-

positive bacteria [62] and b-glucan from fungi [63]. The

known three-dimensional structures of ALFs consist of three

a-helices (one at the N-terminus and two at the C-terminus)

packed against a four-stranded b-sheet (table 1) [61,64].

In shrimp, ALFs form a large and diverse family of five

groups, namely, ALF-A (anionic and cationic polypeptides of

11.4–11.5 kDa), ALF-B (highly cationic polypeptides of 10.6–

11.2 kDa), ALF-C (cationic polypeptides of 11–11.3 kDa),

ALF-D (highly anionic polypeptides of 10.7–10.8 kDa), and

ALF-E (anionic and cationic polypeptides of 11.4–12.5 kDa;

table 1) [65,66]. ALFs are encoded by separate genes and

are transcribed at basal levels in healthy individuals [65].

In L. vannamei, ALF genes are differentially expressed in

response to a fungal infection. Although ALF-A gene

expression remains stable, the other ALF genes are inducible

[65]. While ALFs can be detected in diverse shrimp tissues,

results for ALFPm3 strongly suggest that the expression of

ALF-B is restricted to haemocytes, which infiltrate shrimp

tissues [62]. ALFs are potent and broad-spectrum AMPs.

For example, cationic Group B ALFs are active against Gram-

positive, Gram-negative bacteria, yeast, filamentous fungi

and some enveloped viruses [46]. By contrast, anionic Group

D ALFs have impaired LPS-binding properties and display

very low antimicrobial activity in vitro [65].

(iii) Crustins
Crustins are antimicrobial polypeptides (6–22 kDa; pI 4–8)

containing a whey acidic protein (WAP) domain [67]. This

WAP domain, which is also found in some mammalian pro-

teins, supports different biological functions, including

antiprotease activities [68]. Crustins are widely distributed

across crustaceans but some sequences have also been discov-

ered in insect genomes [42]. Crustins from crustaceans are

composed of four members (Types I–IV), which differ by

their N-terminal sequence [67]. While the sequence of Type I

crustins begins with a cysteine-rich domain, Type II crustins

(subtypes IIa and IIb) harbour a glycine-rich hydrophobic

domain at the N-terminal position ahead of the cysteine-rich



Table 1. Principal families of gene-encoded AMPs in penaeid shrimp.

AMP variant

MW in kDa

(charge) functions structural domains 3D structure

penaeidins PEN1/2 4.71 – 6.12

(cationic)

anti-Gram-positive

antifungal

anti-tumour

PRP Cys

Litvan PEN3 [PDB: 1UEO]

PEN3 5.58 – 7.24

(cationic)

anti-Gram-positive

antifungal

chitin-binding

b-integrin-mediated cytokine property

PEN4 5.23 – 5.37

(cationic)

anti-Gram-positive

antifungal

PEN5 6.42 – 6.45

(cationic)

antibacterial

antifungal

antiviral

ALFs ALF-A 11.4 – 11.5

(anionic and

cationic)

antibacterial

antifungal

ALFPm3 [PDB: 2JOB]

ALF-B 10.6 – 11.2

(cationic)

antibacterial

antifungal

antiviral

LPS- and LTA-binding

control of haemolymph microbiota

ALF-C 11 – 11.3

(cationic)

antibacterial

antiviral

LPS neutralizing

control of haemolymph microbiota

ALF-D 10.7 – 10.8

(anionic)

not determined

ALF-E 11.4 – 12.5

(anionic and

cationic)

antibacterial

crustins Type I 9.34 – 17.79

(anionic and

cationic)

anti-Gram-negative

bacterial-binding

bacterial clearance

haemocyte phagocytosis

antiprotease

Cys WAP

not determined

Type II 11.22 – 22.45 (cationic) anti-Gram-positive

LPS- and LTA-binding

inhibition of viral propagation

bacterial agglutination

antibacterial defence

Gly Cys WAP

Type III 5.96 – 7.40

(cationic)

anti-Gram-positive

bacterial-binding

antiprotease

PRP WAP

Type IV 10.93 – 11.14 (cationic) bacterial-binding

antiprotease
WAP WAP

stylicins 1 8.9 (anionic) antifungal

LPS-binding

bacterial agglutination
PRP Cys not determined

2 not determined

Gly glycine-rich domain WAP WAP domain b-sheet

PRP PRP-rich domain Cys cysteine-rich domain a-helix
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domain that is also found in Type I crustins (table 1). Compara-

tively, Type III crustins can contain (or not) a short proline/

arginine-domain at the N-terminus, whereas Type IV crustins

are composed of two WAP domains, but do not harbour

any specific N-terminal sequence (table 1) [67]. Data on

crustinPm1 strongly suggest that crustins are mainly expressed

by haemocytes [69].

The diversity of crustin sequences supports diverse biologi-

cal functions. While Type I and II crustins are mainly

antimicrobial, their spectrum of activity varies with the crustin

type/subtype. For instance, in P. monodon, a Type IIa crustin is

essentially active against Gram-positive bacteria, while Type

IIb crustins are active against both Gram-positive and Gram-

negative bacteria [69,70]. Interestingly, Type III and IV crustins

show antimicrobial and/or antiprotease activity [67], whereas

Type III crustins lacking the N-terminal proline/arginine-

domain and Type IV crustins from shrimp [71,72] only have

antiprotease activity [67]. Type IV crustins from crabs exhibit

both antimicrobial and antiprotease activities [72,73].

(iv) Stylicins
Stylicins are anionic (pI 5) multi-domain peptides of 8.9 kDa

found in penaeid shrimp. They are composed of an N-terminal

proline/arginine-rich domain followed by a C-terminal domain

containing 13 cysteine residues (table 1) [74]. The recombinant

Ls-Stylicin-1 from Litopenaeus stylirostris is active against the

filamentous fungus Fusarium oxysporum, but is not antibacterial.

As observed for Group B ALFs, Ls-Stylicin-1 shows potent

LPS-binding activity and was also able to agglutinate

Gram-negative bacteria in vitro [74].

(c) Shrimp AMPs encrypted in multifunctional proteins
(i) Haemocyanin-derived fragments
In addition to gene-encoded AMPs, diverse AMPs from

crustaceans are encrypted in large proteins carrying non-

immune functions. Haemocyanins are respiratory proteins

found in arthropods. Interestingly, crustacean haemocyanins

release histidine-rich AMPs in response to microbial challenge

[75,76]. In penaeid shrimp, strictly antifungal peptides are

released from the C-terminus of haemocyanins [75]. Recently,

the three-dimensional structure of the antifungal peptide

PvHCt from L. vannamei was determined, and its mechanism

of action was investigated. This histidine-rich AMP was shown

to selectively bind to the fungal cell wall and permeabilize

fungal membranes by adopting an amphipathic a-helical struc-

ture. Insertion of PvHCt into the plasma membrane disrupts its

integrity as a permeability barrier, leading to a disruption of

internal homeostasis and the death of the fungal pathogen [41].

(ii) Histones and derived fragments
Histones are essential protein components of the chromatin

architecture. The antimicrobial activity of histones was first

described in deuterostomes (mammalians) [77]. Histones and

derived fragments are active against Gram-negative and

Gram-positive bacteria, fungi and viruses with various modes

of action, including the permeabilization of bacterial cell

membrane and binding to bacterial DNA and/or RNA [78].

The role of histones in shrimp defence was first determined in

L. vannamei [79]. The extracellular release of histones is associ-

ated with a defence reaction named ETosis, in which

phagocytes release histones associated with extracellular traps

(ETs) of DNA that entangle and eventually kill microbes [80].
ETs have now been described in deuterostomes [81] and

protostomes, including species of Ecdysozoa (insects [82], crus-

taceans [83]) and Lophotrochozoa (molluscs [84]). This process

is triggered by infection and/or tissue damage. ROS production

is a signal that triggers ET formation in mammals [85] and

lophotrochozoans [84]. In shrimp, haemocytes also release

ETs in response to ROS inducers [83]. It will be of great interest

to identify the haemocyte types that are involved in ETosis and

determine whether the AMPs that are stored in haemocytes,

such as penaeidins, contribute to the antimicrobial activity of

shrimp ETs.
4. AMPs in marine invertebrate immune –
microbiota interactions

Marine invertebrates host a broad diversity of microorgan-

isms in their tissues and haemolymph, including vibrios

[4], which have the potential to become pathogenic and

cause severe disease outbreaks (see §2). Some adopt intra-

cellular stages and are able to survive inside phagocytes

[86,87]. As illustrated in §3, haemolymph, phagocytes and

epithelial tissues are rich in AMPs. We are therefore facing

a puzzling paradox, that is, microorganisms have evolved

the ability to colonize immune cells/tissues that produce

high local concentrations of AMPs. Although still incomple-

tely understood, the recent literature sheds some light on

the role of AMPs in the control of microbiota (including

pathogens) and the mechanisms by which microorganisms

avoid the complex chemical defences of their hosts.

(a) Essential role of AMPs in the control of the
microbiota

The application of gene silencing to non-model organisms has

opened the way for in vivo functional studies that provide a

more exhaustive view on the role of AMPs at the interface

between hosts and microorganisms (table 1). RNA interference

confirmed the essential role of AMPs in controlling infections, as

demonstrated for Type I crustins from Marsupenaeus japonicus,
which participate in bacterial clearance in shrimp haemolymph

[88,89]. It also confirmed the functional divergence of AMP

variants. Indeed, in vivo, LvALF1 (Group A ALF) protected

L. vannamei against V. penaeicida and F. oxysporum, but not

WSSV [90], whereas ALFPm6 (Group C ALF) in P. monodon pro-

tected against both V. harveyi and WSSV [91]. However, gene

silencing also showed a more complex role of AMPs in the

immune response of shrimp. Indeed, Type II crustins, which

are not active against Gram-negative bacteria in vitro [46], par-

ticipate in the resistance of L. vannamei and M. japonicus to

Gram-negative V. penaeicida in vivo [92,93].

In addition, through the use of gene silencing, AMPs were

shown to orchestrate a key interface with the resident microbiota

in marine invertebrates. In arthropods (shrimp), ALFs controlled

shrimp-associated microbial communities [91,94]. Indeed, silen-

cing of ALFPm3 (Group B ALF) in P. monodon caused a rapid

propagation of bacteria, resulting in the death of the animals

[91]. In freshwater cnidarians (Hydra), species-specific AMPs

called arminins were found to define host species-specific bac-

terial associations [95]. With those findings, host-specific AMPs

were proposed to have evolved in early branching metazoans

because of the need to control the resident beneficial microbes

and not because of invasive pathogens [96].
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Novel functions (non-antimicrobial) of AMPs were also dis-

covered through gene silencing. Thus, the silencing of PEN3

from the shrimp P. monodon resulted in a decrease in the b-integ-

rin-dependent adhesion properties of shrimp haemocytes,

revealing a previously unknown immunomodulatory function

for penaeidins [97]. Gene silencing techniques applied to anionic

AMPs, such as Group D ALFs [65] and stylicins [74], which

show poor antimicrobial activity in vitro, should enable the

characterization of their role in shrimp defence.

(b) Responses of pathogens to AMPs
(i) Immune suppression of AMPs by pathogens
Among strategies to escape the immune response, the sup-

pression of AMP expression was shown in different phyla of

marine invertebrates, including arthropods and cnidarians.

In the shrimp L. vannamei, an infection by the fungal patho-

gen Fusarium solani dramatically repressed the expression of

penaeidins, stylicins and Type II crustin [98]. Similarly,

immune suppression of AMPs was reported in the coral

P. damicornis, in which V. coralliilyticus exhibits temperature-

dependent virulence, resulting in coral bleaching above

248C and tissue lysis above 258C [7]. In its non-virulent

state (below 248C), V. coralliilyticus induces the transcription

of several coral immune genes [99] and the release of dami-

cornin in coral mucus [43]. By contrast, in its virulent state,

vibrios penetrating into coral tissues [100] induce a strong

transient expression followed by a dramatic repression of

damicornin transcription [43]. To date, the molecular mech-

anisms underlying the immune suppression of AMPs

remains to be discovered.

(ii) Resistance to AMPs in vibrios
The membranes of microorganisms are an important inter-

face with host AMPs (see §3). Consequently, many of the

most important mechanisms of AMP resistance rely on

outer membrane remodelling [101]. Another important mech-

anism of resistance is the active efflux of AMPs from the

bacterial cell [101]. Those mechanisms were recently

reviewed in detail in vibrios [102]. The most significant are

those in which the minimum inhibitory concentrations

(MICs) increase by several folds and are summarized below.

Membrane charge alteration. As electrostatic interactions

often initiate the binding of cationic AMPs to bacterial mem-

branes, bacteria colonizing metazoan hosts have evolved

strategies to lower the net negative charge of cell surface mol-

ecules. In Gram-negative bacteria, such modifications are

often observed on LPS, the major constituent of their outer

membrane [103,104]. Vibrios, including human pathogens,

live in close association with marine invertebrates [105],

which in turn may have selected AMP-resistant phenotypes

among vibrios. A structural modification of LPS was recently

found to be responsible for the different AMP-resistant pheno-

types observed in V. cholerae. Indeed, the Lipid A structure (the

anionic membrane anchor of LPS) of V. cholerae O1 and O139

[106] contains a hydroxylated secondary acyl chain that is

also found in the squid symbiont V. fischeri [96]. This structure

plays an important role in the resistance to AMPs [106,107],

as it can be substituted by di-Glycine residues that lower the

negative charge of the whole molecule [108].

Release of outer membrane vesicles. Upon outer membrane

stress, such as that created by AMPs, bacteria can use the alter-

nate sE factor to promote the expression of factors that help
preserve and/or restore cell envelope integrity. The release of

outer membrane vesicles (OMVs) is a sE-dependent mechan-

ism [109], whose role in AMP resistance has been recently

shown in vibrios. Vibrios, including the oyster pathogen

V. tasmaniensis LGP32, were shown to release OMV protection

against membrane-active AMPs [110,111]. Interestingly, OMV

release was triggered by oyster plasma, suggesting, as shown

in E. coli [112], that the membrane-active agents that are present

in oyster plasma can trigger OMV release in vibrios. While the

major protective effect of OMVs against AMPs has now been

shown in two vibrio species and in E. coli [113], it is still

unknown whether this effect results from a membranous

shield-like effect in which OMVs surround vibrios and trap

membrane-active AMPs, thereby preventing their interaction

with the membranes of the bacterial cell, or a membrane

renewal mechanism eliminating AMP-damaged membranes

to maintain membrane integrity. The sE-dependent induction

of OMV release tends to support the second hypothesis.

Active efflux of AMPs. Once AMPs have breached the mem-

brane barriers of bacteria and reached the cytoplasmic space,

they can be expelled into the extracellular milieu by diverse

efflux pumps. Pumps of the resistance-nodulation-cell division

superfamily (RND) contribute to AMP-resistance in vibrios.

However, among the six RND efflux pumps of V. cholerae
[114], only VexAB-TolC is required for AMP resistance

in vitro [115,116]. The VexAB-TolC pump is structurally

and functionally similar to the E. coli and Salmonella enterica
AcrAB-TolC pump [117,118] and the Pseudomonas aeruginosa
MexAB-OprM systems [119]. VexAB is also the main efflux

pump that is involved in the resistance to bile acids, detergents,

antibiotics and PmB [116,120]. To date, among vibrios,

V. cholerae remains the only species in which AMP-resistance

was mediated by an RND efflux system.
5. Marine invertebrate AMPs in an applied
context

(a) AMPs as therapeutic drugs
Since their discovery in the 1980s, AMPs have been considered

to be promising candidates for therapeutic uses in humans, ani-

mals and plant health. However, only a few AMPs have

reached phases of clinical and preclinical pipelines [121,122].

AMPs with potential interest for biopharmaceutical companies

have been isolated from marine invertebrates. Some AMPs,

such as mollusc defensins, have very low MICs in the nanomo-

lar range against Gram-positive bacteria [37]. Their fungal

homologue, plectasin, is considered to be a major candidate

for therapeutic use [123]. Importantly, AMPs are currently

being used for drug development due to their activity as

immune modulators, which give them clinical potential

beyond the treatment of antibiotic-resistant strains [124].

Among AMPs from marine invertebrates, ALF-derived pep-

tides have been shown to modulate the inflammatory

response in murine macrophage cell lines [125] and display

anti-tumour activity against HeLa cells through the alteration

of the cell membrane [126]. Those novel activities may open

the way to future drug developments.

(b) AMPs in aquaculture
Disease prevention in marine invertebrate aquaculture has been

traditionally based on the control of pathogens or the selection of
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animals that are resistant to diseases. AMPs of marine invert-

ebrates have been considered for both applications.

(i) AMPs in the control of pathogens in aquaculture
In the context of intensifying aquaculture, antibiotics have been

used for disease prevention and management, which has

resulted in increased bacterial resistance in the environment,

and favoured the emergence of resistant strains of major

human pathogens [127]. If AMPs are proposed as an alterna-

tive to the use of antibiotics, which should be reduced or

avoided in aquaculture (FAO/OIE/WHO), there is a risk of

promoting the emergence of AMP-resistant strains (see §4),

and this resistance can readily be achieved experimentally

[128]. However, AMPs present some important advantages

over antibiotics, including the following: (i) they are much

less stable in the environment; (ii) they often combine multiple

mechanisms of action, e.g. they can both disrupt bacterial

membranes and inhibit metabolic pathways; and (iii) they do

not increase bacterial mutation rates [129]. However, most of

all, it is now recognized that the antimicrobial activity of

AMPs largely relies on their immune regulatory properties,

including the recruitment and differentiation of immune cells

[130], against which microorganisms cannot evolve simple

mechanisms of resistance. The finding that AMPs are not

simple antimicrobials but are complex orchestrators of host

defences has opened new perspectives to combat bacterial

infections. AMPs from marine invertebrates have appeared to

be attractive candidates to reduce the impact of diseases in

closed aquaculture systems that have a low impact on the

environment [17]. However, only rare applications have been

reported. AMPs have been recently applied in the Polynesian

pearl industry [131]. For example, tachyplesin was combined

with exopolysaccharides as filming agents instead of the anti-

biotics that are traditionally used in the grafting process to

reduce oyster post-operative mortality and increase pearl qual-

ity. The result of this alternative process was similar to that of

commercial nuclei that were treated with antibiotics [132]. To

date, the use of AMPs as immune modulators has not been

reported in aquaculture.

(ii) AMPs as markers for survival capacity in shrimp
AMPs control homeostasis in marine invertebrates and main-

tain individuals in a healthy state (see §4). Inspired by studies

in humans, which have investigated the associations between
the copy number of AMP-encoding genes and susceptibility

to diseases [133,134], signatures of AMP expression have

been studied in marine invertebrates that are susceptible

or resistant to infectious diseases. Thus, in the shrimp

L. stylirostris, the basal expression of AMP-encoding genes

(PEN1/2 and PEN3, ALF-D, Type II crustin and lysozyme)

has been correlated with the capacity of the shrimp to circum-

vent V. penaeicida infections. As a consequence, signatures of

AMP expression have been proposed as original molecular

markers for selection programmes that are dedicated to

shrimp resistance to bacterial infections [135].
6. Conclusion
Based on our current knowledge, there is probably not a gen-

eral scheme but a diversity of roles for AMPs in the

homeostasis of marine invertebrates. Some AMP families are

highly abundant in host cells and tissues, whereas others are

expressed at levels below inhibitory concentrations. Although

the antimicrobial activity of AMPs has been the main focus

of research, the immune regulatory properties of AMPs in the

defence of marine protostomes and cnidarians now deserve a

much greater research effort. In addition, some AMPs appear

to have evolved within specific phyla or species, whereas

others evolved from a common ancestor and are widespread

in the tree of life. The inspiring example of freshwater cnidar-

ians prompts us to investigate how specific AMP repertoires

may have shaped the host-specific microbiota formation of

stable holobionts and compare those examples with other

metazoan species with less specific AMP repertoires and

more versatile microbiota. This research effort is now needed

to obtain a more integrated view of the role of AMPs in symbio-

tic interactions that range from mutualistic to pathogenic in

order to develop a better understanding of the role of AMPs

in protostome and cnidarian health and disease.
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