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Human impacts on fire regimes accumulated slowly with the evolution of

modern humans able to ignite fires and manipulate landscapes. Today,

myriad voices aim to influence fire in grassy ecosystems to different ends, and

this is complicated by a colonial past focused on suppressing fire and preventing

human ignitions. Here, I review available evidence on the impacts of people on

various fire characteristics such as the number and size of fires, fire intensity,

fire frequency and seasonality of fire in African grassy ecosystems, with the

intention of focusing the debate and identifying areas of uncertainty. Humans

alter seasonal patterns of fire in grassy systems but tend to decrease total fire

emissions: livestock have replaced fire as the dominant consumer in many

parts of Africa, and fragmented landscapes reduce area burned. Humans alter

the season and time of day when fires occur, with important implications for

fire intensity, tree–grass dynamics and greenhouse gas (GHG) emissions.

Late season fires are more common when fire is banned or illegal: these later

fires are far more intense but emit fewer GHGs. The types of fires which preserve

human livelihoods and biodiversity are not always aligned with the goal of

reducing GHG concentrations. Current fire management challenges therefore

involve balancing the needs of a large rural population against national and

global perspectives on the desirability of different types of fire, but this cannot

happen unless the interests of all parties are equally represented. In the future,

Africa is expected to urbanize and land use to intensify, which will imply differ-

ent trajectories for the continent’s fire regimes.

This article is part of the themed issue ‘The interaction of fire and mankind.
1. Introduction
Humans impact fire regimes directly by altering the number and timing of igni-

tions or suppressing fires, and indirectly by altering climate and fuels

(figure 1a). The relative importance of these impacts globally will vary depend-

ing on which factors limit fire, and the type of human activities. In North

American boreal forests, the direct impacts of people result in smaller fires

due to active fire suppression and increased ignition events [1]. However, indir-

ect human impacts on current climate (increased temperatures and drier fuels)

act to increase fire size, fire intensity and total area burned [2].

The impacts of people on fire accumulated slowly over time in Africa, but more

recently and abruptly on other continents (figure 1b). Determining which human

activities drive fire regimes can sometimes be complicated. In Australia, there is evi-

dence for increased biomass burning associated with human colonization 40–50

000 years BP [3], and this has been explained as a direct result of increased ignitions

by people [4]. However, humans also exterminated the indigenous mega-fauna of

Australia, released herbivory pressure, and thus increased the fuels available for

burning [5]. Whether the direct or indirect impacts on fire regimes drove the

patterns observed is still under debate.

These issues become important when assessing current impacts of people on

fire, and attempting to manage global fire for conservation/safety/geoengineer-

ing objectives. It has often been assumed that direct human impacts—through

ignition and suppression activities—are what are driving current fire regimes,

and these have been the focus of policy and management interventions [6,7].

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2015.0346&domain=pdf&date_stamp=2016-05-23
http://dx.doi.org/10.1098/rstb/371/1696
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Figure 1. (a) The direct and indirect pathways by which humans impact fire and the aspects of fire that are impacted. The relative importance of these pathways
depends on the socio-ecological context. In Africa, the impacts on fuels and timing of ignitions currently outweigh the impacts on ignition number or climate.
(b) The estimated timing of these impacts in four different parts of the globe. Impacts on fire in Africa accumulated slowly over time, but more recently and
abruptly in other continents. Impacts on fuels can be positive (extermination of herbivores) or negative (livestock grazing, cultivation, fragmentation). Climatic
impacts have occurred the most recently, and uniformly throughout the globe.
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Ignoring the numerous indirect impacts of people on fire

(figure 1a) can lead to ineffective fire management and per-

verse outcomes [8,9].

A fire regime represents the repeated pattern of burning at a

location in space. At global scales, a fire regime is equivalent to

a biome/climate region: it represents large-scale syndromes of

fire characteristics that emerge due to energetic constraints in

relation to fuels and climate [10,11]. Like climate and vege-

tation, fire regimes can change over time in response to

changing drivers, and the dependencies and interactions

between climate, fire, people and vegetation are still being

unravelled [12–14]. Recent analyses suggest that global fire

regimes (pyromes) and global vegetation types (biomes) are

closely linked due to feedbacks where fuels determine the

type, extent and frequency of fire, and fire controls vegetation

structure and biome boundaries [10]. However, the most
striking pattern globally is the impact people can have on fire

regimes (figure 2)—homogenizing different fire regimes into

one ‘human-derived’ pyrome, which shares similar character-

istics (small, cool fires, long fire seasons) across a wide range

of climates and fuels. Other research confirms that the over-

riding impact of people on fire globally is to reduce fire size

[15] and increase the length of the fire season [16]—i.e. fires

in areas with high human densities are limited by fuel continu-

ity, but are released from ignition limitation, and are less

dependent on appropriate weather conditions. Despite their

homogenizing influence at global scales, local-scale impacts

of people on fire are often perceived as disruptive, and diversi-

fying [17], precisely because they can relieve some constraints,

and create others (figure 1).

This paper assesses the relative importance of various

human impacts on fire in grassy ecosystems using Africa as a



Figure 2. Showing the extent of the human-derived pyrome: areas of the world where fire characteristics are largely controlled by human impacts. Diverse biomes
and environments converge on a homogeneous fire regime under high human impacts. Adapted from [10].
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case-study. I focus on relationships with population density,

although other socio-economic factors are also important in

determining how and why people use fire [17–19]. Africa

has a long history of human fire, longer than any other contin-

ent [20] (figure 1b), but current fire management issues on the

continent are complicated by (i) a recent colonial past which

enforced fire suppression, (ii) a rapidly growing (and rapidly

urbanizing) population and (iii) global pressure to initiate

climate-mitigation programmes in Africa—often involving

changes in how fire is used. Clear information on the past

and present impacts of people on various aspects of fire is

essential for resolving some of these issues.
2. Current area burned in Africa
Remotely sensed information has highlighted both the massive

extent of area burned in Africa (2.56 Mkm2 yr21) and the large

number of individual fire events [21]. These data need to be

assessed with the knowledge that Africa contains the majority

of the world’s tropical grassy ecosystems (savannas), and

these systems burn far more than any other vegetation type

(75% of the total annual burned area occurs in savannas,

although they account for only 20% of the global landmass).

However, there is still significantly (x2-test, p , 0.001) more

fire in African savannas than would be expected if grassy

systems burned equally.

Consequently, it is difficult to believe that the area burned

currently in Africa is probably lower than it has been for several

thousand years. However, both spatial data and charcoal data

confirm this: spatially, there is a strong negative correlation

between population density and total area burned [22]—

implying that as population numbers increased in Africa in

the past few centuries, extent of fire has declined. This is con-

firmed by palaeo-ecological data which show a downturn in

charcoal counts in tropical countries in the past few hundred

years [23]. Moreover, the striking contrasts in figure 3 confirm

that the areas that burn most extensively in Africa are generally

national parks—the least populated parts of the continent.
The implications are important. Arguments that current

fires in Africa are exacerbating industrial greenhouse gas

(GHG) emissions [24–26], and reducing precipitation [27]

are all based on the assumption that these fires are excessive

and unprecedented. This narrative needs to make way for a

more nuanced understanding of human–fire interactions in

grassy systems: how people act to alter different aspects of

a fire regime, and how this varies across productivity/vege-

tation gradients. Moreover, this understanding should also

give us the tools required to intervene in grassy fire regimes

to achieve particular objectives.
3. Human impacts on fire in African savannas
As confirmed by data all over the world, human presence in

landscapes increases the number of ignition events above the

background from lightning strikes. In Africa, ignition numbers
increase fairly linearly with population density up to a max-

imum of 10 people km22, and decrease again as humans start

living in closer proximity to each other (figure 4a). From

data in southern Africa, we estimate that at densities of

2 people km22, one in every 80 people would need to ignite

a fire each year to achieve the observed fire occurrence.

This decreases to one in 200 people for 10 people km22. By

contrast, the size of fires decreases exponentially with popu-

lation density [29] and figure 4b. It is this impact on fire

size that dominates the response of burned area to population

density: burned area strongly declines when populations

increase above 10 people km– 2.

This unintuitive result—that area burned in Africa is rela-

tively insensitive to ignition number—is explained by the

dynamics of fire spread. Like any percolation process fire ex-

hibits threshold dynamics—where an ignition is either able to

spread throughout a landscape, or goes out without burning

much area [30,31]. This means that once systems are fragmented

below the fire spread threshold then increased ignitions cannot

easily compensate for the reduced connectivity (it would take
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many hundreds of fires to burn a substantial area in a discon-

nected landscape).

The conclusion is that the direct (figure 1a) impact of

people in increasing ignitions in Africa is swamped currently

by their indirect (figure 1a) impacts on fuel amount and fuel

continuity. These impacts are predominantly associated with

high livestock densities consuming fuel that would otherwise

burn [32], but the proportion of croplands [33] and the

number of roads [22] also act to reduce area burned by frag-

menting landscapes. The timing of this impact is fairly

recent—livestock and cultivation only spread in Africa in

the past 2000–4000 years ([34]; figure 1b) and has also not

been uniform spatially. In wet, nutrient-poor savannas in

Africa, livestock (cattle, goats and sheep) are functionally
unable to replace the bulk-feeding herbivores (buffalo, ele-

phant, rhino) that were the dominant herbivores in the past

[35], and tsetse flies also constrain livestock production.

These areas now have fewer grazers than they did before,

and they currently burn extensively.

Another potentially large indirect human impact on fire is

through altering woody cover. Poor land management com-

bined with elevated atmospheric CO2 levels have resulted in

widespread thickening of woody species in previously grassy

landscapes globally, but especially in Africa [36,37]. Once

woody species reach densities sufficient to suppress grassy

fuels [38], fire no longer easily spreads in these ecosystems

[39]. By contrast, the widespread harvesting of wood biomass

for charcoal represents more than a third of all biomass
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rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150346

5

combustion on the continent (500 Tg yr21 in comparison

to 800 Tg yr21 from wildfires [40]) and has resulted in

reductions in woody biomass—especially in mesic savannas

[41]. Because grassy fuels increase when woody cover is

reduced [38], this has possibly increased the area burned and

intensity of fires in these systems.

Fire return period is an ecologically important metric reflect-

ing the average return time of fires at a point in space [42–44].

An analysis fitting Weibull distributions to fire interval data

extracted from the 15 year MODIS burned area dataset con-

firms that rainfall strongly controls fire return intervals

by mediating regrowth rates of the grassy fuels (figure 5a,

[46–48]). In Africa, minimum fire return times occur between

900 and 1700 mm MAR (on average every 2 years) above

which flammability (fuel moisture), rather than biomass con-

strains return times [13]. Theoretically, increasing ignitions

should increase the likelihood that a location experiences a

fire, and should reduce fire return period. Instead high

human densities seem to extend the return interval of fire

despite their frequent ignitions (figure 5b) [46]. Again, the

impact on fuels overrides ignitions (see [49] for more discus-

sion on this).

An important direct impact of humans on fire is in chan-

ging the timing of ignition events. Lightning shows strong

seasonality and is the only significant source of ignitions in

the absence of people: it usually occurs with rainfall during

thunderstorms and is virtually non-existent in the dry

season. Thus, the availability of fuels to burn (fuel moisture)

and the timing of lightning ignitions are inversely related.

Human ignitions are not similarly constrained, and currently

in Africa the number of fires peaks when there is no lightning

in the middle of the dry season (July in southern Africa

[45,48], and December in North Africa [50]; figure 6).

Seasonal changes in ignitions impact fire intensity [50–52],

with important ecological and biogeochemical consequences.

Grass can cure to carry a fire within a few weeks of no rain,

but fire intensity tends to increase over the dry season due

to changes in weather conditions (decreased relative humid-

ity, increased wind and temperatures), and the continued
drying of landscapes [29,45,51,53,54]. Consequently, very

intense fires only really occur in the late dry season [50,55].

These late dry season fires represent a substantial proportion

(about half ) of current fire events in southern Africa (figure 6)

[45], west Africa [56] and Australia [55], but account for much

more than half the total burned area due to their larger size

and intensity. Data from figure 6 lead us to believe that

fires ignited by lightning would either have been small,

wet-season events, or the occasional high-intensity fire

event associated with dry lightning at the end of the dry

season.

However, we can only speculate about this. A manage-

ment experiment in the Kruger National Park confirms that

trying to recreate a lightning fire regime in these systems is
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a futile exercise. For 10 years—from 1992 to 2002—the park

allowed all lightning fires to burn to extinction, and all fires

of non-lightning origin were suppressed [57,58]. In practice,

however, the majority of the fires still burned during the

dry season, when there was no lightning (figure 7a). These

were predominantly uncontrolled arson fires lit by tourists,

immigrants crossing over the Mozambique border or by acci-

dent (72% of all fires). The park did not succeed in increasing

the percentage of lightning fires beyond 15%, and most of the

area burned during the intense hot late dry season—some of

them resulting in fatalities and loss of infrastructure [59].

The control humans can have on the season of burn is

demonstrated by what happened after the Kruger National

Park stopped its experiment. From 2002, an active prescribed

burning programme switched the season of burning to much

earlier in the season (figure 7b), and the number of arson

fires were halved (lightning continued to burn about 9% of

the fires). Interestingly, although the number of fires more

than tripled during this period (from 52 per year to 171 per

year), there was no difference in total area burned which is

more controlled by fuel availability (see above). Similar shifts

in seasonal timing are described in Mali in West Africa with

the institution of burning bans in the 1980s [56]. Unprece-

dented intense late season fires resulted, with such negative

consequences for the local inhabitants that they soon started

burning covertly to try to manage and control their landscapes

[8]. In Australia, inhabited ecosystems also tend to burn earlier

in the season in smaller, less intense fires [60]. Moreover, when

people are enabled to ignite fires they can manipulate fire inten-

sity through diurnal timing: planned burning often takes
advantage of the drop in relative humidity in the evening to

light fires in the late afternoon that are likely to self-extinguish

with dewfall [52].

Thus, when given control over their landscapes people

appear to prefer igniting early season cool fires as soon as

the grass is flammable [52,61]. However, there are instances

where particular management goals aim for very intense

fires—for example, when preventing forest ingress into threat-

ened savanna habitats [62] or for maintaining high grass ratios

in rangelands and conservation areas [63,64]. Here too, this is

usually achieved through manipulating the seasonal or diurnal

timing of fire [62].

Long-term fire records for several savanna ecosystems, and

the Cape fynbos (Mediterranean shrublands), show no trend

of increasing fire in response to changing climates [48,65], and

we would not expect one: in a system where the fuel is predic-

tably dry and flammable for 4–8 months of the year increased

temperatures will do little to increase the probability of

ignition [66]. However, high temperatures can drive increased

evapotranspiration which will reduce grass productivity and

fuel loads. If anything, therefore, a negative rather than a posi-

tive relationship between high temperatures and total area

burned is expected in grassy systems [67]. Moreover, the

strong negative impact of people on fuels buffers most parts

of Africa from inter-annual variability in climate—with high

variations in area burned only possible in sparsely populated

landscapes [29,68].

However, weather conditions do appear to constrain the

occurrence of extreme fire events in grassy systems (and else-

where on the globe). The probability of periods of high wind
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speeds, high temperatures and low relative humidity are likely

to increase in the future [69], and fires burning under these

conditions have the potential to massively transform African

landscapes by penetrating the impermeable boundary of

forested ecosystems [64]. Conversely, rapid tree regrowth

rates fertilized by elevated atmospheric CO2 have demonstra-

bly been increasing woody cover in arid parts of the

subcontinent [36]—potentially excluding fire from systems

that usually burn. Currently, we have no empirical data on

the extent or importance of either of these impacts on fire.

Thus, there are two main pathways in figure 1a by which

humans impact fire in Africa. Their direct impact on the

seasonal and diurnal timing of fires can impact fire intensity

with important management implications (see § 4). Their

indirect impacts on fuel amount and fuel connectivity
reduce the size of fires and the total area burned, meaning

that anthropogenic fire regimes in Africa and other grassy

systems reduce, rather than increase, fire-related carbon

emissions.
4. Managing fire in tropical grassy ecosystems:
local, national and global perspectives

Tropical grassy ecosystems are clearly fire-adapted and will

burn with or without added human ignitions. However,

human intervention in these fire regimes is considered

necessary from three main (and unfortunately not necessarily

complementary) standpoints—each operating at different

socio-political levels.
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At a local level, the focus is on sustaining livelihoods—light-

ing fires to clear/prepare/protect fields, to provide forage, to

attract game and to control vegetation structure (tree/grass

ratios) [52,68,70,71]. At national levels, conserving biodiversity

is the main goal, as well as preventing loss of life/infrastructure,

although ensuring the sustainability of people’s livelihoods is

also an important concern [49,62,70,72]. More recently, global

pressure to intervene to manage earth system processes has

led to calls to alter fire in tropical systems to reduce GHG emis-

sions and store carbon [73,74]. The impact of tropical burning

on climate via aerosols is also gaining attention [27].

Clearly, controlling vegetation structure is a concern from

all standpoints. Geoengineering solutions focus on manipulat-

ing fire to increase above-ground woody biomass, but a more

nuanced perspective emerges from other stakeholders—one

which highlights the value of open, grass-dominated systems.

In national parks, fire is often used to control woody cover, and

maintain open ecosystems [62,75]. Considerable amounts of

money are produced by attracting tourists to grassy savannas

full of grazing animals [76], and maintaining these is a national

priority. Livestock owners also burn actively to maintain the

grazing resource for their animals [77]—especially in areas

that are threatened by woody encroachment [78].

There are also starkly different perspectives on the desirabil-

ity of early versus late season fires. Early season fires are less

intense [51,54], so have less impact on encroaching woody

species and tend to promote higher woody biomass and more

large trees [43,44,79]. However, they also burn with far more

smouldering combustion—emitting two times the CO concen-

trations and three times the CH4 concentrations of late season

fires [80,81]. It has been suggested that small early season

fires can decrease the total area burned by breaking up the land-

scape and preventing the spread of later season fires [82,83].

Most conservation areas aim for ‘pyrodiversity’: having land-

scapes burning with a range of fire intensities, frequencies

and spatial patterns [71,84]. Impacts of changes in fire season

and intensity on fauna have not been adequately addressed in

Africa (but see [85] for literature from Australian savannas).

Unfortunately, these different perspectives on what fire

regimes are desirable are not equally recognized when devel-

oping fire governance plans. Erikson [71, p. 244] states: ‘In

many savanna regions policy makers are using fire suppression

policies encouraged by the developed world, rather than devel-

oping and adopting fire management strategies suited to

regional or local environments’.

At a workshop in Tanzania in 2013, a group of government

officials, conservation authorities, scientists and landusers were

asked to identify locations in Africa where fire should be used

to manipulate woody cover, and to what end. The results were

varied (figure 8). There are many parts of the continent where

high fire activity, intense fires and reduced woody cover are a

concern, but there are equivalent regions where the lack of appro-

priate fire and the unwelcome dominance of woody species is the

problem. Sometimes both of these fire management objectives

were identified in the same location, indicating the complexity

of fire management in these systems [86]. That the desired fire

regimes for large-scale earth manipulation can conflict with the

needs of local people and the national mandate to conserve Afri-

ca’s indigenous biodiversity needs to be recognized at all levels.

This is especially important as it is now clear that these suggested

geoengineering interventions in no way represent the return to a

pre-human more ‘natural’ state—either in terms of total biomass

burned or in the season and intensity of burning.
5. Conclusion and the future
Above I have elaborated on the components of a fire regime

that are amenable to direct human manipulation (fire season,

location and fire intensity), and those that are controlled by

climate and fuels, and therefore only indirectly impacted

by people (total burned area, fire return period). I have

also discussed examples where this general understanding

does not apply. In particular, in fragmented forest–savanna

ecotones human ignitions can potentially impact the extent

and frequency of fire with important implications for the

conservation and management of these systems [87].

Africa’s future—and that of other tropical grassy systems—

involves increased population densities, but also increased

urbanization (the urban population of Africa is predicted to

double from 2000 to 2030 [88]). The current high rural densities

of people are therefore probably temporary, and likely to

reduce within the next 50–100 years. Data presented here,

and lessons from Australia and other systems where rural

areas have become depopulated [68,89], suggest that the total

area burned is likely to increase (figure 3), as will the extent

of large, intense, extreme fire events (figure 7) as people

remove their influence on fuels and the season of ignition in

these grassy fire regimes. However, if this depopulation

comes together with the expansion of large-scale agriculture on

the continent then both the landscapes and the fire regimes of

Africa will be fundamentally transformed, perhaps converging

on the ‘human pyrome’ of figure 2.

Another clear future for grassy ecosystems is hotter cli-

mate [69], with higher atmospheric CO2 levels potentially

altering tree–grass dynamics [36]. High temperatures in sea-

sonally dry grassy systems will not increase total area

burned, as predicted for boreal and tropical forests [66].

Nonetheless, extreme fire events do have the potential to

spread fire into previously fire-proof habitats [64], and

increased woody cover threatens to exclude fires and alter

system properties.

Fire management objectives of rural people, national

government and the global community are sometimes aligned

but this is clearly not always the case. Moreover, although we

understand the impacts of fire frequency and intensity on

these ecosystems [44,90,91], the impacts of fire season—

especially the impacts on GHG emissions—are less clear and

need to be resolved for effective decision-making. Finally,

when it comes to Africa, shifting the focus from discussions

of how much burns, to how it burns [56,92] should enable man-

agement plans that are feasible, and create more common

ground for decision-making.
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