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Metabolic pathways can be engineered to maximize the synthesis of various

products of interest. With the advent of computational systems biology, this

endeavour is usually carried out through in silico theoretical studies with

the aim to guide and complement further in vitro and in vivo experimental

efforts. Clearly, what counts is the result in vivo, not only in terms of maxi-

mal productivity but also robustness against environmental perturbations.

Engineering an organism towards an increased production flux, however,

often compromises that robustness. In this contribution, we review and

investigate how various analytical approaches used in metabolic engineer-

ing and synthetic biology are related to concepts developed by systems

and control engineering. While trade-offs between production optimality

and cellular robustness have already been studied diagnostically and stati-

cally, the dynamics also matter. Integration of the dynamic design aspects

of control engineering with the more diagnostic aspects of metabolic,

hierarchical control and regulation analysis is leading to the new, conceptual

and operational framework required for the design of robust and productive

dynamic pathways.
1. Introduction
Metabolic engineering focuses on the design, construction and optimization of

metabolic pathways and their regulatory processes with the aim of improving

the production of chemicals, pharmaceuticals or bio-fuels [1]. It also increas-

ingly relates to strategic approaches towards improved metabolic diagnosis

and therapies (e.g. [2]). A central issue in metabolic engineering consists of

identifying the components or processes that control and limit the production

flux [3]. The dependency of steady-state fluxes and species concentrations on

process activities such as enzyme-catalysed reactions can be quantified and

understood by metabolic control analysis (MCA) [4,5]. Hierarchical control

analysis (HCA), an extension of MCA, takes transcriptional regulation and

signal transduction also into account [6]. Both MCA and HCA rely on the expli-

cit account of the rate laws governing the biochemical transformations in the

pathway. Alternatively to these approaches, linear optimization methods,

such as flux balance analysis (FBA) [7], can be used to predict the flux distri-

bution that supports the maximal formation rate of the product of interest

using a purely stoichiometric description of the entire genome-scale metabolic

network [8,9]. The actual implementation of the optimal flux distribution can

then be achieved using pathway design approaches such as gene knockout

and overexpression of native or heterologous genes [10,11], or modulation

(e.g. partial inhibition) of gene expression. The ensemble of these approaches

is named ‘systems metabolic engineering’ in recent literature [12].
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Two important design schemes are often employed in

metabolic engineering. One uses and modulates native path-

ways. The other constructs non-natural pathways through the

import of heterologous genes, the synthesis of new DNAs

and new enzymes [13], or the provocation of new inter-

actions. The latter is part and parcel of synthetic biology.

Synthetic biology uses a forward-engineering approach to

create new biological parts or networks, modifying existing

biological systems [14,15]. Early synthetic biology primarily

designed and implemented individual genetic modules,

such as genetic toggle switches, logic gates, oscillators, cas-

cades and biosensors (as reviewed in [16–18]). Recently, a

‘second wave’ of synthetic biology created larger functio-

nal cellular systems, including signalling and metabolic

networks [19]. The challenges include the need of new

design principles that enable one to manage the complexity

of biology, and a deeper understanding of biological network

functions at a ‘systems level’. The former includes the ambi-

tion to make the synthetic circuits adaptive and robust

even if precise information of the pathway is not available

[20,21]; the latter requires the assistance of systems biology

and advanced reverse engineering methods [22]. Synthetic

biology can advance metabolic engineering significantly by

producing new enzymes, novel enzymatic activities and

creating new metabolic pathways [13]. Pioneering synthetic

biology applications to metabolic-regulatory systems include

a re-designing of the native regulatory gene circuits for the

enhanced production of lycopene and a synthetic gene-

metabolic oscillator with assistance from nonlinear dynamic

analysis [23,24]. Reviews and perspectives of synthetic

biology and metabolic engineering focusing on their appli-

cations, areas of synergism and overlaps can be found in

recent literature [25–29].

Formulation of products by and inside living organisms

offers the advantages of ready amplification of production

capacity, self-repair of the production process and specificity.

Thereby, when engineering microbial metabolism in order to

maximize productivity, it is important to maintain the cells’

functional stability (or a transition from one physiological

state to another that does not compromise vitality) when

they experience environmental perturbations or are subject

to internal noise possibly including mutagenesis. Paradoxi-

cally, it can also be important for the cells to respond

intensively to changes that are intentional in the production

process such as a shift from a growth phase to a production

phase. Such ‘agile robustness’ is inherent in most living

organisms but aimed at improving the organism’s fitness

rather than productivity. The metabolic pathways involved

in productivity are typically subject to transcriptional,

signal-transduction and metabolic regulation inclusive of

feedback and feed-forward regulatory mechanisms (e.g. a

repressor–inducer system) [9,30,31]. Some regulatory loops

may serve homeostasis, whereas others may exhibit (non-

linear) dynamic behaviour such as that of bi-stable switches

or stable oscillations (e.g. the collective yeast glycolytic

oscillator [32] and the gene-metabolic oscillator [24]).

Functionalities such as oscillations and switching are

often engineered into man-made mechanical or electronic

control systems. Accordingly, the disciplines that help do

this, i.e. systems and control engineering, might be able to

help understand (i) how the regulatory mechanisms in natu-

ral systems promote the organism’s fitness and (ii) whether

the regulatory mechanisms that emanated from evolutionary
‘design’ are similar to, or better/worse than, what engineers

would have designed. They may also help design new syn-

thetic biological regulatory devices with properties that

enhance the production process in the biological context

[33,34], such as improving pathway robustness and stability.

For example, three classical control mechanisms known in

control engineering, i.e. proportional, integral and derivative

control, have been identified in the regulation of energy

metabolism in living organisms [35]. In addition, the

closed-loop feedback control principle has been used to

design both genetically encoded (RNA or protein) biosensors

that help optimize and regulate heterologous pathways [36]

and a sensor-regulator system that improves fatty acid-

based biodiesel production [37]. When using engineering

principles to construct a synthetic metabolic-regulatory

system from isolated sub-parts or modules, several issues

need to be taken into account. These include: (i) crosstalk

and retroactivity effects when interconnecting biological

sub-modules [38], (ii) stability and design constraints [39],

(iii) response sensitivities and noise propagation [40], and

(iv) interactions with their environment [41]. Almost all

these issues can be analysed and interpreted using systems

and feedback control theory, but have not fully been studied.

This work reviews and investigates how control and

optimization approaches used in metabolic engineering

as well as diagnostic, analytic and deductive approaches

used in synthetic systems biology are related to approaches

developed in control systems engineering. In §2, classical

steady-state approaches employed in metabolic engineering,

such as MCA, FBA, supply–demand theory and regulation

analysis, are reviewed. Rather than exclusively discussing

their roles in the design of pathways, which have been pre-

viously reviewed to some extent (e.g. [42,43]), the focus

here is on their recent development for, and applications

to, metabolic networks under both enzymatic and gene-

expression regulation and the corresponding robustness

analysis. In §3, the theoretical principles of control engineer-

ing are used to interpret the issues related with dynamic flux

control and enzyme activation that have been analysed by a

dynamic version of FBA. Metabolic and gene-expression

regulation is related to both the proportional and the integral

control of control engineering, and the MCA and HCA

approaches of systems biology. In §4, synthetic biology-

related design strategies, such as the re-engineering of gene

circuits and allosteric proteins, together with issues such as

modularity and crosstalk, design constraints and noise propa-

gation, are discussed from a systems engineering perspective.

A central issue in both the analysis and the engineering/

design of a metabolic-regulatory network is a trade-off

between optimality (e.g. maximum production, minimum

transition time) and robustness (e.g. assurance of the system’s

stability). This issue is investigated throughout the review.
2. Steady-state control and regulation analysis
2.1. Regulatory motifs
To adapt to and maintain growth under various intracellular

and extracellular conditions, both long- and short-term regu-

latory mechanisms are often present in the same metabolic

network. Relatively long-term regulation is based on chan-

ging the expression level of genes or on the rewiring of the

gene regulatory networks. Such ‘gene-expression regulation’



rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20151046

3
may be crucial for cell survival in circumstances requiring

extensive and persistent cellular alterations. Short-term

regulation is based on modification of enzymatic activities

through (i) protein–protein interactions and covalent modifi-

cation (e.g. phosphorylation) in signal transduction or

(ii) substrate, product or allosteric regulation of metabo-

lic reactions. Such ‘metabolic regulation’ provides a fast

response to acute extracellular and intracellular perturbations

and helps the cell to control the metabolic and Gibbs energy

balance. The distribution of different types of regulation of

the metabolism of organisms such as Escherichia coli [44,45]

and yeast [46] over metabolic, signalling and gene expression

has been studied intensively. A comprehensive review [47]

outlined the regulation of important metabolic tasks at differ-

ent levels, including nutrient uptake, energy and amino

acid metabolism, and protein synthesis, and highlighted

a set of metabolites that carry out specific regulatory func-

tions. In pathways like glycolysis, nitrogen assimilation, the

citric acid cycle and inorganic ion uptake, gene-expression

regulation is important for long-term adaptation to the

availability of nitrogen and carbon sources. Shorter term

adaptation of these same pathways also seems important as

it has given rise to the evolutionary emergence of sophisti-

cated fast cascade control mechanisms [45]. In some amino

acid biosynthesis pathways, such as those for glutamate, tyro-

sine, tryptophan, phenylalanine, arginine and proline, both

gene expression and metabolic regulation have been ident-

ified. Such co-regulation ensures fine-tuning of metabolic

activities and the rapid response to over-accumulation of

end products.

The dynamics of a metabolic pathway under both meta-

bolic and gene-expression regulation can be represented by

the following generic model:

dX
dt
¼ N � vðX, EÞ ¼ N � diagðEÞ � f ðXÞ

dei

dt
¼ gðxjÞ � kd

i � ei, i ¼ 1, 2, . . . , n:

9>>=
>>;

ð2:1Þ

Here N is the stoichiometry matrix indicating which reactions

are involved in the metabolism of each metabolite xi, E ¼
[e1, e2, . . . , en]T denotes the set of concentrations of the

enzymes catalysing the various (n) reactions, diag(E) is a

diagonal matrix with E along its diagonal, v is the vector

of the reaction rates, and f (X ) is a vector function of the

concentrations of the metabolites X and kinetic parameters.

Not all the enzymes are necessarily regulated through gene

expression, although many are and their dynamics are mod-

elled by the second equation. The gene-expression function

g(.) is assumed to depend on metabolite concentrations, e.g.

on the concentration of the (pen)ultimate metabolite in an

end product pathway. kd
i is the degradation rate constant of

the ith enzyme. In fast-growing organisms and for stable pro-

teins, kd
i mainly represents the dilution effect due to growth,

but in other cases it will also depend on proteolysis.

In some metabolic networks, such as in a linear biosyn-

thetic chain of reactions, two regulatory motifs are involved

in controlling the flux. One is the end product feedback inhi-

bition, typically acting on the first enzyme of the pathway;

the other is the intermediate metabolite feed-forward acti-

vation of the downstream enzymes. The expression levels

of enzymes may be controlled through transcription factors.

These are themselves proteins whose functioning is inhibi-

ted or activated by the end product or an intermediate
metabolite, and whose expression may also be regulated.

According to the connectivity architectures of the gene net-

works alone, several transcription–regulation motifs have

been identified [30,48]. These include the single-input

module consisting of a set of operons controlled by a single

transcription factor, the dense overlapping regulation motif

and the feed-forward loop (see [48] for more discussions).

Feed-forward loops have been identified also in

signal-transduction networks as inferred from observed

protein–protein interactions. Signal-transduction networks

are home to other motifs that are absent from transcription

networks, such as the diamond pattern and multi-layer

motifs. Mixed-feedback loop motifs have been observed in

composite networks that consist of both transcription–

regulation and protein–protein interactions [49]. When

metabolic regulation is added explicitly, various structures

are reinforced. It is not clear why and how the regulatory

motifs occur at different ‘hierarchical levels’, i.e. at the level

of gene networks, signal-transduction networks and metabolic

networks at the same time, although a recently developed

‘regulation analysis’ has confirmed that such hierarchical regu-

lation does occur in real metabolic pathways [46,50,51]. This

will be further discussed in §2.3.3. Such hierarchical regulation

calls for a critical analysis of existing interpretations of the func-

tionality of gene regulatory networks that were based on the

exclusive analysis of transcription regulation, but this resides

beyond the scope of this review. In the following subsections,

classical metabolic engineering approaches to the control of

enzyme expression and network flux are reviewed and their

recent attempts to take complex regulatory mechanisms into

account are examined.
2.2. Flux balance analysis
FBA identifies flux patterns satisfying the steady-state con-

dition imposed by setting equation (2.1) to zero, while

maximizing a given objective function Z to obtain the corre-

sponding voptimal. In standard FBA, the objective function is a

mathematical representation of a biological process, such as

biomass or adenosine triphosphate (ATP) production, that

the organism is assumed or required to perform optimally.

Commonly Z takes the form of a linear combination of the

flux variables v. Then the standard FBA can be formulated

as a linear programming (LP) problem as follows:

max Z ¼ cT � v
s:t: N � v ¼ 0; vL � v � vU

�
ð2:2Þ

where vL and vU are the lower and upper bounds, respect-

ively, delimiting the range of possible values for the flux

variables v, and c is the set of coefficients defining the objec-

tive function Z in terms of a linear combination of the

fluxes v. The main advantage of FBA over other modelling

approaches is that it only requires the stoichiometries of all
the chemical reactions (without kinetic information f (X ) in

(2.1)), and these have become increasingly accessible with

the generation of metabolic maps. In fact, it has become pos-

sible to generate genome-wide, hence essentially complete,

versions of these maps thanks to the sequencing of the gen-

omes of many organisms, the biochemical identification

work done over many years, and intensive collaborations

between laboratories (e.g. [9,52]). This makes FBA particu-

larly suitable, and indeed widely used, in the study of the

metabolic capabilities of an organism on a genome-wide
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scale. Genome-scale metabolic reconstructions of more than

45 organisms are already available [31], and FBA constitutes

one important tool for extracting the knowledge encoded in

such biochemical networks.

FBA is used to address different relevant biological

questions in different ways:

— Boolean perturbation analysis. In silico gene-deletion exper-

iments can be performed by constraining the flux of the

affected reactions to zero. FBA is then used to assess the

criticality of these genes with respect to the criterion of

optimality represented by the objective function Z. This

kind of study is particularly useful for investigating syn-

thetic genetic interactions [43], and for suggesting drug

targets for drugs aimed at interfering with certain func-

tionalities of the networks. Standard FBA cannot directly

predict positive effects of gene knockouts on production

or growth yield. However, one can infer that all steps

with zero FBA flux may be knocked. Several more sophis-

ticated, bi-level optimization algorithms [53–55] have been

developed to predict gene knockouts that may improve

product yield, and have been implemented to microbial

strain design.

— Optimization of medium composition. By changing the lower

and upper bounds (vL and vU) of the so-called ‘exchange

reactions’ (i.e. those reactions involved in the transport of

chemical species from the external environment to the

cell and vice versa), it is possible to simulate different

growth conditions. This application of FBA allows one to

assess the relative suitability of different growth media

with regard to a given biological process that the organism

is supposed to carry out optimally [7]. This is relevant for

industrial protein production.

— Flux variability analysis (FVA). FVA consists of running FBA

in an iterative manner so as to identify the widest range of

values that each reaction flux can take without compromis-

ing the level of optimality of the network. In other words,

FVA addresses the question which alternative flux patterns

would lead to the same optimal performance. This pro-

cedure is closely related to a robustness analysis in which

the effect on the objective function of varying a particular

reaction flux can be analysed in terms of the number of

potential escape mechanisms of the network [56]. FVA

has also been used to find alternative optimal solutions,

i.e. flux distributions that are equally optimal with regard

to a given biological process [57].

The original FBA formulation has been extended and modi-

fied to encompass a wider range of possible studies on the

genome-scale metabolic properties of an organism:

— Regulatory FBA (rFBA). The standard FBA formulation

is enriched with regulatory information by integrating

Boolean logic operators [58,59]. Transcriptional regulatory

events are incorporated in a reconstructed metabolic

model to constrain the space of possible network functions

further. This allows one to analyse and predict the effects

of transcriptional regulation on cellular metabolism at a

systemic level (see [43,60] for overview), provided the tran-

scription regulation is essentially binary (on–off). Recently,

a matrix formalism for representing transcriptional regulat-

ory networks was proposed [61]. A pseudo-stoichiometric

matrix R (similar to N in (2.2)) was introduced. Its rows
represent extracellular metabolites, genes and gene pro-

ducts (i.e. proteins), and its columns describe the

Boolean regulatory relationships. Boolean rules define

which gene products are turned ‘ON’ and which ones

remain ‘OFF’. This introduces additional constraints on

the corresponding fluxes in (2.2).

— Data-driven FBA. One of the main factors that affect the

reliability of an FBA prediction is the choice of an appro-

priate objective function Z. The selection of Z is the

subject of active research [62,63]. The reliance upon a

specific cell function to be optimal may introduce a bias

that prevents us from grasping the true physiological

state of the organism [64]. Different reformulations of

FBA have been proposed to predict flux patterns based

on a set of measured quantities. Shlomi et al. [65] integrated

tissue-specific gene and protein expression data with a

genome-scale reconstruction of the human metabolic

network to describe the tissue specificity of human metab-

olism. Different integer values were assigned to different

gene-expression states, so as to distinguish among highly

(1), hardly (21) and moderately (0) expressed genes. The

objective function was set to minimize the differences

between the activity of each reaction in the predicted flux

pattern and the integer representation of the corresponding

experimental gene-expression level. By minimizing such

an objective function, the authors retrieved flux patterns

where the reaction rates were more strongly correlated

with their corresponding expression state. In Lee et al.
[66], absolute gene-expression data generated through

RNA-Seq were used to provide a more precise indica-

tion of enzymatic activity than that generated through

relative expression techniques such as in Shlomi et al.
[65], although lack of correspondence between mRNA

and protein levels may compromise this approach if

protein levels are not also taken into account [67]. Data-

driven FBA may also use the exometabolome, i.e. restrict

the exchange flux pattern to what is observed experi-

mentally. This has led to reasonable confinement of all

possible flux patterns [64].

— Dynamic FBA (DFBA). One strength of FBA is that it is

computationally affordable, as it only relies on the reac-

tion stoichiometry in the metabolic network. This makes

FBA suitable to make predictions on a genome-wide

scale. At the same time, however, this also represents a

limitation as FBA can only describe or predict steady

states [12]. There are studies extending FBA to include

dynamic behaviour. Mahadevan et al. [68] introduced

DFBA which incorporates rates of change of flux con-

straints. DFBA was used to predict the dynamics of

diauxic growth of E. coli on glucose and acetate. DFBA

also provides a suitable framework for multi-scale meta-

bolic modelling, where the interplay of different cell

types and tissues is taken into account [69]. More recently,

DFBA has been extended to metabolic networks coupled

with gene expression of the corresponding enzymes,

where it incorporated constraints on resource allocation

[70,71].

— FBA and nonlinearity. In the standard formulation of FBA,

it is implicit that the ATP cost of biomass is a constant, i.e.

independent of the fluxes entertained by the network,

although this is often not the case. Switching from fer-

mentation to respiration implies the synthesis of more

mitochondria, hence of a number of enzymes involved
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in the tricarboxylic acid (TCA) cycle and respiratory chain.

Consequently, the Gibbs energy cost of such a respiratory

regime is higher than that of fermentation. Simeonidis et al.
[64] proposed an iterative approach where a modified for-

mulation of FBA was used to take into account the

different ATP requirements of different metabolic regimes.

Although the approach was implemented in the form of a

LP problem, their iterative algorithm allowed the authors

to investigate a nonlinear property of the system, where

the total consumption of ATP was made dependent on

the mitochondrial flux. Thereby, they could predict a shift

from respiratory to fermentative metabolism known as

the Crabtree effect and related to the Warburg effect.

2.3. Metabolic, hierarchical control analysis and
regulation analysis

2.3.1. Metabolic and hierarchical control analysis
In a biochemical network, the dependence of a system

variable (e.g. the rate of metabolic reaction or phosphoryl-

ation, the concentration of a metabolite, the magnitude of a

transmembrane electric potential) on the kinetic activity par-

ameters (e.g. the activity of an enzyme) can be quantified

by the control coefficients as introduced in MCA [4,72]. The

control coefficients indicate the steady-state change in the

concentration of a metabolite X or flux J in response to a

modulation of an effector (e.g. inhibitor) p which acts directly

on the activity of the reaction step i. The formal definition

of concentration control coefficient (CX
i ) and flux control

coefficient (CJ
i ) are given as follows:

CX
i ¼

@ ln X
@ ln ai

� �
ss

¼
ð@ ln X=@ ln pÞsystem steady state

ð@ ln vi=@ ln pÞprocess i steady state only

and CJ
i ¼

@ ln J
@ ln ai

� �
ss

¼
ð@ ln J=@ ln pÞsystem steady state

ð@ ln vi=@ ln pÞprocess i steady state only

:

9>>>>>=
>>>>>;
ð2:3Þ

The complexity of these definitions warrants elaboration,

as it carries much of the essence of the complexity of systems

with interacting processes, as opposed to individual pro-

cesses in isolation [73]. The concentration control coefficient

CX
i is defined as the effect of a small modulation of the

activity ai of the process i on the steady-state concentration

of X. CJ
i measures the same for the control of flux J. The

activity ai is defined as any multiplier of the rate equation

of process i that is fixed unless altered either virtually or

experimentally; it does not depend on any of the concen-

trations of the metabolites or enzymes. In enzyme catalysed

reactions, ai may correspond to the catalytic rate constant

kcat, assuming the kcat of the forward and the reverse reaction

should be modulated proportionally in order to preclude vio-

lations of the second law of thermodynamics. In metabolic

networks where gene expression is constant, the most con-

crete instantiation of ai is the total concentration of the

enzyme itself. This instantiation is valid when the reaction

rate of the enzyme catalysed reaction is indeed proportional

to the concentration of the enzyme-catalyst and when the

total enzyme concentration is not altered by the internal regu-

lation of the system. If the proportionality does not exist, such

as in the case of metabolic channelling or enzyme dimeriza-

tion, the meaning of ai should regress to the multiplier

mentioned above. Alternatively, one then should use the
right-hand-side part of the definition, where a parameter p
is used that specifically affects process i. Then the flux

change between the two steady states (with and without

parameter change) is compared to the effect of the parameter

on the process rate vi, had the latter been in isolation of the

rest of the system but under the same nano-environmental

conditions. When the parameter p is perturbed, the change

in vi in the denominator of (2.3) equals the change in the

rate of reaction i only if all the other variables that affect

that rate have been kept constant. This is referred to by the

subscript ‘process i steady-state only’ and the fact that the

derivative is partial: the process rates vi are considered

‘local’ functions of the direct substrates, products and modi-

fiers of the corresponding reactions i. By contrast, X and J are

here considered as steady-state functions of all the

parameters in the system but not of the metabolic variables.

The control coefficients describe the control exercised by a

specific reaction or enzyme (‘process’) on the overall system

variables or fluxes, while ‘local’ regulatory properties of indi-

vidual enzymes such as ð@ ln ni=@ ln pÞprocess i steady state only are

captured by the so-called elasticity coefficients. Such an elas-

ticity coefficient corresponds to the local enzyme-only

response of a reaction rate to one change in its immediate

environment, for example, to a change in the concentration

of metabolite X. The corresponding elasticity coefficient, 1ni
X ,

is defined as a partial log–log derivative of vi with respect

to X.

Two important types of law have been discovered by

MCA (reviewed in [67]). The summation laws restrict the

sums of control coefficients over all reaction steps in the net-

work to simple integer values indicating that the control over

network properties such as fluxes, concentrations, efficiency,

yields, frequencies and transient times are conserved. One

implication is that removal of a flux limitation in one step

will always introduce more of a flux limitation elsewhere in

the network. Connectivity laws relate the global network

properties that are described by control coefficients to

the local elasticities, i.e. they relate network function to the

collective of molecular functions. For instance, using a sum-

mation and a connectivity law, the concentration control
coefficients for a simple two-step pathway can be expressed

into their elasticities,
CX
1 ¼

1

1
v2

X � 1
v1

X
¼ �CX

2 , ð2:4Þ
reflecting not only that both the upstream and the down-

stream steps are important for the steady-state

concentration of the intermediate, but also that they are pre-

cisely equally important, and that the importance of both

decreases when either step is more elastic. Similar

expressions for flux control coefficients exist [67], for

instance, stipulating that the more rate limiting enzymes

are the ones that are least responsive to their immediate

metabolic environment, hence not necessarily the ones that

catalyse irreversible reactions or are first in the pathway.

Classical MCA studied the control in metabolic pathways.

For ‘hierarchical’ regulatory networks with interactions at

different levels, i.e. metabolic, signal transduction and

gene expression, HCA [6] was developed as a generalization

of MCA. It will be discussed in the next subsection.
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properties of a supply – demand system in terms of changes in the flux, intermediate concentration and elasticity coefficients. (Online version in colour.)
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2.3.2. Modular control analysis: hierarchical supply – demand
theory

Engineering can benefit from the existence of supportive

theories that are simpler to understand and are accompanied

by precise theories such as MCA. To facilitate the control

analysis and understanding of the functioning of large

metabolic networks, modular MCA [74] has divided meta-

bolic networks into modules with relatively autonomous

activities connected through well-identified metabolites.

Hofmeyr et al. [75,76] have developed a particular example

of this, in their supply–demand theory. This theory serves

to make the essence of the complex regulation of cell

function understandable to the human. It may help design

a new regulatory architecture which shifts control away

from what evolved as best for the organism in its normal

habitat to what is better for a metabolic engineering appli-

cation. It achieves this by partitioning a pathway into

supply and demand modules. More recently, supply–

demand theory has been generalized from including

exclusively metabolic regulation to both metabolic and

gene-expression regulation, which is named the hierarchical

supply–demand theory [77]. For example, an unbranched

metabolic pathway under both allosteric inhibition and

transcriptional regulation of the first enzyme by the end

product (figure 1a) can be simplified into a hierarchical

supply–demand system (figure 1b).

In such a hierarchical supply–demand system, the

steady-state dependence of a system function, e.g. the concen-

tration of an intermediate metabolite X, on the ‘overall’

change in the reaction activity of a supply (or demand)
module can be quantified by the hierarchical control

coefficient employed in HCA:

HX
s ¼

@ ln X
@ ln vsupply

¼ 1

1d
X � �1s

X
: ð2:5Þ

Here, �1s
X is an ‘overall’ elasticity coefficient [72], including a

classical ‘direct elasticity’ only related with metabolic

responses and an ‘indirect elasticity’ due to gene-expression

regulation, i.e. �1s
X ¼ 1s

X þ 1s
Es
� cEs

a � 1a
X. In HCA, the lower

case c is used for metabolic control coefficients in a local

network (i.e. metabolic or gene expression but not their combi-

nation). The control of gene expression cEs
a ¼ 1=ð1b

Es
� 1a

Es
Þ. 1s

Es

is often equal to 1, i.e. when the rate of the reaction in isolation

(e.g. supply module) is proportional to the concentration Es of

the enzyme catalysing it. As a result, the hierarchical concen-

tration control coefficient (2.5) can be further expressed in

terms of all the elasticity coefficients in the network:

HX
s ¼

1

1d
X � 1s

X � ðð1s
Es
� 1a

XÞ=ð1b
Es
� 1a

Es
ÞÞ

¼ 1

1d
X þ ð�1s

XÞ þ ðð1s
Es
� ð�1a

XÞÞ=ð1b
Es
þ ð�1a

Es
ÞÞÞ

¼ �HX
d : ð2:6Þ

The terms in parentheses are usually positive. The equa-

tion shows that the control by supply (i) decreases with the

absolute magnitudes of the elasticities of the supply,

demand and protein synthesis with respect to X, but

(ii) increases for increasing elasticities of the protein synthesis



x1
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x2 x3 xn
v1 v2

e2

signalling regulation

ATPADP

phosphatase

e2p

H2OPi

AMP-activated
kinase

Figure 2. An illustration of signal-transduction regulation of a metabolic
pathway. Signal-transduction regulation can be any post-translational
(covalent) modification, such as phosphorylation or acetylation, of an
enzyme or transcription factor that is an output of a signal-transduction path-
way. In this example, the enzyme that catalyses the second reaction of a
metabolic pathway is subject to covalent modification through phosphoryl-
ation by an adenosine monophosphate (AMP)-dependent protein kinase. e2

denotes the fraction of the enzyme that is in the active state and e2p denotes
the fraction of enzyme that is phosphorylated and hence inactive. Another
example is the covalent modification of glutamine synthase where AMP
groups are covalently attached to the enzyme by an adenylyl transferase
[88,89]. It may be noted that intermediates of central metabolism such as
acetyl phosphate or the glycolytic intermediate 1,3-bisphosphoglycerate can
directly cause covalent modifications of lysine residues of enzymes [90,91].
This then is metabolic regulation of metabolism through covalent modification,
and constitutes yet another mechanism, which does not depend on signal
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and degradation reactions with respect to the concentration

of the enzyme (Es).

For the unbranched regulatory pathway given in

figure 1a, only the first enzyme is regulated by the end pro-

duct xn through metabolic and transcriptional regulation.

Hence, the ‘total elasticity’ in the supply module becomes
�1s

X ¼ �1s
xn
¼ 1s

xn
þ 1v1

E1
� cE1

Trans1 � 1Trans1
xn

, and the total elasticity

through the metabolic regulation depends on the first and

the (n 2 1)th step as 1s
xn
¼ cJ1

1 � 1v1
xn
þ cJ1

n�1 � 1vn�1
xn

. Because both

metabolic and gene-expression regulation constitute negative

feedbacks and xn inhibits the activity of (n 2 1)th step, the

total elasticity in the supply �1s
xn

is a monotonically decreas-

ing function of xn and becomes more negative with

increasing xn. 1d
xn
¼ 1vn

xn
is an increasing function of xn but

decreases asymptotically to zero with increasing xn. The inter-

section of these two monotonic functions determines the

steady-state properties of the pathway, i.e. the steady-state

concentration of metabolite, the steady-state flux, the elastici-

ties with respect to the supply and demand modules as

shown in figure 1c, and thereby the distribution of control

between supply and demand [75–77].

Some recent studies have extended standard MCA to take

account of network uncertainties [78], to improve sampling of

elasticity parameters using thermodynamic information [79]

and to construct genome-scale MCA guided networks [80].

The appreciation that metabolic control does not reside in

metabolism alone but also in transcription and translation,

and in fact in all these, and other [81–83].
transduction. (Online version in colour.)
2.3.3. Regulation analysis: the diverse organism’s response to
perturbation

The magnitude of a flux or concentration ‘control’ coefficient

employed in MCA or HCA represents a potential effect on

the flux or metabolite concentration if the activity of a reac-

tion step is modulated. This magnitude however does not

indicate whether an enzyme or a kinase of a specific reaction

step is actually activated by the network components

(i.e. self-regulation) or modulated by an experimenter in a

synthetic design [84], or not modulated at all.

To describe such regulatory information, Sauro [85]

proposed a so-called ‘partitioned regulatory coefficient’

which describes how a perturbation in the rate of reaction i
affects the enzyme activity of another reaction step j in

terms of the change in the flux Jj and the altered concen-

trations of the metabolites that interact directly with that

enzyme. This analysis only addressed regulation at the

metabolic level such as allosteric or competitive effects. Ter

Kuile & Westerhoff [86] generalized this and developed a

hierarchical ‘regulation analysis’ to accommodate regulation

both by metabolic effects of chemical conversions and by

‘hierarchical’ effects of information transfer that includes

signalling or gene expression. This approach has been success-

fully used to analyse the steady-state regulatory properties of

several important metabolic pathways [46,50,86,87] typically

showing that regulation tends to be distributed across all

levels in the regulatory hierarchy.

More specifically, the rate vi of an enzyme-catalysed reac-

tion typically depends linearly on two functions which we

here name h and f. The former is related to hierarchical effects

where the changes in the rate of the enzyme are due to

changes in enzyme concentration or covalent modification.

The latter is related to metabolic effects where changes in
rate are caused by changes in the concentrations of substrates,

products and metabolic effectors. By denoting the rate vi at

steady state by the flux through the enzyme J (where vi

is the property of a single process i, while the flux J is a col-

lective property and hence equal for a number of reactions in

the same pathway, possibly including the process i), we

realize that

J ¼ vi ¼ hðaiÞ ¼ hðei, wa,iÞ � fiðXÞ: ð2:7Þ

Here ei represents the concentration of the enzyme catalysing

the process vi. In the case of covalent modification, h(ai)

can be expressed as h(ei, wa,i) ¼ ei . wa,i with wa,i denoting the

fraction of the enzyme that is in the covalent modification

state that is active catalytically (figure 2). As a result, the

change in the logarithm of the steady-state flux J can be

expressed as

d ln J ¼ d ln hðeiÞ þ d ln fiðXÞ
¼ d ln ei þ d lnwa,i þ d ln fiðXÞ

) 1 ¼ d ln hðeiÞ
d ln J

þ d ln fiðXÞ
d ln J

¼ ri
h þ ri

m

) ri
h ¼

d ln hðeiÞ
d ln J

¼ d ln ei

d ln J
þ

d lnwa,i

d ln J
¼ ri

g þ ri
s:

9>>>>>>>>>=
>>>>>>>>>;

ð2:8Þ

Here d may seem to refer small changes or perturbations, but

this is not a necessary limitation in regulation analysis to

the extent that an enzyme rate is directly proportional to the

enzyme concentration [69]. The hierarchical regulation

coefficient ri
h comprises both gene-expression ri

g, and signal-

transduction regulation ri
s. The sum of gene-expression,

signal-transduction and metabolic regulation is always the
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same and equal to 1 [86]. This hierarchical regulation analysis

has also been extended to time-dependent cases [92,93].

Importantly, the hierarchical regulation coefficient is typi-

cally not equal to the inverse of the flux control coefficient CJ
i

defined in MCA (equation (2.3)). This is because commonly

the living system changes the concentrations of many

enzymes at the same time, and the flux can be affected by

several reactions or enzymes [67]. We shall consider the

example of a two-step pathway (catalysed by enzymes e1

and e2) with intermediate X in which the cell responds to

an external challenge by changing the relative activities of

the two genes encoding the two enzymes respectively (i.e.

through dlng1 and dlng2). The gene-expression regulation of

the first enzyme is

r1
g ¼

Ce1
g1
� d ln g1

CJ
1 � C

e1
g1
� d ln g1 þ CJ

2 � C
e2
g2
� d ln g2

: ð2:9Þ

Cei
gi

denotes the control of gene i on the steady-state

concentration of enzyme i. This equation indicates that

the regulation coefficient is not simply the inverse of the

corresponding flux control coefficient CJ
i , unless the corre-

sponding enzyme has a flux control close to 1 (i.e. CJ
1 ¼ 1

and CJ
2 ¼ 0), or the enzyme is the sole enzyme in the pathway

that is regulated by gene expression (i.e. d ln g2 ¼ 0). It has

been proved [94] that there exists a relationship between the

metabolic control coefficients CJ
i and gene-expression regu-

lation coefficients ri
g in an unbranched pathway, and such a

relationship can be generalized to hierarchical regulation

coefficients ri
h by further including the effects stemming

from signal-transduction regulation:

Xn

i¼1

CJ
i � r

i
h ¼

Xn

i¼1

CJ
i � ðr

i
g þ ri

sÞ ; 1: ð2:10Þ

This law implies that (i) if there is only a single rate limiting

step in an unbranched pathway and that step is being regu-

lated, the hierarchical regulation coefficient of that enzyme

is always 1, (ii) if flux control is distributed and only one reac-

tion step is regulated hierarchically, its regulation coefficient

equals the inverse of the control coefficient, i.e. there is a

strong hierarchical regulation if the regulated step has little

flux control, and (iii) if all regulation coefficients are equal

they must equal 1.

Preliminary analyses show that the above law also applies

to branched pathways, with a more complex interpretation

however of the regulation coefficients. Indeed, there is noth-

ing inherent in MCA, HCA or regulation analysis that

limits these approaches to linear pathways, although most

examples in the literature have been simple and thereby

linear. A hierarchical control and regulation analysis of

cyclic networks such as the TCA cycle should be of genuine

interest. After early pioneering work by Wright and co-

workers [95], this is now being taken up again [96]. A case

in point is the TCA cycle where much of intermediary

metabolism is controlled by and sometimes also regulated

through the combined levels of all TCA-cycle intermediates.
2.3.4. Robustness and fragility
Organisms are often subject to changes in their internal

and external environments. The robustness against such

perturbations is a determinant of the fitness of living organ-

isms. Because living systems depend fundamentally on
non-equilibrium processes [72,84] there is no guarantee that

they ultimately return to their original state. There are various

aspects to robustness, which warrants multiple definitions.

There is the maintenance of a specific functionality or variable

of the system, where it is not required that all the variables of

the system remain unchanged, i.e. homeostasis. This is

known as disturbance rejection in control engineering. And,

there is the transition to a new state after which the system

is maintained in the new conditions. This is called robust

tracking in the control engineering context. Finally, previous

studies have investigated the effect of deleting one or mul-

tiple steps (e.g. knockout mutations or enzyme deficiencies)

in metabolic pathways, which is termed ‘structural robust-

ness’ [97,98]. A physiologically more realistic scenario may

be the adaptation of the network when a reaction step

is only partially inhibited, which is known as ‘dynamic

robustness’ [99].

In a metabolic network, if the overall flux is robust to per-

turbations with respect to a specific step, this implies that this

step is not the rate limiting step but on the contrary exerts

little flux control. This suggests that there is a relationship

between dynamic robustness and MCA. Quinton-Tulloch

et al. [100] defined the robustness as the ratio between a 1%

sustained perturbation in a process (i.e. perturbing the

activity of an enzyme) and the corresponding percentage

change in the steady-state biological function (e.g. flux).

Mathematically, such a so-called MCA-based robustness

coefficient equals the inverse of the corresponding control

coefficient of that step. He et al. [77] studied the robustness

of a metabolic network subjected to both metabolic and

gene-expression regulation, and generalized the MCA-based

analysis to HCA-based robustness analysis. The MCA (or

HCA)-based robustness and fragility coefficient can be

defined as follows:

<
f
i ;

1

ð@ ln f=@ ln aiÞ
;

1

Cf
i

or
1

Hf
i

and Ff
i ;

1

<
f
i

;
@ ln f
@ ln ai

; Cf
i or Hf

i :

9>>>>=
>>>>;

ð2:11Þ

Here f denotes the system function of interest, such as a

particular flux Jj or a metabolite concentration xj. Quinton-

Tulloch et al. [100] calculated the flux robustness coefficients

(FRCs) <
f
i in realistic models of the glycolytic pathway of

Trypanosoma brucei and of other in silico pathway models.

They found that for the vast majority of the steps the individ-

ual FRCs were much larger than 1, reflecting small flux

controls in those enzymatic steps. An increase in the robust-

ness with respect to one step (e.g. glucose transporter)

might come at the cost of a decrease in robustness with

respect to other steps. However, the total robustness is not

conserved under such operations, i.e. the sum of all the

FRCs is not a constant. Unlike robustness, the MCA (or

HCA)-based fragility is a conserved property because of the

summation law (see §2.3.1).

Helping to understand the distribution of the control over

the processes in a metabolic pathway, MCA has important

applications for improving metabolite production through

flux control [42] and for the identification of drug targets

[101–103]. In addition, an elaborate example of using MCA

and HCA to study hierarchical regulation and robustness

has been reported [104]. A homeostatic control of DNA

supercoiling in E. coli is conferred not just by enzyme activity
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(metabolic regulation) or just by enzyme expression (gene-

expression regulation) but an unequal mixture of both. The

former is responsible for 70% and the latter for 30% of the

homeostasis. And even within gene-expression regulation

there is a division between transcription and translation.

Such control and regulatory information obtained from

MCA or HCA can be crucial for engineering genetic circuits

in a metabolic pathway by indicating not only which genes

(or enzymes) should be engineered, but also at which level

(e.g. transcription or translation) the gene circuits should be

manipulated.

Although most MCA and much HCA have been developed

in the context of pathways operating at steady state, it is not

confined to steady states. Indeed, MCA has been extended

[67,105–107] and applied to periodic phenomena such as gly-

colytic oscillations [108,109] and the cell cycle [110], to transient

phenomena such as transient phosphorylation of signal-

transduction proteins [111] and even to bistability [112]. It is

especially interesting to consider such dynamic generalizations

in a control systems context [113,114]. For a metabolic-

regulatory network under both metabolic and transcriptional

regulation, one can study the dynamic enzymatic control in

terms of a control engineering framework and then ask how

this then links in with MCA and HCA. These questions will

be addressed in the next section.
3. Dynamic control and control-theoretic analysis
A central task in metabolic engineering is the optimization of

pathway flux so as to maximize the metabolite or biomass

production. The analytic approaches discussed in the pre-

vious section focused on establishing which molecular

properties in a network determine the network’s perform-

ance. Once this is known, up- or downregulations of genes

that encode steps with much control may be used to improve

steady-state pathway fluxes. One may overexpress enzymes

that reside on the optimal paths calculated through FBA or

overexpress the enzymes with the highest control coefficients

over the requested flux or yield as computed by using MCA

[115,116]. These strategies can maximize pathway fluxes but

in the meantime they may also decrease cellular growth

rate due to the reduced expression of enzymes with high con-

trol on that growth rate, e.g. through a protein burden effect

[117]. ‘Dynamic metabolic engineering’ or ‘dynamic control’

strategies [118,119] have been proposed to control gene

expression and enzyme activity dynamically such as to

allow trade-offs between growth and production. Models

that predict the impact of genetic modifications on growth

rate were developed recently [120,121]. From a systems

engineering viewpoint, this corresponds to a class of optimal

control problems [122]. Here, time-dependent metabolite con-

centrations or enzyme activities cannot always be ignored.

Dynamic metabolic control also relies on advances in syn-

thetic biology to create genetic sensors and actuators, which

will be further discussed in the sections that follow.

Apart from maximizing the metabolic production rate or

yield, it is important to ensure pathway homeostasis and

robust adaptation to perturbations especially for the effec-

tive implementation of a ‘dynamic control’ strategy. This is

also true for engineering systems design where a trade-off

between the optimal control performance and the robustness

of the designed control system needs to be achieved. Robust
perfect adaptation in a bacterial chemotaxis signalling

system, in mammalian iron and calcium homeostasis, and

in yeast osmoregulation have been interpreted as integral

feedback control systems [123–125]. This suggests that engin-

eering approaches may have some bearing on biological

systems. One may therefore ask whether, for a genome-

scale metabolic-regulatory system, robust adaptation at var-

ious hierarchical levels (i.e. metabolic and gene expression)

such as observed in biology as a result of evolution, can be

related to the different optimal control strategies designed

in the discipline of control engineering. Does Nature beat

human design? And, how could the application of control

engineering to existing biological networks enhance those

networks in the metabolic engineering or even the thera-

peutic sense? How could this lead to a better synthetic

biology? Recent progress along these lines is discussed in

this section.
3.1. Dynamic flux balance analysis and optimal control
FBA is mainly used to study the metabolic flux distribution

at steady states; the dynamics of the pathway is rarely con-

sidered. However, the actual metabolite concentrations

and enzymatic activities may be time-dependent and their

temporal distribution could significantly affect the perform-

ance of the pathway. In addition, the ability to re-programme

the optimized pathway and to reproduce features of the

microbial growth process may be important for an engineering

intervention that is minimally invasive.

DFBA (as reviewed in §2.2) extends standard FBA (2.2) by

including the dynamics of the metabolic networks in the

optimization process:

max
XðtÞ,vðtÞ

Z ¼ f ðXðtÞ, vðtÞÞ

s: t:
dXðtÞ

dt
¼ N � vðtÞ

vL � vðtÞ � vU

Xð0Þ ¼ X0, vð0Þ ¼ v0:

9>>>>>>>>=
>>>>>>>>;

ð3:1Þ

This is very similar to an optimal control problem studied

in control engineering. The metabolic concentrations X and

process rates v can be interpreted as the state variables (state

functions in thermodynamics) [72,86] and the process activities

ei (see (2.1)) as control variables or inputs. If the regulation of

reaction rates is explicitly considered, for example, through

allosteric control from metabolites, the optimization of the

overall regulatory network corresponds to a state-feedback

control problem. Under certain assumptions and when a

quadratic objective function is employed, e.g. transitional

responses in homeostasis, this DFBA can be formulated into

a classical linear quadratic regulator (LQR) problem, i.e.

DFBA–LQR [126], and solved efficiently using linear control

theory. Interestingly, a connection between DFBA and MCA

is identified here, where the flux control coefficients in MCA

are shown to be correlated with the optimal gain computed

from DFBA–LQR in a feedback regulatory network.

In the above paragraph, we used the word ‘control’ in the

sense in which it is used in control engineering. This sense

differs from the connotation of the same word in MCA that

we used in earlier sections. The ‘control’ in MCA or HCA

refers to the control exercised by a time-consuming [67] pro-

cess on the system’s performance. It is quantified as the
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sensitivity of that performance (e.g. a flux, a concentration or

a cycle time) to changes in the process activity. It is called

‘control coefficient’ to distinguish it from the more general

‘sensitivity’, where the causative event that produces the

change in the performance is a change in any parameter,

such temperature or an equilibrium constant in the system.

The ‘control’ in control engineering can be understood as a

mechanism that could be or has been put in place by an

engineer so as to improve the performance of the system. It

corresponds to a strategy to alter the performance of a

system. A feedback control loop in control engineering is ana-

logous to a feedback regulatory mechanism (e.g. allosteric

or transcriptional regulation) identified in a biological net-

work and called regulatory strength in systems biology

[88,127,128]. The usual aim of control engineering is to

design a ‘controller’ that can improve the system’s perform-

ance in tracking a signal or reject a disturbance to ensure

robustness. Hence, the ‘control’ in control engineering is a

strategy and in MCA it is a fact. One of the interests we

have in the interface between MCA and control engineering

is the use of MCA to determine which parameters are control-

ling most the properties of interest and to what extent, and

then the use of control engineering to design extra networks

and extra network properties so as to improve the robust

behaviour of the biological system.

A sub-problem of DFBA is the dynamic optimal enzyme

activation in biosynthetic pathways that has been studied by

several authors. Klipp et al. [129] showed sequential enzyme

(or gene expression) profiles that minimize the transition time

needed to convert the substrate into the product and the

sequence of which matched the enzyme order in the

unbranched metabolic pathway. This ‘just-in-time’ activation

profile was in agreement with experimental findings in the

amino acid biosynthesis pathway of E. coli [130]. The analysis

of a leucine biosynthesis pathway in yeast [131] indicated a

more complex behaviour in which groups of enzymes are

expressed either quickly at low amplitudes or slowly at

high amplitudes. The influences of protein abundance and

protein synthesis capacity on the optimal activation strategy

have also been investigated [132]. A previously reported

sequential activation strategy was only optimal if protein

abundance relative to protein synthesis capacity was high;

as protein abundance decreased, the strategy shifted to the

simultaneous activation of all enzymes. These numerical

approaches can be formulated into a more rigorous theoreti-

cal framework using optimal control theory [133,134] and by

formulating the following optimization problem:

min
UðtÞ, tf

JðXðtÞ, UðtÞÞ

or max
UðtÞ, mðtÞ

JðXðtÞ, mðtÞÞ

s: t:
dXðtÞ

dt
¼ N � vðXðtÞ, UðtÞÞ

hðXðtÞ, UðtÞÞ � 0

UL � UðtÞ � UH:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3:2Þ

The objective function represents either a minimization of the

transition time to reach a given state of the system (or enzyme

cost) or a maximization of biomass limited by for example the

synthesis of the product of the pathway. U(t) is the vector of

independent control variables representing enzyme concen-

trations E(t); m(t) is the growth rate profile. The constraints
are the system dynamics, the inequality path constraints h
that restrict the synthesis capacity of individual enzymes

and total amount of metabolites, and the lower and upper

bounds for the control variables, i.e. the minimum and

maximum amount of enzyme and the kcat available for

each reaction.

This optimal control problem can be solved using indirect

methods such as Pontryagin’s maximum principle or as a non-

linear programming problem. Recently, this optimal control

formulation has been further generalized to multi-objective

optimization, such as a trade-off between effectiveness (e.g. tran-

sition time) and economy (e.g. enzyme consumption), and for

more realistic branched pathways [135]. Global optimization

methods are required to solve such a more general problem.

3.2. Metabolic and gene-expression regulation:
proportional and quasi-integral control

The optimization methods reviewed in the previous subsec-

tion are mainly used to obtain an optimal flux distribution

or enzyme profile. They are less concerned with the under-

lying control mechanism even if applied to a feedback

regulatory network. In reality, the control of the amount of

enzymes through gene-expression (transcriptional) regu-

lation and the control of enzymes’ catalytic behaviour

through metabolic (allosteric) regulation correspond to two

types of feedback control mechanisms operating at different

time scales, as shown in figure 3. This may ensure the robust-

ness versus perturbations at various frequencies as widely

considered in engineering system design.

It has been shown [35,77,123] that metabolic regulation

through allosteric or more direct substrate–product effects

is related to a ‘proportional or nonlinear control’ action,

because the catalytic activity of an enzyme can depend on a

metabolite concentration in a proportional or nonlinear kin-

etic relationship. The metabolic regulation often acts as a

fast actuator/controller that rapidly buffers against high-

frequency perturbations but possibly with small amplitude

or capability, such as adaptation to small fluctuations in the

flux demand [86]. When such a fast actuator is saturated,

indicating that the activity of that enzyme may be approach-

ing its maximum capacity (Vmax), the system has a second

‘actuator’ through gene expression which is slow but leads

to increase (or decrease) in the concentration of that

enzyme [86]. The gene-expression regulation is slow but

may be able to accommodate very large and persistent per-

turbations and was identified to be related to a (quasi-)

integral control action [77].

Recent analyses indicate that gene-expression regulation

improves the robustness of a metabolic pathway significantly

but that in practice such robustness may not be infinite,

because perfect adaptation requires biochemically unrealistic

features such as zero-order kinetics of protein degradation

[77,136]. Such control engineering interpretations can also

be linked with classical MCA and HCA. The relatively fast

metabolic regulation (proportional control) is related to the

‘direct elasticities’ of MCA, while the slow gene-expression

regulation (integral control) corresponds to the ‘indirect

elasticities’ of HCA.

Let us take ATP energy metabolism as an example. This

important intracellular process can be abstracted by a

supply–demand system as illustrated in figure 4. The supply

(s) process represents catabolism (e.g. glycolysis) that breaks
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down nutrients and produces ATP (from adenosine diphosphate

(ADP) and phosphate). The demand (d) process represents ana-

bolism that constructs macromolecules and consumes ATP. The

concentration of ATP (i.e. [ATP]) equals C2[ADP], with the

moiety conservation sum C a constant here because the cata-

bolic/anabolic reactions only convert ATP into ADP or vice

versa. The supply is catalysed byenzyme E that denotes enzymes

of catabolic reactions which are here assumed to be encoded in a

single operon or regulon. The gene expression of the enzyme(s) E
is increased in proportion to the concentration of ADP. The meta-

bolic regulation addresses the interplay between the supply and

demand processes.

The dynamics of ADP and enzyme E will here be

described by simple kinetics

d½ADP�
dt

¼ �ks � E � ½ADP� þ kd � ðC� ½ADP�Þ

and
dE
dt
¼ ka � ½ADP� � kb � E� k0,

9>>=
>>;

ð3:3Þ

where the degradation of E is assumed to be a mixture of the

zero- and first-order processes. k0 and kb are the zero- and

first-order protein degradation rate constants. ka is the protein

synthesis rate constant. ks and kd are the rate constants related

to the supply and demand processes. The closed-loop control

system structure of the pathway is shown in figure 5.

In this control system, the ADP concentration is a con-

trolled (output) variable and the enzyme concentration E a

manipulated (input) variable in the gene-expression feedback

control loop. The zero-order degradation rate k0 can be trea-

ted as a reference signal to the system. The metabolic

regulation is included as part of the ADP kinetic process.

By considering a perturbation of the demand process (i.e.

dkd) and reformulating the kinetics of ADP and E, one obtains

d ½ADP�
�
¼ �ðks � Ess þ kdÞ � d½ADP�

� ks � ½ADP�ss �
ð1

0

ðka � d½ADP� � kb � dEÞ � dt

þ ðC� ½ADP�ssÞ � dkd, ð3:4Þ

where the subscript ss denotes the steady-state value and the

left-hand side of the equation is a perturbation in the time
dependence of the ADP concentration. On the right-hand

side, the first term is a proportional response term, the

second an integral response term and the third the pertur-

bation term. The proportional response corresponds to the

direct ‘elasticity’ of the supply and demand reactions with

respect to ADP, which is a metabolic and instantaneous regu-

lation. The integral response is related to the protein synthesis

and degradation and thus to the gene-expression regulation. If

kb ¼ 0, the second term corresponds to an ideal integral action.

By further removing the time dependence of the change in

ADP using the steady-state conditions [77], the hierarchical

control coefficients, quantifying the control of the enzyme

level and the flux by the demand reaction, are obtained:

HE
kd
¼ d lnE
d lnkd

¼ 1� 1

1þðks � ð½ADP�ssÞ
2=ðkd �CÞÞ � ðka=kbÞ

and HJ
kd
¼ d ln J
d lnkd

¼ 1� ½ADP�ss=C

1þðks � ð½ADP�ssÞ
2=ðkd �CÞÞ � ðka=kbÞ

:

9>>>>=
>>>>;

ð3:5Þ

Both the control of enzyme level and of demand flux are

equal to 1 minus a hyperbolic function of kb. For an ideal inte-

gral control scenario with kb ¼ 0, the enzyme concentration E
perfectly tracks the activity of the pathway degrading ATP,

and HE
kd
¼ 1. More importantly, the pathway flux perfectly

tracks the perturbation in the demand flux and HJ
kd
¼ 1. The

control of kd on ADP is zero and thereby this is the case of

robust perfect adaptation. In practice, however, the dilution

or the first-order proteolysis effect cannot be ignored and

often kb = 0. In such cases, the adaptation of the pathway to

the perturbation is not perfect. An MCA-based robustness

coefficient has been proposed by Quinton-Tulloch et al. [100]

and can be expressed in terms of the various parameters:

<
ADP
kd
¼ 1

@ ln ½ADP�ss=@ ln kd

¼ kd � Cþ ks � ð½ADP�ssÞ
2 � ðka=kbÞ

ðC� ½ADP�ssÞ � kd
: ð3:6Þ

Only when kb ¼ 0 does the pathway exhibit infinite robust-

ness (<ADP
kd
¼ 1) to the external or parametric perturbation.
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This example shows the consistency of control engineering

and classical metabolic and HCA in understanding the adap-

tation of a metabolic pathway under both gene-expression

and metabolic regulation. It also shows that a control engin-

eering concept such as perfect adaptation can serve as

inspiration for the understanding of the evolutionary design

of the regulation of metabolic pathways.
4. Synthetic biology: design of metabolic-
regulatory systems

To achieve optimal control of chemical production and to

maintain pathway robustness in response to environmental

changes, a number of elements in gene circuits can be

designed and tuned at the transcription and translation

stages. Post-translational control can be achieved via the

modification of native allostery and the design of scaffold

proteins. These synthetic biology-related design problems

together with other issues related to the design, such as mod-

ularity, retroactivity, noise and stochastic effects, are

reviewed in this section. Here, we focus on the more novel

design of pathways at system level characteristic of synthetic

biology, although most studies have considered the individ-

ual protein level, such as when modifying the protein

sequence/function, activity or when designing new proteins

in protein engineering [13].

4.1. Engineering gene expression and design constraints
Several important elements (or parameters) in gene circuits,

such as promoters for controlling transcription initiation

rate, ribosome binding sites (RBS), riboswitches controlling

translation levels, plasmid replicons controlling gene copy

number, small inhibitory RNAs and long non-coding

RNAs, can be tuned and manipulated with the aim of achiev-

ing a desired control over metabolism [16,137]. Pioneered

implementations include a re-design of the native regulatory

gene circuits for the enhanced production of lycopene and a

synthetic gene-metabolic oscillator [23,24]. Since simple over-

expression of flux-controlling enzymes can be toxic and can

slow down cell growth in understandable ways [117], syn-

thetic gene-metabolic feedback circuits have been built to
control gene expression dynamically. Assuming all the

enzymes of an unbranched pathway to be encoded in an

operon under the control of a single promoter (figure 6a),

the expression of catalytic enzymes can be expressed as

_ei ¼ bi � ðk0 þ k1 � sðxnÞÞ � kd
i � ei: ð4:1Þ

Here i ¼ 1, 2, . . . n. The functional s(.) represents the

metabolite–TF and TF–promoter feedback regulation. k0

and k1 denote the promoter tightness and strength, and

therewith describe the regulatory effect of TF on gene tran-

scription. The translation rate of enzymes can be modified

by choosing appropriate RBS strength bi, while the protein

degradation rate can be controlled by adding a degradation

tag to the gene sequence or altering synonymous codons

[138]. Recently, two engineered sensor-regulator systems

were built to improve fatty acid-based biofuel production,

where several heterologous genes and a flux-controlling

enzyme acetyl-CoA carboxylase were controlled dynamically

by key metabolites, acetyl-CoA and malonyl-CoA, respect-

ively [37,139]. Additionally, a genetically encoded synthetic

malonly-CoA switch was developed recently [140]. In such

engineered feedback sensor-regulator systems, a transcription

factor is often identified as a natural sensor that senses the

biosynthetic intermediate. The naturally occurring cognate

regulators or controllers (e.g. regulatory DNA elements)

may need to be re-engineered for use with natural sensors.

Classical MCA has not yet been used much for the design

of circuits in synthetic biology, but MCA and HCA can be

used to analyse the effects on productivity of modifying par-

ameters (e.g. promoter strengths or protein degradation tag)

of both natural and synthetic gene circuits at the DNA,

mRNA and protein levels. Hence, MCA/HCA can also

assist in the design of more robust metabolic pathways

because of their strength in quantifying network robustness

as discussed in previous sections. HCA applies to any

dynamic network, inclusive of those involved in transcrip-

tional and translational regulation [117,141]. By viewing the

level of mRNA as a resultant from a synthesis and a degra-

dation process, HCA (or even MCA) predicts how promoter

strength or degradation activity controls the level of the

mRNA (e.g. [142]). This has been extended to the intricacies

of transcriptional regulation in mammalian systems in the

context of epigenetics and chromatin modification [143],

although more work is needed here. Mathematically, the

dynamics of a synthetic gene-metabolic pathway can be

expressed by combining the expression of (2.1) and (4.1),

and we can further break down the dynamics of the protein

concentrations (4.1) into transcription (mRNA dynamics) and

translation. As a result, this HCA can be used to track how
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the genetic parameters (such as the promoter strength k1)

control the mRNA level or protein level E (or even flux) as
46
H½mRNA�
k1 ¼ d ln½mRNA�

d lnk1
or HE

k1 ¼
d ln E
d ln k1

: ð4:2Þ

This is similar to the hierarchical control of enzyme level dis-

cussed for the ATP energy metabolism example (§3.2) and the

concentration control coefficients used in MCA, although at a

different biological network level.

Before implementing an engineered gene circuit, the

design constraints with respect to design parameters need

to be identified. Oyarzun & Stan [39] investigated the

trade-offs and constraints in designing the gene-expression

regulation circuits in unbranched pathways under the single

operon assumption as expressed in (4.1). Constraints to tune-

able design parameters, such as the promoter’s dynamic

characteristics and RBS strengths (figure 6a), must be satisfied

to guarantee the existence of a stable steady state and to pre-

vent the continued accumulation of intermediates (as shown

in figure 6b). The local stability of the metabolic-regulatory

system (i.e. combining (2.1) and (4.1)) under a perturbation,

such as a change in cellular demand, was studied by apply-

ing a systems engineering approach in terms of the design

elements in the gene circuits. In addition, it was concluded

that the use of promoters with a broad dynamic range

(e.g. increased tightness) can enlarge the feasible design

region, whereas leakier promoters or higher substrate con-

centrations tighten the constraints. This is similar to the

design of a mechanical or electronic control system. The stab-

ility of the closed-loop control system together with the

actuator or output and state variable constraints need to be

considered during the controller design process.

The design constraints of a synthetic metabolism at a

pathway level were also studied [144] by combining FBA

and Markov chain Monte Carlo sampling in a ‘global’ meta-

bolic (genotype) network space. Specifically, this study

investigated the quantitative relationships between different

properties in a network, i.e. the number of alternative

carbon sources it can use, the amount of biomass it can syn-

thesize, the number of active reactions and the amount of

waste the network produces, as well as how these metabolic

network properties influence biosynthetic flux.
4.2. Synthetic allostery and protein – protein association
Apart from synthetic gene circuits for gene-expression regu-

lation, post-translational control of the native allostery in

metabolic regulation can also be re-engineered and optimized

to provide a faster way for the control of metabolic pathways

[145]. The allosteric network structure can be reconstructed to

optimize a metabolic control, for example, eliminating allo-

steric enzyme inhibition so as to maximize product yield,

or integrating allosteric inhibition into enzymes so as to

increase product purity by eliminating by-product synthesis

pathways [146]. The mechanism of allostery (i.e. structural

and dynamic information related to the allosteric sites on

the enzymes) can also be modified and fine-tuned to provide

a more accurate and moderate regulation. Statistical coupling

analysis and molecular dynamic simulation of proteins have

been combined to re-engineer the allosteric regulation of

aspartokinase, in E. coli and C. glutamicum, so that a reduced

allosteric inhibition of the production of lysine and/or

an enhanced inhibition of the formation of the by-product

threonine was achieved [147] as shown in figure 7.

Another attractive strategy for balancing pathway fluxes is

to design scaffold protein [148] which then co-localizes cascade

enzymes which results in synthetic protein–protein complex

formation and substrate channelling. Substrate channelling

has important potential applications in metabolic engineering,

such as decreasing the effective free concentrations of unstable

intermediates [149], preventing the accumulation of toxic

metabolites, regulating fluxes by modulating enzyme–

enzyme association and increasing sensitivity to regulatory

signals [150]. Some examples have been reported, such as

three non-endogenous mevalonate biosynthesis enzymes

being scaffolded in E. coli using eukaryote protein–protein

interaction domains [148]. Immobilized three-enzyme com-

plexes (named synthetic metabolon), i.e. triosephosphate

isomerase, aldolase and fructose 1,6-bisphosphatase in the gly-

colysis and gluconeogenesis pathways, have been constructed,

which not only decreased protein purification labour and cost

but also accelerated reaction rates by an order of magnitude

when compared with non-complexed enzymes [151]. The

flux control for a pathway with metabolic channelling at

steady state was theoretically quantified under an MCA frame-

work [152]. Quantitative analysis of substrate channelling and

scaffold proteins on metabolic network dynamics, especially in

a systems engineering context, and corresponding synthetic

design constraints remain open research topics.
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4.3. Modularity and retroactivity
A complex biochemical network is often decomposed into

simpler components or into modules with common functions

in order to facilitate the analysis and prediction of the overall

system dynamic behaviour. On the other hand, the synthetic

modular ‘circuits’ composed of genes and proteins are also

required to be placed into living cells (through the process

of transformation or transfection). A fundamental systems

engineering issue then arises when interconnecting several

subsystems that is: whether and how the transmitting of a

signal to a ‘downstream’ subsystem affects the dynamic be-

haviour of the ‘upstream’ subsystem. Recent studies on

signalling and transcriptional network modules [38,153],

such as the covalent modification cascades (e.g. MAPK cas-

cades) and the machinery for protein synthesis (TF–protein

interactions), reveal that modularity does not hold in general.

Both an impedance-like effect that is well known in electrical

systems and called ‘retroactivity’ [38], and unintended ‘cross-

talk’ [154,155] have been identified and quantified in

biochemical networks. They are at the very basis of the com-

plexity of most biological networks that produces their

circular causality, making an effect the cause of its cause

[156]. Several approaches have been proposed to attenuate

the effect of retroactivity or crosstalk, for example, inserting

insulators between modules, layering methods, scaffolding

[148], introducing negative feedback mechanisms (inspired

by the design of amplifiers in electronics) through transcrip-

tional activation or through phosphorylation of a protein

that is in abundance [38], or using a classical loop-shaping

control design [157] as an alternative to inserting insulators.

In a metabolic network, the metabolic supply and demand

analysis (as discussed in §2.3) studies how the steady-state

properties of a supply process can be controlled by the

demand process that consumes the product. This is related to

the retroactivity concept and analysis, and the latter concerns

not only the steady-state behaviour but also transient situ-

ations. Similarly, modular MCA (or HCA) [74,128] may be

used to quantify the retroactivity at the steady state that

requires the measuring of the ‘overall’ control exerted by the

processes catalysed by each module.

The retroactivity in gene transcriptional and signal-

transduction networks has been formulated into a general

control theoretic, i.e. disturbance rejection, problem [38,158].

It will be exciting to investigate the retroactivity problem of

a metabolic network subject to both gene-expression and allo-

steric regulatory modules in terms of a generic control-
theoretic problem and to study how it is related to MCA

(and HCA) and supply–demand analysis.

4.4. Noise propagation and stochasticity
Gene expression is known to be noisy as transcription and

translation may depend on infrequent events involving

small numbers of molecules, as well as environmental fluctu-

ations and genetic mutation [159]. There are many studies on

the noise and stochastic effects in individual genes and gene

regulatory circuits [160,161]. The retroactivity effects dis-

cussed in the previous subsection can also be practically

inferred from the stochastic noise effect, because the ‘noise’

can be an information-rich ‘input’ signal designed to study

the changes in the systems dynamic responses [162]. Stochas-

tic effects in metabolic pathways were initially studied with

respect to fluctuations in substrates and upstream metabolites

[163]. Noise propagation from enzyme expression is typically

neglected because of the assumptions on high metabolite

counts and because stochasticity in enzyme expression

occurs at much longer time scales. The above assumptions

however may not hold for engineered metabolic pathways

that can operate at low metabolite counts. Recently, simu-

lation studies on noise propagation from enzyme expression

to simple metabolic pathways [164,165] have been provided.

How the extrinsic fluctuations (at the kinetic level) can affect

the steady-state control of pathway fluxes and concentrations

was investigated based on the stochastic generalizations of

standard MCA [166,167]. Based on stochastic simulations,

Oyarzun et al. [168] quantified the noise propagation in a

simple synthetic metabolic pathway under transcriptional

repression by the product and its dependency on the design

parameters, such as promoter strength, promoter sensitivity

and repression strength. It was concluded that attenuation of

metabolic noise is a trade-off between the promoter strength

and repression strength.
5. Conclusion and perspectives
Metabolic engineering has been applied to the analysis,

design and optimization of metabolic pathways for more

than three decades. Successful applications of synthetic

biology on metabolic processes have been reported in the

past decade, while the use of control engineering approaches

to optimize, analyse and assist the synthetic biology design of

metabolic networks has only begun to attract the attention in
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the last few years and may still be in its infancy. This review

discussed important metabolic engineering approaches and

synthetic biology-related design problems for metabolic-

regulatory networks, and their connections with systems

and control engineering.

Control theory can advance classical metabolic engineer-

ing techniques in pathway optimization, control and

regulation analysis. To optimize the flux distribution and

the production of a pathway while taking the network

dynamics into account, the dynamic FBA can be formulated

into an optimal control problem. As long as the objective

function is linear or quadratic and the metabolic network is

subject to only dynamic constraints, analytical solutions of

such DFBA can be obtained from linear optimal control

theory (e.g. the LQR approach mentioned in §3.1). When

the objective function or system dynamics are nonlinear

and the network is subject to certain constraints, such as in

the dynamic enzyme activation problem, advanced nonlinear

optimal control strategies need to be employed to solve such

nonlinear optimization problems. One important future piece

of work is to accommodate the stochastic effects and uncer-

tainties in an FBA model, such as the uncertainties in the

measured biomass composition or the flux capacities [169].

Robust control and optimal control theories are powerful

tools that may be used to tackle this problem.

Apart from the optimization of flux distribution, the

steady-state control of a network parameter (e.g. enzyme

concentration or activity) on pathway fluxes or metabolite

concentrations, or vice versa regulatory effects such as the

inhibition of enzyme activities via allosteric regulation, are

traditionally quantified by MCA and regulation analysis,

respectively. Both control theory and HCA can generalize

the MCA-based analysis to dynamic situations and take

account of different regulation mechanisms at different

hierarchical levels, such as the enzymatic and gene-

expression regulation. These can be linked with the classical

proportional and integral control mechanisms of control

engineering. As a result, the enzymatic control, regulation

and the cellular robust adaptation to environmental con-

ditions can all be studied within the well-established

control-theoretic framework both for steady state and for

transient states.

Successful synthetic biology applications based on meta-

bolic-regulatory networks have been reported in the past 10

years; the use of control engineering techniques to assist the

synthetic design is more recent and less complete. It includes
(i) the use of feedback control in the design and realization

of synthetic gene-metabolic systems, including the implemen-

tation of biological sensors, controllers and actuators, (ii) the

clarification of different metabolic or genetic regulatory

mechanisms in terms of widely used control mechanisms

[35,77], (iii) attenuation of the retroactivity, crosstalk and

noise effects when interconnecting synthetic modules by

introducing feedback loops around modules, and (iv) identi-

fication of the design constraints and of the existence of local

stability in terms of design parameters such as promoter and

ribosome characteristics.

It can be expected that systems and control engineering will

now serve to advance existing metabolic engineering and syn-

thetic biology techniques to improve metabolic product and

network robustness. Challenges will be due to the nonlinear

and complex nature of the metabolic networks and to the com-

plicated regulatory mechanisms at different hierarchical levels.

Important future work includes: (i) design and implementation

of various new control strategies (i.e. a mixture of proportional,

integral, derivate or nonlinear controllers) in a complex bio-

synthetic pathway with regulation at hierarchical (metabolic,

gene expression and signal transduction) levels, (ii) design

and implementation of bio-controllers that can accommodate

network parametric uncertainties, which can be achieved

either through quantifying the uncertainties in the design pro-

cess by the use of robust control theory [170], or by engineering

and inserting a non-natural bio-integrator into the metabolic-

regulatory system, since an integral feedback control is

known to achieve perfect robustness and adaptation, and

(iii) rigorous analysis of the design constraints and network

stability when adding a synthetic genetic or metabolic

module to the overall network.

Much remains to be discovered and then engineered.
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