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West Nile virus (WNV) is an emerging pathogen that has decimated bird

populations and caused severe outbreaks of viral encephalitis in humans. Cur-

rently, little is known about the within-host viral kinetics of WNV during

infection. We developed mathematical models to describe viral replication,

spread and host immune response in wild-type and immunocompromised

mice. Our approach fits a target cell-limited model to viremia data from immu-

nocompromised knockout mice and an adaptive immune response model to

data from wild-type mice. Using this approach, we first estimate parameters

governing viral production and viral spread in the host using simple models

without immune responses. We then use these parameters in a more complex

immune response model to characterize the dynamics of the humoral immune

response. Despite substantial uncertainty in input parameters, our analysis

generates relatively precise estimates of important viral characteristics that are

composed of nonlinear combinations of model parameters: we estimate the

mean within-host basic reproductive number, R0, to be 2.3 (95% of values in

the range 1.7–2.9); the mean infectious virion burst size to be 2.9 plaque-

forming units (95% of values in the range 1.7–4.7); and the average number of

cells infected per infectious virion to be between 0.3 and 0.99. Our analysis

gives mechanistic insights into the dynamics of WNV infection and produces

estimates of viral characteristics that are difficult to measure experimentally.

These models are a first step towards a quantitative understanding of the

timing and effectiveness of the humoral immune response in reducing host

viremia and consequently the epidemic spread of WNV.
1. Introduction
West Nile virus (WNV) is a flavivirus that is a significant cause of viral encepha-

litis in humans [1–3]. It is not only maintained in an enzootic cycle between

mosquitoes and birds [4], but can also infect and cause disease in other vertebrates

including mice. After its discovery in the USA in 1999, WNV spread rapidly across

North America, and also has been reported in Central and South America [5–7].

Between 1999 and 2010, there were a total of 1.8 million human illnesses, 1308 of

which resulted in death [8]. Although vaccines are available for animal use, no

vaccines or specific therapies for WNV are currently approved for humans [9].

WNV is an enveloped virus with a single-stranded, positive sense, 11-kb

RNA genome [9] that was first isolated in 1937 [10]. While much is known

about the biology of WNV including the immune response it elicits and its epi-

demiology (reviewed in [9]), information regarding the detailed kinetics of

within-host WNV infection is limited. Following mosquito-borne transmission,

WNV initially infects keratinocytes and epidermal Langerhans cells [11].

Infected Langerhans cells then migrate to the draining lymph node where
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macrophages are infected [9]. From the draining lymph node,

WNV spreads to the spleen, kidney and spinal cord and ulti-

mately breaches the blood–brain barrier to infect neurons [9].

WNV infection in mice is characterized by an initial expo-

nential growth of viral titre that peaks 3–4 days post-

infection (DPI), followed by an exponential decline that

leads to undetectable levels of virus by 6–8 DPI. Peak viral

replication occurs before the virus has spread to the spleen

and kidneys (analysis of data in mice from [12]). The initial

targets of WNV replication are Langerhans cells, macro-

phages and keratinocytes [11].

Both T and B cell responses are important in controlling

WNV infection [9,12,13]. During a primary response, viral-

specific-induced immunoglobulin M (IgM) is detected just

before the virus titre peak, approximately 2–4 DPI, and

immunoglobulin G (IgG) is detected at approximately 8

DPI [12] well after viremia has been reduced to almost

undetectable levels in serum.

The effect of induced IgM is to lower peak viremia and

reduce the time to peak viremia [12]. In mice that lack B

cells, WNV is 100% lethal at doses of 100 plaque-forming

units (PFU) and higher and 50% lethal following infection

with 1 PFU [13]. Thus, innate responses are unable to protect

mice in the absence of induced IgM, which is critical for

reduction of peak viremia and host survival. In wild-type

mice, cytotoxic T cell responses do not appear until 6 DPI,

well after the peak of virus replication [14]. Our goal is to

quantitatively describe the interplay between viral dynamics

and the B cell response in the early phase of WNV infection.

Mathematical models can provide important insights into

viral dynamics and immune response. For example, human

immunodeficiency virus (HIV) infection was modelled to

analyse the kinetics of viral load decline in patients receiving

antiretroviral therapy. These analyses led to the first in vivo
estimates of the rate of HIV replication, the number of virus

particles produced and cleared daily, and the average life-

span of productively infected cells [15–18]. These models

further elucidated the cause of the rapid appearance of

drug resistance to single HIV drugs and helped lead-in the

era of combination antiretroviral therapy [19,20]. Viral

dynamic models also have been used to analyse the effects

of interferon and ribavirin treatment as well as direct-acting

antiviral agents on hepatitis C virus (HCV) dynamics

[21–26], and the effects of therapy on hepatitis B virus

(HBV) kinetics [27–29]. HIV, HCV and HBV infections pro-

duce prolonged chronic diseases, and viral load changes

can be studied over periods of days, months and years. In

contrast, WNV produces an acute infection of short duration.

Previous work has used modelling to understand the kinetics

of acute infection in influenza [30–33]. However, to date,

there are no within-host models of WNV infection.

Our primary goal is to characterize the dynamics of WNV

replication and the adaptive humoral response in murine

hosts. Based on data obtained during experimental infection

of mice, we develop kinetic models of primary WNV infec-

tion. We estimate the basic reproductive number (R0, the

number of cells infected by each infected cell early in infec-

tion when target cells are not limiting), and other aspects of

viral replication. We characterize not just the most likely

value of R0 and other relevant parameters, but also the

range of possible values given measured empirical data and

the dynamics assumed in our models. We also characterize

the timing and effectiveness of IgM at clearing the virus.
We characterize viral replication and immune response

based on predictions from a set of differential equation

models. We estimate model parameters based on published

data from laboratory experiments of WNV infection. We com-

pare model predictions with measured viremia in wild-type

mice and immunocompromised IgM knockout mice to ident-

ify what parameters governing viral kinetics and immune

responses could have generated the observed viremia

values. The problem is computationally challenging, because

there is a paucity of quantitative experimental data that we

can use to estimate parameter values, and because there are

many parameters to be estimated. Further, there are trade-

offs between model parameters that complicate parameter

estimation. Thus, our approach is to first identify the plaus-

ible parameter space and then to sample that space to more

precisely estimate the range of parameter values consistent

with experimental data.

We first use empirical data to estimate a parameter charac-

terizing the rate of clearance of WNV by innate immune

responses in the first 90 min of infection. Next, we analyse

data from a knockout experiment in which there was no

humoral (secreted IgM) response in order to characterize

WNV infection dynamics in the absence of the secreted IgM

response. Then we incorporate these parameters into a model

to characterize the kinetics of the humoral response from exper-

imental data in wild-type mice that have an intact IgM

response. Using an approach similar to that of Handel et al.
[34] for influenza, we estimate some parameters in isolation,

and then incorporate those parameters into a more complex

model that includes an adaptive immune response. Thus, we

avoid the problem of needing to estimate more parameters in

our final model than can be identified from the data.
2. Material and methods
2.1. Study data
We use data from three WNV experimental infection studies

[12,13,35]. In order to estimate the infectious virus decay rate, we

use data from a viral decay study in which wild-type (C57BL/6)

mice were intravenously inoculated with 105 PFU of WNV 3356

NY2000 [35]. Serum was collected 5, 15, 45 and 90 min post-

infection. Serum was tested for virus by plaque assay on Vero

cells (African green monkey kidney epithelial cells).

The second set of studies (wild-type and knockout mouse studies)
were based on experimental infections of wild-type and IgM

knockout mice. In these studies, wild-type and knockout

(sIgM–/ – C57BL/6 J) mice were subcutaneously inoculated with

100 PFU of a WNV strain closely related to the one used in the

viral decay study (WNV 3000.0259 NY2000) [11]. Serum was col-

lected every other day until 10 DPI and titrated for virus by plaque

assay on BHK-21 cells (baby hamster kidney fibroblast cells).

The wild-type and knockout mouse studies measured vire-

mia in terms of both viral RNA and PFU, but the latter had

fewer measurements. Because the viral decay study measured

infectious virus (PFU), we converted all RNA measurements in

the wild-type and knockout mouse study to PFU. We calculated

the ratio of RNA copies per ml of blood for knockout mice to the

viral titre in PFU per ml of blood for knockout mice at day 2 and

4 post-infection from the experimental data. We found that

approximately 500 RNA copies corresponded to an infectious

unit (PFU). This accounts for the fact that not all viral particles

produce infections.

Finally, in order to determine the effect of the antibody

response, we used an antibody titre study in which wild-type
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infected cells), g (WNV clearance rate), V0 (inoculated virus density), b (rate constant of infection), d (death rate of productively infected cells), p (infectious virus
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(C57BL/6J) mice were subcutaneously inoculated with 100

PFU of WNV 3000.0259 NY2000 [13]. Serum was collected

every other day until 12 DPI and neutralizing antibody

titres were determined by a standard plaque reduction neu-

tralization assay [36]. The amount of antibody (measured in

units of plaque reduction neutralization titre for 50% inhi-

bition of plaques, PRNT50) was determined and reported in

the study.

2.2. Fitting models to data
The ordinary differential equations describing our viral kinetic

models (equations (2.1)–(2.4) and (2.6)–(2.9)) were solved

numerically in Matlab [37]. A fourth-order Runge–Kutta

method of integration was used with a step size of 0.0004 h.

The curve-fitting method uses nonlinear least-squares regression

that minimizes the sum of the squared residuals (SSR) between

the experimentally measured virus titres and model-predicted

values (measured as log10 PFU ml21 of serum). We weighted

all the data points equally in our fitting procedure, because no

uncertainty was provided for the experimental viral titres. We

sample parameter values uniformly at random within the bio-

logically plausible parameter space to determine which

combinations of parameters could feasibly have generated the

observed viremia curves. Our aim is to determine the plausible

range of model parameters that produce viremia curves consist-

ent with observed data, rather than the single set of parameters

that give the best fit. The computational approach is outlined

in figure 1, and a detailed description of our parameter sampling

approach is described in the electronic supplementary material.

2.3. A target cell-limited model
The goal of the target cell-limited model is to estimate par-

ameters governing WNV dynamics in IgM knockout mice

incapable of mounting an IgM antibody response. We assume

that the infection is target cell-limited in these mice as the

viral titre decline from the peak occurs well before the IgG
response is detected at day 8. Models of target cell-limited

acute infection have been developed for both HIV [38] and

influenza A virus infection [30]. Here, we use a target cell-

limited model with an eclipse phase, given by the following

differential equations:

dT
dt
¼ �bTV, ð2:1Þ

dI1

dt
¼ bTV � kI1, ð2:2Þ

dI2

dt
¼ kI1 � dI2 ð2:3Þ

and
dV
dt
¼ pI2 � gV � bTV: ð2:4Þ

Target cells (T ) become infected by virus (V ) at rate bTV, where

b is the rate constant characterizing infection. The initial viral

titre and the initial density of target cells are denoted V0 and

T0, respectively. The initial density of infected cells (I1 and I2) is

assumed to be zero. The separation of infected cells into two

classes, I1 cells that are infected but not yet producing virus

and I2 cells that produce virus, was proposed earlier for influenza

infection [30] and for HIV [16]. This separation increases the

realism of the model [39–41], because delays in the production

of virus after the time of initial infection are part of the viral

life cycle (the eclipse phase).

The parameter 1/k is the average transition time from I1 to I2.

Productively infected cells (I2) release virus at an average rate p
per cell and die at rate d per cell, where 1/d is the average life-

span of a productively infected cell. Free infectious virus is

cleared at rate g per infectious unit per day, for example by pha-

gocytosis or loss of infectivity. Virus also disappears from blood

by entering cells during the infection process at rate bTV. The

effects of innate immune responses and T cell responses are

not explicitly described in this model, but are implicitly included

in the clearance rate of virus (g) and the death rate of infected

cells (d).
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Figure 2. Fit of the function A(t) given by equation (2.5) to the neutralizing
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Table 1. Input parameters to model.

parameters description estimated ranges source

g WNV clearance rate �44.4 day21 (95% of values in interval 29.5 – 54) also

varied with values 10 day21, 20 day21 and 44.4 day21

fit to viral decay study [35]

t1/2 (¼ln2/g) half-life of free virus �22.5 min (95% of values in interval 18.5 – 33.8) calculated

h rate of IgM production 54.7 day21 fit to antibody titre study [13]

T0 initial target cell density 2.2 � 104 – 2.4 � 107 ml21 estimated from [42]

k rate of transition from I1 to I2 2.4 – 4 day21 estimated from [43,44]
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We use this model to identify values of V0, b, p and d that

are consistent with observed viral kinetics from IgM knockout

mice.
2.4. Adaptive immune response model
In the antibody titre study [13], wild-type mice were subcu-

taneously infected with WNV and titres of neutralizing

antibody were measured during a primary response (figure 2).

The data are well described by the following empirical piecewise

linear function:

AðtÞ ¼ 0, t , ti
hðt� tiÞ, t � ti:

�
ð2:5Þ

The level of neutralizing antibody at time t, A(t), measured

by the plaque reduction neutralization test (PRNT) is 0

(undetectable) before time ti and afterwards increases linearly

at rate h. This equation was fitted to the antibody titre data

(figure 2) and h and ti were estimated (table 1). We note the

caveat that our model assumes IgM is absent before time ti, but

IgM could exist at low levels undetectable by the assay and

models that account for this would be the subject of future inves-

tigation. In order to have a simple model and because the data

also exhibit piecewise linear effects, we have not explicitly mod-

elled the interaction between the immune system and virus in the

form of the equation for the antibody response. The immune

response (represented by IgM) and its interaction with the

virus is modelled explicitly by an additional clearance term in

the equation for virus (equation (2.9)).

We include the antibody response (equation (2.5)) in the

target cell-limited model given by equations (2.1)–(2.4). We

assume that neutralizing antibody, A, binds virus, V and neutral-

izes it with rate constant r. The model for infectious virus is
altered to become equation (2.9):

dT
dt
¼ �bTV, ð2:6Þ

dI1

dt
¼ bTV � kI1, ð2:7Þ

dI2

dt
¼ kI1 � dI2 ð2:8Þ

and
dV
dt
¼ pI2 � gV � bTV � rAðtÞV: ð2:9Þ

We use this model to estimate r, the rate at which IgM

neutralizes virus.

For the model with a humoral response, we estimated the

parameters V0, r and ti. We re-estimated V0 in this model,

because a different experiment was analysed. We also tested

a variant of the model in which neutralizing antibody

reduces the infectivity of WNV as b=ð1þ vAðtÞÞ, where v is

the efficacy of antibody-mediated reduction in infectivity (in

this case assuming r ¼ 0). Antibody bound to virus in the

plaque assay could also reduce viremia measured in PFU in

a manner dependent on the concentration of antibody.

Hence, we also rescaled viremia measured in PFU as

VðtÞ=ð1þ vAðtÞÞ, where V(t) represents infectious virions

given by equation (2.9). These models produce fits to data

that are indistinguishable from the simpler model; therefore,

we analyse the simpler model (equations (2.6)–(2.9)). Lastly,

because more than one infectious virion may correspond to a

PFU, we multiplied the bTV term in equation (2.9) by v,

where v ¼ 1 implies one infectious virion is a PFU and v ,

1 allows for the possibility that more than one infectious

virion constitutes a PFU [34]. To determine if this is an impor-

tant effect, we scanned through a set of fixed values for 1/v ¼
1, 2, 3, 5, 10, 100, 1000. We found significantly fewer par-

ameter sets consistent with the data when v , 1, and with

v , 0.1 there were no such solutions found. In addition, the

quality of the fits did not improve, measured by the minimum

SSR, except when 1/v ¼ 2, in which case there was a 1%

improvement. Given this minor effect at the cost of an

additional parameter, we assumed v ¼ 1 in the remainder of

the work.

2.5. Constraints on model parameters
In order to use the models to identify feasible parameter values,

we simulate the model dynamics with different parameters

and compare the model-predicted viremia to experimentally

observed viremia. These comparisons are computationally

expensive, so we reduced the parameter space that needs to be

explored based on experimental data. In this section, we summar-

ize how we infer plausible ranges of parameter values from

experimental studies.

1/k: the duration of the eclipse phase for neuronal cells

infected in vitro with WNV is 6–8 h [43]. Experimental data
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in vivo suggest that WNV completes one round of replication in

dendritic cells within 12 h in mice [44]. Hence, the duration of the

eclipse phase in vivo is less than 12 h in mice. We constrained the

eclipse phase to be between 6 and 10 h.

1/d: we allow for a lengthy viral budding period in the

model by letting 1/d, the productively infected cell lifespan,

vary from 1 h to 3 days based on the lifespan of productively

infected cells in other lytic viral infections, such as HIV [45]

and influenza [30].

T0: estimating initial target cell density (T0) requires first

identifying which cells are likely to be infected in the first

days after inoculation. Subcutaneously inoculated WNV

initially infects Langerhans cells [46] and keratinocytes [47] in

skin. Langerhans cells then migrate to the draining lymph

node and lead to infection of cells that have not been definitely

identified but are thought to be macrophages and follicular

dendritic cells [46]. A study silencing early viral replication in

dendritic cells and macrophages showed suppression of WNV

replication [48] (M. Swamy 2014, personal communication)

suggesting that these two populations are likely important

target cells for WNV.

We estimate T0 by estimating the density of dendritic cells,

Langerhans cells and keratinocytes, and then include additional

variation reflecting uncertainty in these estimates and the density

of other potentially infectable cell types. The density of Langer-

hans cells in human skin is approximately 1.4 � 103 per mm2

[49]. The density of keratinocytes in human skin is higher: 7 �
104 per mm2, given 2 � 103 melanocytes per mm2 of skin [49]

and a 1 : 36 ratio of melanocytes to keratinocytes [49]. WNV is

initially localized within a 1 cm2 region of tissue surrounding the

site of mosquito inoculation [35]. Thus, we estimate the number

of infectable Langerhans cells as 1.4 � 105 and keratinocytes as

7 � 106 in skin.

Because WNV is measured as the number of PFU per millili-

tre of blood serum we reparametrize our model, so that target

cells (T ) and infected cells (I1 and I2) correspond to the number

of cells required to produce virus in 1 ml, as has previously

been done in models of HCV infection [50]. In order to convert

these infectable numbers of cells into a density of target cells,

we divide by the mouse blood volume (3 ml, based on

blood volume of 95 ml kg21 of body mass [51] and 30 g mass

of C57BL/6 J mice [52]), giving a density of the order of

106 ml21. We note that this is likely a slight underestimate

of density, because the serum volume is less than the total

blood volume. Given the uncertainty in these estimates, we

vary T0 by approximately an order of magnitude above

and two orders of magnitude below the estimated density

(2.3 � 104–2.3 � 107 ml21).

V0: bounds on the initial density of inoculated virus (V0)

were set in the following manner. In the wild-type and knockout

mice studies, 100 PFU of WNV were inoculated into the mouse

footpad. Assuming complete absorption into blood (3 ml in

mice) gives an upper bound for V0 of approximately

33.3 PFU ml21. For the lower bound, we assume 1% absorption

into whole tissue (30 ml21 in mice) and obtain approximately

0.01 PFU ml21. To allow for other possible uncertainties, we

allow V0 to vary between 1024 and 3.3 � 103 PFU ml21.

ti: the time of initiation of the IgM response (ti) was con-

strained using data from the antibody titre study [13]. The

study measured antibody titres on alternate DPI and the first

measurable antibody titre occurred at 4 DPI [13]. Hence, we

constrained ti to be between 2 and 4 days.

g: We estimate g, the rate of viral decay in equation (2.4),

using a simple model and data from the viral decay study [35].

Because virus requires some time to infect cells, produce progeny

and lead to the death of infected cells, immediately after intrave-

nous inoculation virus titres decline. We describe virus that is not

yet being produced but is still being cleared by setting p ¼ 0 in
equation (2.4), giving

dV
dt
¼ �ðgþ b T0ÞV, ð2:10Þ

where T0 is the density of infectible target cells in blood at the

time of infection and b is the infection rate constant of WNV

for such target cells. Thus, immediately after infection, we

expect an exponential decline in viral titre with rate gþ �b T0:

Viral titres in serum within the first 90 min following intravenous

inoculation of mice with 105 PFU of WNV were reported in fig. 7

of the viral decay study [35]. Using these data, we estimate

gþ �b T0 ¼ 44:4 day�1 (figure 3).

Because the target cells in the first minutes after infection are

different from those that migrate to lymph nodes, we cannot

reliably estimate b or T0 in the footpad inoculation study. Thus,

we constrain g to be less than 44.4 per day (the half-life of free

infectious virus (t1/2¼ ln 2/g) is �22 min).

Because the viral decay study used intravenous inoculation

and measured viral titre in blood until 90 min post-infection,

the infectible cell types are different from a study that uses foot-

pad inoculation as the route of infection. It is also difficult to

estimate what proportion of virus gets into organs and lymph

nodes and the proportion of all infectible cells that are reached

in the first 90 min after inoculation. Hence, the target cell density

for intravenous inoculation (T0) in the viral decay study is prob-

ably different from the target cell density for footpad inoculation

in the wild-type and knockout mice (T0). Because the rate con-

stant of infection depends on the infectible cell types, the

corresponding rate constants of infection (b andb) are also prob-

ably different in the two settings. Because we are unaware of any

data that would allow us to independently estimate b T0, we

fixed g at various values between 44.4 and 10 day21 and exam-

ined the sensitivity of our estimates of other model parameters

to this choice.

h: in order to estimate the rate of induced IgM production

(h), we fitted equation (2.5) to data from the antibody titre

study [13] and found h ¼ 54.7 day21.

r: in order to estimate the efficacy of induced IgM-mediated

virus neutralization, we set a minimum of 1 and explored up to

60 PRNT�1
50 day�1 (we also explored values up to 100 with no

change in results).

b: in order to estimate the rate constant of infection, we set a

minimum of 1025 and explored up to 1022 ml21 day21.

The variation in model-predicted viremia from the points

from step 1 of the computational approach (knockout mice:

SSR less than 4 and wild-type mice: SSR less than 0.1) is

shown in figure 4 (dotted lines). A visual representation of the
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Figure 4. The numerical solutions of the models (virus titre) and variation in
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computational approach (knockout mice: SSR less than 4 and wild-type mice:
SSR less than 0.1). A visual representation of the model-predicted virus
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Table 2. Imposed biological constraints and estimated output ranges, mean and standard deviation of model parameters. V0, inoculated virus density
(PFU ml21); b, rate constant of infection (ml day21); d, death rate of productively infected cells (day21); p, infectious virus production rate (day21);
r, efficacy of antibody neutralization (PRNT�1

50 day�1); ti, time of initiation of the IgM response (days post-infection); R0, basic reproductive number (equation
(3.1)); p/d, infectious burst size (average number of infectious virus particles produced over the lifetime of an infected cell, PFU).

statistic V0 b d p r ti R0 p/d

imposed constraint [1024, 3.3 � 103] [1025, 1022] [0.3, 24] [0.3, 120] [1, 60] [2, 4] [1, 30] [1, 30]

estimated range [0.01, 3.3 � 103] [2 � 1024, 9 � 1023] [1.7, 24] [5.2, 118.2] [2.1, 60] [3.1, 3.9] [1.4, 7.1] [1.7, 12.8]

mean+ s.d. 5+ 4 1.3 � 1023+ 1.8 11.8+ 1.7 32.8+ 1.6 28.2+ 18.3 3.6+ 0.1 2.3+ 0.3 2.9+ 1
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model-predicted virus trajectories for an SSR of 4 and 0.1 is also

shown in figure 4 (solid lines).
3. Results
3.1. Estimating parameters from a target cell-limited

model
We set up a framework to sample parameter values within

the biologically plausible parameter space to determine

which combinations of parameters could feasibly have

generated the observed viremia curves.

Our goal is to determine the plausible range of biological

parameters rather than the single set of parameters that give

the best fit. Hence, we sample the parameter space uniformly

at random from the intervals listed in table 2. Each set of

sampled parameters was given as input to a subroutine

that we developed to identify sets of model parameters

that produce viremia curves consistent with observed data.

The final output of this computational procedure is an

ensemble of model parameters. The computational approach

is outlined in figure 1 and explained in greater detail in

electronic supplementary material.

The numerical solution of the target cell-limited model

(equations (2.1)–(2.4)) is plotted in figure 5 (black solid

line) together with the data from the knockout mice exper-

iment using one representative parameter set from our

estimation algorithm. The corresponding target cell depletion

is shown by the black dashed line. As one might expect, for

an infection with 100 PFU, which is 100% lethal in these

mice, target cell depletion is profound. However, in wild-

type mice that mount a humoral immune response, the

peak titre is significantly lower (red solid line) and

the target cell depletion is minimal (red dashed line). The

mean, standard deviation and ranges of model parameters
determined from the estimation procedure are reported in

tables 1 and 2, and the histograms of the estimated model

parameters are shown in figure 6.

From the feasible parameter values in table 2, we calcu-

lated the possible values of the basic reproductive number,

R0, the average number of second-generation infections

produced by a single infected cell in a population of suscep-

tible cells. If R0 is greater than 1, then an infection can be

established, whereas an infection rapidly dies out if R0 is

less than 1. For the target cell-limited model (equations

(2.1)–(2.4)), R0 is given by

R0 ¼
pbT0

dðgþ bT0Þ
: ð3:1Þ

The average number of infectious virions produced over

the lifetime of a productively infected cell is p/d, and these

infectious virions have an average lifetime given by 1/(g þ
bT0). The number of cells that these infectious virions can

infect over their lifespan is derived by multiplying the pre-

vious quantities with the rate constant of infectivity (b) and

the initial density of target cells (T0).

Despite considerable uncertainty in imposed bounds on

model parameters (e.g. the initial target cell density, T0, is

allowed to vary by three orders of magnitude and g is

allowed to vary from 10 to 44.43 day21), we are able to esti-

mate that R0 has a mean of 2.3 (95% of values in interval

1.7–3; table 2 and figure 7). The infectious virion burst size

( p/d) or the average number of infectious virions released

over the lifespan of a productively infected cell was estimated

to have a mean of 2.9 PFU (95% of values in interval 1.7–

4.7 PFU; figure 7). Because we estimated the ratio of WNV

RNA copies to PFU to be approximately 500, this implies

that on average an infected cell produces approximately

850–2350 WNV RNA copies over its productively infected

lifetime. We also estimated the average number of cells

infected by an infectious virion (bT0/(g þ bT0)) to be

between 0.3 and 0.99 with higher values being observed

more often in our simulations (figure 7).

Our computational procedure reveals correlations between

parameters (figure 8) which indicate trade-offs between model

parameters. For example, the rate constant for infection, b,

has a statistically significant relationship with the initial

density of inoculated virus, V0 (figure 8, p-value , 0.001,

r2 ¼ 0.12). Such trade-offs preclude estimation of unique

model parameter values and imply that there is a family of

solutions. The estimated ranges of model parameters in con-

junction with the correlation plots between model parameters

define the family of solutions that are in agreement with data.
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Figure 5. The numerical solutions of the models (virus titre) together with
data from the wild-type and knockout study [12]. The solid black line is the
numerical solution of the virus titre from the target cell-limited model
(equations (2.1) – (2.4)) using one representative parameter set from our esti-
mation algorithm and the black squares are the data from knockout mice. The
black dashed line is the predicted corresponding target cell dynamics (fraction
of target cells remaining). The red solid line is the numerical solution of the
virus titre from the model including a humoral response (equations (2.6) –
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line is the corresponding predicted target cell dynamics. The limit of detec-
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[53]. The parameters used to generate the plot are: T0 ¼ 2.3 �
105 ml21, V0 ¼ 4.3487 PFU ml21, b ¼ 4 � 1024 ml day21, d ¼

23.0341 day21, p ¼ 57.88 PFU day21, g ¼ 44.43 day21, V0 for WT ¼
4 PFU ml21, r ¼ 18 PRNT�1

50 day�1, ti ¼ 3.5 days.
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3.2. Estimating parameters from a model incorporating
an adaptive immune response

Because the antibody response takes a few days to develop,

we assumed the basic viral dynamic parameters were the

same early in infection in wild-type and knockout mice.

However, the model with an adaptive antibody response

has two additional parameters that affect viremia after anti-

body response: r (efficacy of adaptive IgM neutralization,

PRNT�1
50 day�1) and ti (the time of initiation of the adaptive

IgM response, DPI). We sample the parameters r and ti uni-

formly at random from the intervals listed in table 2. Each set

of sampled parameters was given as input to a computational

procedure outlined in figure 1 and explained in electronic

supplementary material. The output of this computational

procedure is an ensemble of model parameters. The initial

density of inoculated virus, V0, was also re-estimated as

this was an independent experiment.

The numerical solution of the adaptive antibody response

model (equations (2.6)–(2.9)) is plotted in figure 5 (red solid

line) together with the predicted target cell depletion (red

dashed line) using one representative parameter set from

our estimation algorithm. The variation in the model-gener-

ated numerical solutions is shown in figure 4. The feasible

range of ti is from 3.1 to 3.9 DPI (table 2). The efficacy of

IgM-mediated virus neutralization (r) has trade-offs with ti.

We found that any value of r above 2.1 PRNT�1
50 day�1 and

within the feasible range could have generated the observed

viremia curves in wild-type mice (table 2).
4. Discussion
WNV is a flavivirus that can cause viral encephalitis in

humans. Other related flaviviruses such as dengue virus,

Zika virus and HCV are also human pathogens of public
health relevance. While the transmission of WNV between

hosts has been modelled [54–57], little attention has been

paid to modelling the within-host dynamics of WNV. Here

we have modified a within-host model first developed for

influenza A infection [30] in order to describe WNV infection

in mice. Owing to limited data, we developed a method to

determine characteristics of within-host WNV infection

even though the existing experimental data do not allow us

to precisely estimate model parameters.

A humoral immune response contributes to the successful

clearing of WNV infection [12]. However, a mathematical

model incorporating a humoral response has more par-

ameters than we can estimate reliably from the available

data. A basic target cell-limited model has fewer parameters,

but fails to capture the effects of a humoral response in limit-

ing the infection. In order to reliably estimate parameters, we

first analysed data from the early stages of infection in immu-

nocompromised IgM knockout mice, which allowed us to

estimate key parameters in a target cell-limited model related

to pathogen replication. Then, we applied a more sophisti-

cated model incorporating a humoral immune response to

analyse data from wild-type mice. By combining data from

immunocompromised and wild-type mice with a set of math-

ematical models, we are able to estimate important features of

within-host WNV infection, such as the basic reproductive

number and the infectious virion burst size.

We used data from laboratory experiments to constrain

model parameters to be within biologically realistic ranges.

Then, we designed a computational procedure to sample

within those ranges to find which combinations of parameter

values could have feasibly generated the observed viremia

curves in wild-type and immunocompromised mice. The par-

ameter estimates required solving differential equations

millions of times. Such computationally hard problems

have been solved using other approaches for other infectious

diseases [58–60]. Work has also been done in looking at the

ensemble of solutions that describe experimental data in

intracellular regulatory networks [61] with the result that

some parameters are intrinsically unidentifiable compared

with others that can be estimated with greater precision [62].

Through our computational procedure, we were able to

reduce the uncertainty of some model parameters. We esti-

mated the range of the productively infected cell lifespan

(1/d) to be between 1 and 14 h, and the time of initiation of

the IgM response to be between 3.1 and 3.9 days. In order

to validate our prediction of 1/d, we compared it with inde-

pendent estimates using additional data from in vitro
experiments (described in detail in electronic supplementary

material). Briefly, analysis of in vitro infection data in dendri-

tic cells and keratinocytes produces estimates that are

consistent with our estimates of productively infected cell

lifespans: approximately 4–8 h in dendritic cells in vitro (elec-

tronic supplementary material, figure S1) and 4–6 h in

keratinocytes in vitro (electronic supplementary material,

figure S2). We note the caveat that the in vitro estimates

may depend on factors such as experimental conditions

and the cells and media used, but nonetheless, the in vitro
results give us some confidence in our predictions.

Most significantly, we found that important features of

viral spread could be estimated with relatively tight

bounds. We were able to make these predictions because

the computational procedure reveals correlations between

estimated model parameters (figure 8). Such correlations
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indicate trade-offs among parameters that make it difficult to

estimate individual parameters precisely, but certain ratios of

parameters (which give meaningful characterizations of the

virus infection) are more constrained. From the biological

constraints on individual parameters, we initially estimated

that the basic reproductive number, R0, could vary from 1

to 30, but fitting the model to data constrained R0 to be

between 1.7 and 3 (95% CI). Similarly, we initially assumed

that the infectious virion burst size could vary from 1 to 30

PFU, but with fitting found the variation is 1.7–4.7 PFU

(95% CI; figure 7).

Our approach could be applicable to other emerging dis-

eases that have similar uncertainty in model parameters,

pathogens where similar wild-type and knockout experimen-

tal data are available or pathogens for which there is scant

experimental data. Similar analyses can also be done for

other disease models of host dynamics and natural infections

by progressively building more complex models on simpler

ones. Given the potentially enormous complexity of disease

dynamics, parameter estimation is difficult. Parameters esti-

mated from simpler models provide the scaffolding for

more complex models that may be able to capture more bio-

logical realism. Even when there are correlations among

model parameters, this process can reveal constraints on bio-

logically relevant parameters such as the basic reproductive

number and infectious virion burst size.

Bayesian methods could be also be valuable: such methods

can elegantly incorporate information such as phylogeny or

life history as biologically motivated priors [63]. Alternatively,

parameter estimates from a previous set of experimental data

can be used as priors for a Bayesian model, which would be

useful in incorporating both uncertainty in parameters and
data. With a suitable choice of priors, Bayesian methods

may also help in parameter identifiability as has been shown

previously in models of HIV [64].

The humoral immune response has a critical role in confer-

ring protection in WNV-infected hosts [12]. Our model

predicted that the effect of the humoral immune response is

to protect target cells from infection and death, as only 10%

of target cells remain in knockout mice versus 90% in wild-

type mice (figure 5). Indeed, there is 100% mortality in knock-

out mice highlighting the importance of the humoral immune

response [12]. The humoral response also reduces the peak

viral titre in blood as well as the time taken to reach peak vir-

emia (figure 5). Viral titre above a certain level is an important

epidemiological determinant for the spread of WNV [65],

which is mosquito-borne. Above a threshold of viremia of

105 PFU ml21 in blood, a host is capable of infecting an unin-

fected mosquito, which in turn can infect other uninfected

hosts and maintain WNV spread [65]. Hence, hosts that can

sustain viremia above this threshold and for a longer duration

are pathogen reservoirs. As evidenced in figure 5, in the pres-

ence of an induced IgM response, viral titres above a threshold

and the time to reach that peak viral titres above a certain level

are both reduced compared with the kinetics seen in the IgM-

deficient mice. The models presented here are an important

step towards a quantitative understanding of the role of the

humoral immune response in reducing host infectivity and

the epidemic spread of WNV.
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