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Pluripotent mouse embryonic stem cells (mESCs) show heterogeneous

expression levels of transcription factors (TFs) involved in pluripotency regu-

lation, among them Nanog and Rex1. The expression of both TFs can change

dynamically between states of high and low activity, correlating with the

cells’ capacity for self-renewal. Stochastic fluctuations as well as sustained oscil-

lations in gene expression are possible mechanisms to explain this behaviour,

but the lack of suitable data hampered their clear distinction. Here, we present

a systems biology approach in which novel experimental data on TF hetero-

geneity is complemented by an agent-based model of mESC self-renewal.

Because the model accounts for intracellular interactions, cell divisions and

heredity structures, it allows for evaluating the consistency of the proposed

mechanisms with data on population growth and on TF dynamics after cell

sorting. Our model-based analysis revealed that a bistable, noise-driven net-

work model fulfils the minimal requirements to consistently explain Nanog

and Rex1 expression dynamics in heterogeneous and sorted mESC popu-

lations. Moreover, we studied the impact of TF-related proliferation capacities

on the frequency of state transitions and demonstrate that cellular genealogies

can provide insights into the heredity structures of mESCs.
1. Introduction
Pluripotent mouse embryonic stem cells (mESCs) possess the remarkable

capacity to self-renew indefinitely while retaining the potential to differentiate

into all cell types of a mature organism. Thus, cultures of mESCs provide

an unlimited source of unspecialized and specialized cells for basic

research studies on the regulatory mechanisms of stem cell self-renewal and

lineage specification.

A major stimulus for the differentiation of mESCs is autocrine Fgf4/Erk sig-

nalling (fibroblast growth factor 4/extracellular signal-regulated kinases) [1–3].

In conventional culture conditions containing the cytokine leukaemia inhibitory

factor (LIF) and serum factors, Fgf4/Erk signalling is active and involved in the

establishment of phenotypic and functionally different mESCs. In particular,

mESCs cultured in LIF/serum display heterogeneous colony structures [4] as

well as mosaic expression of several transcription factors (TFs), including

Nanog, Rex1, Klf4 and Esrrb [5–9]. Because Nanog expression has a key role in

the acquisition of ground state pluripotency in vivo and in vitro [10–12], its hetero-

geneity has been studied extensively. Nanog reporter cell lines show a bimodal

fluorescence distribution with around 50–80% Nanog-high (NH) and 20–50%

Nanog-low (NL) cells when analysed by flow cytometry [5,13–15]. In accordance

with fluorescence measurements, quantitative measurements of Nanog mRNA

molecules in single mESCs also show a broad and bimodal distribution of

Nanog transcripts [15,16]. Most remarkable, mESCs possess the dynamic capacity
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to change between different Nanog expression states as

demonstrated first by cell sorting experiments [5,13], and

very recently also by live cell image analyses [15,17]. Although

mESCs with low Nanog expression can sustain pluripotency

and re-express Nanog, they possess a high propensity for

differentiation [5,12,16,17]. In contrast, high Nanog expression

shields mESCs from differentiation, leading to the concept of

Nanog as gate-keeper in the control of mESC differentiation

[11,18]. Whether Nanog is directly or indirectly involved in

inhibition of differentiation cues is not yet clear. However, by

means of a mathematical modelling approach, Muñoz-

Descalzo et al. provided one potential explanation. In brief,

they suggest that Nanog’s gate-keeper function originates

from its ability to buffer the differentiation-inducing activity

of Oct4 through the formation of stable protein complexes

[19]. Rex1, a downstream target of Nanog and a sensitive

marker for undifferentiated mESCs, closely mimics Nanog

expression dynamics [8,15,20,21], and thus serves as an exper-

imentally accessible readout of the Nanog dynamics [22,23]. In

particular, Rex1 reporter cell lines show a bimodal distribution

of Rex1-high (RH) and Rex1-low (RL) cells, which are also able

to convert into each other [8,24]. Several studies demonstrated

that mESC subpopulations, which have been sorted either

according to the expression of Nanog or Rex1, can reconstitute

the initial bimodal distribution [5,8,9,13]. However, the

temporal dynamics of this process has not been studied yet.

In recent years, a number of experimental strategies

(reviewed in [25]) and computational models (reviewed in

[26]) have been applied to reveal the molecular mechanisms

and interactions underlying Nanog heterogeneity. Analysing

the dynamic behaviour of small-scale TF network models, we

previously identified two potential mechanisms that consist-

ently account for bimodal Nanog distributions and reversible

state transitions between different expression levels [22,27]. In

the fluctuation model, mESCs can change their expression

states stochastically owing to a bistable Nanog switch and

transcriptional background noise [22,27]. Alternatively, in

the oscillation model, a cyclic Nanog attractor is generated

through an activator–repressor system [27]. This attractor

causes periodic oscillations between high and low Nanog

expression levels [27]. Although both network models

establish a dynamic equilibrium of cells with high Nanog/

Rex1 expression (NH/RH) and cells with low Nanog/Rex1

expression (NL/RL), the underlying mechanisms leading to

this heterogeneous population phenotype differ substantially.

We previously argued that the two models are distinguish-

able either on the basis of measurements of single-cell

residence times in the two expression states, or based on

the dynamics by which Nanog and Rex1 heterogeneity is

re-established after cell sorting [27]. According to the latter

option, we designed and performed a cell sorting experiment

using a Rex1GFPd2 reporter mESC line maintained in

LIF/serum conditions. This cell line has been used, because

the reduced half-life of the destabilized GFPd2 (of 2 h)

allows for monitoring changes in Rex1 expression on short

time scales [24,28]. In particular, we purified RH and RL

cells, cultured replicates of both subpopulations in identical

conditions and monitored their cellular and molecular devel-

opment over time by daily flow cytometry measurements.

Thus, we obtained quantitative information on the expansion

of the two populations, and on the dynamic re-establishment

of Rex1 heterogeneity, which allows for evaluating the

consistency of our model predictions.
In addition to intracellular mechanisms, cellular properties

such as proliferation rates, survival and heredity structures

might also impact the establishment and the maintenance of

the population heterogeneity of self-renewing mESCs. How-

ever, existing intracellular network models represent mESCs

solely in terms of their intracellular protein concentrations,

neglecting any aspects of cell division, cell death or cellular

relations. In order to evaluate the experimental cell sorting

data also considering potential regulatory effects of cellular

properties, a more comprehensive modelling framework

is required.

Here, we present an agent-based model that integrates TF

dynamics and cell signalling into autonomous, cellular

agents with individual properties. Applying this model, rel-

evant parameters such as cell cycle times and apoptosis rates

can be derived directly from experimental results. In line

with recent findings based on live cell image analyses [15,17],

our model-based analysis provides strong evidence for

stochastic fluctuations and bistability underlying Nanog het-

erogeneity. Moreover, our modelling results predict that

state-specific proliferation capacities also impact on the

expected frequency of state transitions and that this effect can

be revealed by the analysis of pairs of daughter cells.
2. Material and methods
2.1. Cell culture and cell counts
In Rex1GFPd2 mESCs (described in [28]), a destabilized GFP

protein is expressed from the Rex1 locus. We used this cell line,

because the construct ensures a comparable half-life of 2 h

between the GFP and Rex1 protein, which is essential to quanti-

tatively monitor the dynamic behaviour of mESCs also over

short time scales. Rex1GFPd2 cells were cultured without feeders

on plastic coated with 0.1% gelatin in LIF/serum conditions

(DMEM (glutamax high-glucose, Gibco) media supplemented

with 10% FBS (Gibco), 0.055 mM b-mercaptoethanol (Gibco),

1 �MEM non-essential amino acids (Invitrogen), 5000 m ml21

penicillin–streptomycin (Invitrogen) and 16 ng ml21 LIF (gener-

ated by the MPI-CBG, Dresden)). Cells were seeded at a density

of 1.4 � 104 cells per cm2 and split after 3 days in culture. To

determine the number of living and dead cells, cultured cells

were treated with trypsin, stained with trypan blue and counted

using a Countess automated cell counter at different time points.

2.2. Flow cytometry measurements
For the cell sorting experiment, Rex1GFPd2 mESCs were sorted

into RH and RL cells using a BD FACSAria III sorter. Sub-

sequently, six replicates of each subpopulation were cultured

under LIF/serum conditions. Flow cytometry analyses of the

sorted populations were performed every day over a period of

11 days using a BD FACSCalibur cytometer. Data were analysed

using BD CELLQUEST PRO Software.

2.3. The intracellular network models
The transcriptional regulation of the pluripotency factors Oct4,

Sox2, Nanog and Rex1 has been modelled by two different

interaction networks. The main difference between the two

models is how autocrine Fgf4/Erk signalling integrates into the

core pluripotency network. The topology of the fluctuation

model is outlined in figure 1a. This model has been demonstrated

to consistently describe culture-dependent Nanog expression

patterns observed in mESCs populations [22]. The topology of

the oscillation model is shown in figure 1d. We previously
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showed that an activator–repressor system between Nanog and a

hypothetical factor X can establish sustained oscillations [27]. Here,

we assume that Fgf4/Erk is part of the regulatory cycle (i.e. it

replaces X), because Fgf4 has been shown to be secreted by cells

with high Nanog expression [29], and Erk has been demonstrated

to repress Nanog transcription [12,30].

In both models, regulatory interactions between Oct4–Sox2

heterodimers, Nanog and Rex1 proteins, and Fgf4/Erk signalling

are modelled by a set of coupled stochastic differential equations.

The equations describing the temporal changes of Oct4–Sox2,

Nanog and Rex1 concentrations (denoted as [OS], [N] and [R])

are equal for the fluctuation and the oscillation model and are

given by

d[OS]

dt
¼ s1;2 � ½OS�2

ð1=k þ ½OS�Þ2 � dO � dS

� dOS � ½OS� þ jð0; sOSÞ � ½OS�;

d½N�
dt
¼ s3 � ½OS�
ð1=k þ ½OS�Þ þ

s4 � ½N�2

ð1=kN þ ½N�Þ2 þ p � ½E�
� dN � ½N�

þ jð0; sNÞ � ½N�
and

d½R�
dt
¼ s5 � ½OS�
ð1=k þ ½OS�Þ þ

s6 � ½N�2

ð1=k þ ½N�Þ2
� dR � ½R� þ jð0; sRÞ � ½R�:

The regulation of Fgf4/Erk signalling is specific to the network

models. In the fluctuation model, the Fgf4/Erk cascade (denoted

as [E]) is assumed to be activated by Oct4–Sox2 heterodimers

(as described in [31–33]):

d½E�
dt
¼ s7 � ½OS�
ð1=k þ ½OS�Þ � dE � ½E� þ jð0; sEÞ � ½E�:

In the oscillation model, Fgf4/Erk is proposed to be activated

by Nanog homodimers (as suggested in [29])

d½E�
dt
¼ s7 � ½N�2

ð1=k þ ½N�2Þ
� dE � ½E� þ jð0; sEÞ � ½E�:

Transcription rates are referred to as si (with i [ ð1; 2; . . . ; 7Þ).
The regulation of the Oct4–Sox2 heterodimer is described by a
combined transcription rate termed s1,2, which is composed

of two transcription rates s1 and s2 for Oct4 and Sox2, respecti-

vely, and a formation rate for the heterodimer (cf. [27]). Binding

rates are denoted as k and the repression rate of Nanog as p.

All proteins and protein complexes are assumed to degrade by

first-order kinetics with protein-specific degradation rates dj

(with j [ ðOS; N; R; EÞ). Furthermore, we assume that the

expression dynamics of all factors are affected by a background

noise termed j. The stochastic noise is implemented as a zero-

mean Gaussian process, which is multiplied by the respective

protein concentration. Modelled in this way, the noise increases

linearly with gene expression to account for the lower variability

of protein levels within the NL/RL state compared with the

NH/RH state (cf. width of the two peaks of the fluorescence distri-

butions in figure 1c). The parameter sj (with j [ ðOS; N; R; EÞ)
defines the protein-specific noise amplitude. One time unit t corre-

sponds to 1 h in an experimental setting. Further details on the

network models can be found in [22,27]. Parameters of both intra-

cellular network models have been adjusted previously to fit

bimodal Nanog and Rex1 distributions as obtained from flow cyto-

metry analysis of mESCs cultured in LIF/serum conditions.

Further details and parameter values are given in electronic

supplementary material, table S1.

2.4. The agent-based model framework
In the agent-based model, each living cell is characterized by a

set of attributes including a lifetime, a cell fate and an intrinsic

cell state that is defined based on the expression of a particular

set of genes. In this study, the intrinsic state of a mESC depends

on the expression of Nanog and Rex1 determined either by the

fluctuation or by the oscillation model described above. Cell

fate decisions and protein concentrations are evaluated in

discrete time steps mimicking 1 h in an experimental setting.

To simulate a cell’s life cycle, we assumed that each cell can die

with a rate d at any time. In order to estimate the death rate of

mESCs cultured in LIF/serum conditions in an unperturbed situ-

ation, we counted dead cells at various time points after seeding.

Dead cells are degraded constantly, i.e. they are only visible
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(countable) for a certain time period. We found that the proportion

of dead cells in culture is about 10% (+1.6%). Assuming that dead

cells are degraded within 8 h (a rough estimated based on protein

half-lives), a death rate d of 0.014 (cells per hour) in the agent-based

model is required to account for a constant proportion of about

10% visible dead cells. The death rate has been kept constant for

all model scenarios and conditions.

Cell division has been modelled in two different ways

(cf. electronic supplementary material, figure S1). In the first

scenario, the cell’s lifetime persists until a predefined cell cycle

time has been reached. Then, the cell divides into two daughter

cells, which inherit the protein concentrations from the mother

cell and get individual cell cycle times. Because the cell sorting

experiment indicated differences in the proliferation capacity of

RH and RL cells (cf. Results), in this scenario, cell cycle times

of daughter cells are assumed to depend on the Rex1 concen-

tration of the mother cell just before division. Technically,

individual cell cycle times were randomly chosen either from a

normal distribution with mean cctRH, if the mother cell is RH,

or from a normal distribution with mean cctRL, if the mother

cell is RL (cf. electronic supplementary material, figure S1a).

Furthermore, we assumed that a cell retains the chosen cell

cycle time until it dies or divides, even if the cell changes its

expression state in between. In contrast, in the second division

scenario, cells divide with a certain probability. To account for

differences in the cellular turnover of RH and RL cells, in this scen-

ario, the probability of cell division depends on its current Rex1

concentration and increases with the cell’s lifetime (cf. electronic

supplementary material, figure S1b). Thus, the probability for a

cell to divide dynamically changes according to its actual

expression state. Also in this scenario, protein concentrations are

inherited equally to the two daughter cells.

Owing to the assumption that Rex1 is a direct target gene of

Nanog, Rex1 and Nanog expression strongly correlates such that

almost 100% of simulated mESCs possess either high levels of

both proteins or low levels of both proteins (i.e. mESCs are either

NH/RH or NL/RL, cf. electronic supplementary material, figure

S3 [15]). Thus, mechanisms that are proposed to depend on the

expression state of a cell can be linked to Nanog or Rex1 expression

without changing the model results.

2.5. Parameter estimations based on cell counts
To estimate Rex1-related mean cell cycle times (i.e. the model

parameters cctRH and cctRL) of mESCs cultured in LIF/serum con-

ditions simultaneous, we performed parameter screenings for the

fluctuation and the oscillation model. Therefore, we simula-

ted mESC growth for a broad range of cctRH and cctRL with the

objective to minimize the residual sum of squares (RSS) between

measured and simulated cell counts. Because differential cell

cycle times impact the proportion of RH and RL cells (cf. Results),

we adapted the intensity of Nanog repression by Fgf4/Erk (i.e. the

model parameter p) prior to the parameter screenings to achieve

a final proportion of 75% RH and 25% RL cells similar to the

experimental results. Apart from the repression intensity p, all par-

ameters of the intracellular network models remained unchanged.

Details on parameter screenings are given in the electronic

supplementary material.

2.6. Statistical analysis of cellular genealogies
To investigate whether different assumptions on intracellular

mechanisms (e.g. fluctuations versus oscillations) or on cellular

properties (e.g. Rex1-related proliferation rates and their origin)

result in detectable correlation structures between maternally

related cells, simulated cellular genealogies (as shown in

figure 3a) have been evaluated statistically. Therefore, the approach

described by [34] has been adapted to measure similarities in

the cell cycle times between related cells, and correlations in the
number of state transitions from the NH into the NL state or vice

versa. Briefly, observed differences between related cells in simu-

lated genealogies have been averaged and compared with null

distributions that comprise expected differences under the assump-

tion that there are no correlations between related cells. Null

distributions are obtained by a randomization procedure, which is

explained in detail in the electronic supplementary material. An

empirical p-value has been calculated as the fraction of expected

values from the null distribution that are less or equal to the

observed value. A significant result, defined by a p-value less than

0.05, indicates that related cells are more similar in their cell cycle be-

haviour or in their expression changes than expected assuming a

random cell cycle distribution or uncorrelated transitions.
2.7. Software
The agent-based model has been implemented in JAVA programing

language. Simulation and experimental results have been evalu-

ated using R [35] and MATHEMATICA (Wolfram Research Inc.,

Champaign, IL).
3. Results
3.1. Two mechanistic explanations for Nanog

heterogeneity in self-renewing mouse embryonic
stem cells

The intracellular, transcriptional regulation of the pluripotency

factors, Oct4, Sox2, Nanog and Rex1, has been modelled by

two different interaction networks. The fluctuation model inte-

grates autocrine Fgf4/Erk signalling into the core pluripotency

network as illustrated in figure 1a. We have demonstra-

ted that the negative regulation of Nanog by Fgf4/Erk can

lead to the coexistence of two stable expression states (bistabil-

ity), whereas a sufficiently strong transcriptional noise is

capable to induce changes between them [22]. Thus, the activity

of Fgf4/Erk signalling renders mESCs susceptible to state

transitions, but it does not trigger them. Integrated in an

agent-based model framework, it is now possible to analyse

stochastic fluctuations between high and low Nanog expres-

sion levels in related cells. In particular, simulated single cell

time courses can reveal dynamics of protein expression as illus-

trated for one selected mother cell and its progeny in figure 1b,

whereas snapshots at different time points provide distri-

butions of the expression levels that can compared with flow

cytometry data. As shown in figure 1c, the parameters of the

fluctuation model can be adapted to resemble flow cytometry

data on fluorescently labelled populations of mESCs cultured

in LIF/serum conditions (cf. electronic supplementary material

and [22]). However, noise-driven fluctuations are not the only

possible explanation for reversible state transitions leading

to bimodal distributions of Nanog and Rex1 expression.

In the oscillation model, Nanog and Fgf4/Erk are assumed to

be part of an activator–repressor system as illustrated in

figure 1d. We previously demonstrated that such a network

structure can, in general, account for the existence of a cyclic

attractor such that Nanog expression levels change periodically

[27]. To incorporate latest findings on Fgf4/Erk signalling, we

amended this former network model assuming that high

levels of Nanog activate Fgf4/Erk signalling [29], which, in

turn, inhibits Nanog transcription [12,30]. Consequently, in

the oscillation model, Nanog is downregulated in mESC that

express high levels of Nanog. Lower levels of Nanog, however,
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lead to a decline in Fgf4/Erk signalling, its repressive activity

diminishes, mESCs can regain Nanog and the regulatory

cycle starts again as shown in figure 1e. Thus, in contrast to

the fluctuation model, Fgf4/Erk signalling is actively involved

in the dynamics of state transitions. Similar to the fluctuation

model, Rex1 mimics the oscillatory behaviour of Nanog and

the model features characteristic properties of mESCs cultured

in LIF/serum conditions (figure 1f ).

In the following, we evaluate the consistency of the two

agent-based models with the new experimental data on the

reestablishment of Rex1 heterogeneity in sorted subpopulations.

3.2. Model assessment regarding transcriptional
dynamics

Rex1GFPd2 mESCs cultured in LIF/serum conditions establish

a stable bimodal distribution of 70–80% RH and 20–30% RL

cells (figure 1c and [21,24,36]). Separating RH and RL cells by
flow cytometry and replating the purified subpopulations

in identical conditions, the number of mESCs increases expo-

nentially in initially sorted RH (sRH) and sorted RL (sRL)

populations as shown in figure 2a. However, the increase is

apparently lower in sRL compared with sRH populations. As

the number of dying cells fluctuates around 10% likewise in

both populations (cf. electronic supplementary material,

figure S2), the difference in expansion has to result from differ-

ences in the proliferative capacity of the cells. To evaluate this

hypothesis, we applied the agent-based model to estimate

the mean cell cycle time of the mESCs in the RH state (cctRH)

and of mESCs in the RL state (cctRL) based on these cell

counts. Therefore, we simulated a comparable cell sorting

experiment for a wide range of parameter combinations

using both the fluctuation model and the oscillation model.

Figure 2 summarizes the experimental and the model-based

results for the fluctuation model (upper row, figure 2a–c)

and for the oscillation model (bottom row, figure 2d–f ).



Table 1. The dependency of NH cells and state transition ( per cell cycle) on cell cycle times and on Nanog repression by Fgf4/Erk signalling.

identical mean cell cycle times differential mean cycle times

cctRH 5 cctRL 5 12.5 h cctRH 5 12.5 h and cctRL 5 20.5 h

fractions state transitions fractions state transitions

% of NH NH to NL NL to NH % of NH NH to NL NL to NH

repression

p ¼ 10 97.77 0.0005 0.0003 98.72 0.0005 0.0003

p ¼ 15 74.03 0.0019 0.0010 90.41 0.0018 0.0009

p ¼ 20 34.41 0.0033 0.0020 75.44 0.0043 0.0014

p ¼ 25 23.97 0.0041 0.0023 53.97 0.0067 0.0019
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Estimating the two mean cell cycle times cctRH and cctRL

using the fluctuation model (cf. Materials and methods), we

obtained mean cell cycle times of 12.5 and 20.5 h for sRH and

sRL, respectively (figure 2a). In the course of the experiment,

the sorted populations revert into the original population mix-

ture of RH and RL cells. The corresponding fractions of RH cells

and RL cells in the sorted populations are shown in figure 2b,c.

Starting with 100% RH cells (sRH populations), the initial distri-

bution of about 70% RH and 30% RL cells is restored by day 3–4

after seeding both in culture and in the model (figure 2b).

Starting with 100% RL cells (sRL populations), the initial equi-

librium is also re-established, but considerably slower, because

70% RH cells have to be ‘produced’ either through state

transitions of RL cells or through the proliferation of RH cells

(figure 2c). Around day 5–6, the proportion of both subpopu-

lations is about 50%. 70% RH cells have been reached by day

11 both in vitro and in silico. Without any additional adjust-

ments, the simulation results of the fluctuation model are

highly consistent with the experimental data.

Applying the oscillation model to estimate the two mean

cell cycle times cctRH and cctRL, we obtained a much larger

difference between the two subpopulations. In particular, we

estimated mean cell cycle times of 11.0 and 74.5 h for sRH

and sRL, respectively (figure 2d ). However, comparing the

corresponding predicted cell fractions with the experimental

measurements (figure 2e,f), it turns out that the oscillation

model fails in reproducing the dynamic re-establishment of

sRL populations. The reason for this is the underlying cyclic

Nanog attractor. In such a dynamic system, sorting cells

according to their expression levels corresponds to a selection

of only those cells that are at the same ‘position’ of the regulat-

ory cycle (i.e. that have a clear tendency for the direction of

expression changes). More precisely, the oscillation model pre-

dicts almost 100% of the sorted RL cells to express low levels of

Nanog (cf. electronic supplementary material, figure S3a).

Thus, the concentration of Fgf4/Erk in all these cells declines

and Nanog transcription can be reinforced. Culturing RL

cells in identical conditions, Nanog expression is upregulated

almost simultaneously in all cells leading to a conversion in

the proportions of RL/NL and RH/NH cells as illustrated in

figure 2f. This synchronization is lost over time because of the

transcriptional background noise.

These results argue against an oscillatory system as a poten-

tial explanation for reversible Nanog and Rex1 expression

changes, and clearly favour the noise-driven, bistable system
underlying Nanog heterogeneity. Moreover, the analysis

revealed that mESCs with high Nanog/Rex1 expression need

to have a higher proliferation capacity compared with cells

with low Nanog/Rex1 levels. Consequently, we next studied

how differential cycle times can impact the dynamic equili-

brium of unbiased and primed mESCs using the agent-based

fluctuation model.
3.3. The effect of state-specific proliferation capacities
on population heterogeneity

Differential cell cycle times shift the proportion of cells in

favour of the subpopulation with the lower cycle time, in this

case towards undifferentiated RH/NH cells (table 1). For

example, assuming identical mean cell cycle times for both

subpopulations (e.g. cctRH¼ cctRL¼ 12.5 h), the fraction of NH

cells is about 75%. In contrast, differential cell cycle times, as

estimated from the experimental data (i.e. cctRH ¼ 12.5 h and

cctRL ¼ 20.5 h), increase the fraction of NH cells to 90% under

identical conditions. However, the strength of Nanog repres-

sion (modelled by repression rate p) has been shown to

modulate the frequency of state transitions between the high

and the low expression pattern [22] and can therefore antagon-

ize the effect of differential cell proliferation. As illustrated by

the heat map in figure 3a, an increase in Nanog repression

enhances the proportion of NL cells (horizontal green to

orange colour shift) independent of the particular cell cycle

times or cell cycle time difference (i.e. cctRH2cctRL). However,

the larger the difference between the two mean cell cycle

times, the less impact has Fgf4/Erk signalling on the compo-

sition of mESCs populations (vertical orange to green shift in

figure 3a). Notably, in mESCs populations with differential

cell cycle times, the frequency of transitions from the NH to

the NL state is, in fact, increased compared with populations

with homogeneous proliferation capacities. However, elevated

transitions are compensated through the higher proliferation

of cells with high Nanog and Rex1 expression (table 1).

Summarizing, a higher Nanog repression is required to

establish a dynamically stabilized mESC population with

around 75% NH/RH and 25% NL/RL cells considering differ-

ential cell cycle times of 12.5 and 20.5 h for cells with high and

low expression levels, respectively (figure 3b). Because it is

largely unknown how mESCs acquire such TF-related cell

cycle times, in the last section, we speculate about potential
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Figure 4. Comparison of two cell division scenarios using cellular genealogies. (a,b) Simulated cellular genealogy of one mESCs clone assuming maternally inherent
cell cycle times. Cells are depicted as branches starting with the founding cell at the root. Dead cells are marked by crosses. Time is depicted radially. The colour code
in (a) depicts Rex1 expression, whereas in (b), individual cell cycle times are illustrated. Black branches indicate that cell cycle times are not measurable owing to cell
death, or incomplete cell tracks. (c,d) Simulated cellular genealogy of one mESCs clone assuming dynamic division probabilities. (e) A comparison of observed
differences in the cell cycle times of simulated sister cells using the two model scenarios (grey bars) with those of random pairs (black bars). Large cell cycle
time differences more than 5 h are extremely rare among sister cells with inherent cell cycle times (light grey), but can be observed between sister cells with
dynamic probabilities (dark grey). (Online version in colour.)
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mechanisms and evaluate their implications on correlation

structures between related mESCs.
3.4. Analysis of cellular genealogies reveals
correlation structures between single mouse
embryonic stem cells

Cellular genealogies as shown in figure 4a,b are suitable instru-

ments to visualize the divisional history of a single cell together

with individual properties such as cell cycle times or gene

expression levels. Experimentally reconstructed cellular genea-

logies from live cell image data (like in [17]) successfully

demonstrated this approach. However, based on these data, it

is not yet possible to directly recover the underlying gene regu-

latory network and the mechanisms behind the emergence of

clonal relationships. Here, we demonstrate that the agent-

based model can be used to evaluate the outcome of different

hypothesis on underlying mechanisms by providing in silico
genealogies. In particular, we show how different model scen-

arios on the establishment of differential cell cycle times can

be distinguished based on a sophisticated statistical analysis

of cellular genealogies (Materials and methods; [34,37]).

In fact, we considered two different scenarios on how Rex1-

related cell cycle times can be established and propagated in

simulated mESC populations. In the first scenario, we supposed

that cell cycle times of daughter cells are determined by the

Rex1 concentration of the mother cell and, thus, remain prede-

fined over a cell’s lifetime (cf. Material and methods). The

internal clock of a cell increases until cell cycle is completed

or until the cell dies. One simulated genealogy assuming mater-

nally inherited cell cycle times is shown in figure 4a. The colour
code indicates the expression state of a cell. Only a few mESCs

switch from the RH (green) into the RL (orange) state, or vice

versa, within 3 days of in silico culture. The individual cell

cycle times of the cells are illustrated in figure 4b demonstrating

that changes in the proliferation capacity owing to state

transitions consolidate only after cell division.

Alternatively to a fixed, imprinted cell cycle time, mESCs

may rather divide with a certain probability independent of

their history. In the second scenario, we therefore assumed

that the division probability of a cell depends on the lifetime

and the current Rex1 expression level of the cell itself, whereby

RH cells have an overall higher division probability than RL

cells (cf. Material and methods). Thus, the proliferation

capacity of a cell can change dynamically according to with

the Rex1/Nanog expression. A simulated genealogy of this

alternative scenario is depicted in figure 4c. A few mESCs

change their expression state from RH to RL, which leads to

a simultaneous decrease of their division probabilities.

However, the intrinsic probability of a cell to divide cannot

be measured experimentally and differences in the cell cycle

times can be observed only after cell division as shown in

figure 4d, very similar to the first model scenario (cf.

figure 4). Thus, a direct comparison of measured cell cycle

distributions (e.g. from single-cell tracking data) will not

allow to distinguish between the two model scenarios.

However, the assumption of inherent cell cycle times

implies that related cells are rather similar in their cell cycle

behaviour, a phenomenon that has already been observed in

haematopoietic stem cell populations [38]. Analysing the differ-

ences in cell cycle times between sister cells using a number of

simulated genealogies from this model scenario (cf. Material

and methods), only small differences are observed as shown
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by the light grey bars in figure 4e. A second peak at larger differ-

ences is impossible owing to the heredity structure. In contrast,

cell cycle times of sister cells with individual division probabil-

ities can differ more clearly, because mESCs that change the

expression state adapt their proliferation rate even before the

cell cycle is completed (dark grey bars in figure 4e). Thus, cell

cycle times of sister cells can diverge from each other more

clearly. A similar bimodal distribution of cell cycle time differ-

ences is expected, if cycle times are assigned randomly as

shown by the black bars in figure 4e (cf. randomization

procedure in the electronic supplementary material).

In conclusion, a comparison of cell cycle time differences

between sister cells based on cellular genealogies can indicate

whether proliferation capacities are more likely maternally

defined and inherited or regulated in a cell-autonomous fashion.

However, agent-based models are required for the development

of testable predictions (e.g. reference genealogies) to which

experimental results can be compared.
0160167
4. Discussion
We established an agent-based modelling framework to

discriminate between noise-driven fluctuations and determi-

nistic oscillations as potential reasons for the observed Nanog

heterogeneity in mESC cultures. Comparing model predictions

on the expansion of mESCs and on the establishment of

molecular heterogeneity with experimental data, we found

stochastic transitions between two stable Nanog expression

states to be consistent with distributions of Nanog and Rex1

expression in both heterogeneous and sorted mESC popu-

lations. An oscillatory system, in contrast, fails to describe the

dynamic reestablishment of Rex1 heterogeneity in presorted

cell populations, owing to a synchronization effect induced

by the sorting procedure. Thus, we conclude that pluripotent

mESCs can express high and low levels of Nanog because of

an intrinsic bistable regulation pattern of Nanog, which is

retained in LIF/serum conditions through the activity of

Fgf4/Erk signalling. The ability of mESCs to reversibly

change between the different expression patterns is facilitated

by random fluctuations in gene expression (i.e. noise-driven).

This conclusion is supported by recent experimental find-

ings showing the stochastic nature of Nanog state transitions

by means of quantitative single-cell expression analysis

[15–17]. In particular, Abranches et al. and Singer et al.
compared Nanog expression dynamics of single mESCs in

different culture conditions revealing that Nanog fluctuations

are an inherent property of pluripotent mESCs [14–16].

Additionally, Singer et al. [15] demonstrated that mESCs

cultured in LIF/serum conditions establish two distinct

Nanog expression states, in which they remain for multiple

cell cycles. During these intrastate periods, expression levels

have been shown to vary on shorter time scales owing to tran-

scriptional bursting [15,16]. Functional state transitions from

the NH to the NL state have been found to occur more often

than vice versa [15], similar to the predictions of our fluctuation

model (cf. table 1). Although Filipczyk et al. [17] did not

observe a clear bimodal Nanog fluorescence distribution,

they also reported the existence of relatively stable states of

high and low Nanog expression that are influenced by biologi-

cal noise. Analysing expression levels of a huge number of

related mESCs, Filipczyk et al. [17] confirmed that Nanog

state transitions are rare and uncorrelated events following
no deterministic pattern (cf. our statistical analysis of simulated

genealogies, electronic supplementary material, figure S5).

Moreover, in agreement with the cell sorting data presented

here, the establishment of the observed Nanog distribution

required many generations, and no evidence for oscillations

could be documented [17].

An alternative noise-driven system that can account for

reversible transitions in Nanog expression has been suggested

by Kalmar et al. [13]. In contrast to the fluctuation model pro-

posed by us, the authors suggested the existence of only one

stable expression state at high Nanog levels (monostability).

Excursions from this state towards a region of low Nanog

expression are likewise induced by a background noise [13].

However, as no second stable state exists, cells rapidly return

to their origin leading to very short residence times of mESCs

in the ‘NL state’. This prediction contradicts experimental

findings on rather long residence times in both Nanog

expression states [15,17]. In contrast, residence times for both

Nanog expression states are predicted to be substantially

longer in a bistable system, exceeding typical cell cycle times

of self-renewing mESCs [22,27].

A hallmark of self-renewing mECSs is their fast cell cycle

progression (about 10–16 h) owing to a very short G1 phase

[39]. In particular, mESCs omit the early G1 phase, which is

known to be the crucial period for cell fate decision processes

as differentiation trigger, such as Erk signalling, become

active [39,40]. Upon differentiation, however, the duration of

G1 increases substantially resulting in longer cell cycle times,

as shown for mouse and human ESCs [40,41], and neural

stem cells (NSCs) [40]. In this regard, it seems highly relevant

that our model analysis reveals differential mean cell cycle

times of 12.5 h for NH/RH and 20.5 h for NL/RL cells.

Although the molecular basis for this increase is not yet clear,

our model analysis proposes a (direct) link between Nanog

expression and cell cycle regulation as a consistent explana-

tion of the experimental data. We hypothesize that Nanog

downregulation prolongs the cell cycle duration of mESCs

such that cells in the NL/RL state are exposed to differentiation

cues longer compared with NH/RH cells. This could be

another explanation for the observed tendency for NL/RL

cells to differentiate (gate-keeper function). Moreover, par-

ameter screens indicated that the model results are more

robust against variations in the cell cycle time of RL cells com-

pared with RH cells. While the quality of the model adaptation

(measured by a least-square error approach) is rather insensi-

tive against variations of the mean cycle times of RL cells in

the range between 16.5 and 24.5 h, the mean doubling time

of RH cells can only vary in the order of about 0.5 h to retain

the overall quality of fit (cf. electronic supplementary material,

table S2). These findings suggest that cells in the NL/RL state

display a higher diversity in their proliferation capacities

compared with mESCs in the NH/RH state.

In the agent-based model, we were faced with the question

if and how the Rex1-related proliferation rates are passed on

after cell division. Because experimental references on that

issue are missing, we applied the agent-based model to

contrast two opposing scenarios. In the first model scenario,

mESCs possess an innate cell cycle time, which is determined

by the expression state of the mother cell at the time of division.

In the second model, mESCs are assumed to divide with a

certain probability according to their current expression state.

By means of cellular genealogies as shown in figure 4, we

were able to analyse correlation structures for these different
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assumptions, which can eventually be compared with exper-

imental data and thus provide new insights into heredity

structures among self-renewing mESCs. However, neither

completely inherited nor a completely dynamic cell cycle regu-

lation might be the most realistic scenario. Heredity structures

are supposedly more complex and subject to external pertur-

bations such that an imprinted cellular programme may be

overridden, e.g. through individual cell–cell interactions or

other spatio-temporal effects. Related to the latter reasoning,

we recently demonstrated that agent-based models can be

extended by a spatial dimension based on live cell imaging

data [23]. A comparison of in vitro with in silico colonies with

respect to spatial fluorescence patterns revealed that TF-related

cell cycle times and cell–cell adhesions favour the clustering of

mESCs with high Rex1 expression in the interior of colony

structures [23]. Whether differential cell properties result

from intrinsic cell states or whether individual properties pro-

mote a certain state themselves (e.g. owing to the establishment

of cell–cell interactions) has yet to be resolved.

In conclusion, experimental and computational findings on

pluripotent mESCs reveal that Fgf4/Erk signalling generates a

multistable regime in which cells with different intracellular

and cellular properties can coexist. In the presence of the

cytokine LIF, a dynamic equilibrium of cells with high and
low Nanog expression is maintained. However, we argue that

upon LIF removal, this equilibrium is disturbed such that all

mESCs gradually switch into the NL state. In the NL state,

cell cycle times become prolonged and cell–cell interactions

are relaxed, potentially facilitating lineage commitment into

one of the three germ layers. How pluripotency regulation

and lineage-specific differentiation are mechanistically linked

is largely unknown and needs to be investigated more exten-

sive. Quantitative multiscale models can support this process

by providing hypotheses and evaluating their consistency

with experimental data.
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