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Abstract

In public health programmes interventions are frequently combined with hoped for ‘synergies’ 

[22]. However, there is not yet a precise definition for synergy between interventions that captures 

the idea that there is added benefit at the population level in using them together. To explore the 

synergy between interventions in the context of endemic disease, we consider a general model of 

infection spread in a heterogeneously mixing population. We consider interventions which may 

alter individuals’ infectiousness, susceptibility, profile of infectiousness through time and survival 

while infected. Allowing general patterns of overlap and targeting in those receiving the 

interventions, we show how to compute changes to epidemiological indices such as R0, and 

introduce a simple technique for calculating equilibrium prevalences and incidences via an iterated 

map. We argue for a particular definition of synergy and investigate its behaviour, both analytically 

and numerically, concluding that it is easiest to achieve synergy between interventions which 

perform poorly in isolation; implementation strategies that minimize the overlap of different 

interventions in the population tend to achieve more synergy; and that in populations with 

heterogeneous risk, interventions that are redundant when universally targeted can regain 

substantial synergy when applied in a targeted manner.
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1 Introduction

It is often the case that there is a range of possible interventions against an infectious disease 

to chose from, each of them being only partially effective on their own. This raises questions 

about choices of intervention combinations and the patterns of their distribution. It is also 

often the case that populations are not homogeneous, with some individuals being more at 

risk of disease, or contributing more to its spread. This raises questions about targeting 

interventions towards higher-risk groups1. It is always the case that resources are limited. 
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This means that combinations of interventions and strategies for targeting and distributing 

them should be chosen so as to maximise public health benefit. Practical and ethical 

complexities rarely lend themselves to a precise notion of utility or constraints, allowing a 

formal optimization problem to be defined, but general understanding and ‘rules of thumb’ 

are still useful for policy-makers. The goal of this paper is therefore to study the interactions 

of interventions in structured populations, and to give a precise meaning to the notion of 

synergy - two interventions combining to give more than additional benefit at the 

population-level - and investigate its behaviour.

Each of these considerations applies particularly to the case of HIV. Apart from condoms, 

and changes in risk behaviour, the prevention toolbox for HIV is painfully limited. Most 

optimistically, male circumcision (MC) has been shown to be around 60% effective at 

preventing acquisition of the infection in men (but is not thought to affect infectiousness 

upon acquisition) [5, 6, 14, 28]. Increasing roll-out of (early) anti-retroviral therapy (ART) 

holds some promise for prevention [13, 21] since it likely reduces infectiousness of those on 

treatment [4, 29], although in extending life, it provides more opportunities for transmission. 

Future prospects include microbicides (for use by women) [27], pre- and post-exposure 

prophylaxis [8, 1, 26], and yet more distant, vaccines [3]. All of these will almost certainly 

be of only partial efficacy. Heterogeneities in sexual behaviour are known to be important to 

the epidemiology of sexually transmitted infections (STIs) like HIV [2, 16], which means 

that in addition to only being able to apply interventions like MC to portions of the 

population (men), targeting those at higher risk is likely to yield greater dividends.

The aim in the rest of this paper is then to consider a model of infectious disease spread 

which includes enough features to describe the case of HIV, while remaining as general and 

simple as possible. We derive techniques to handle multiple, overlapping, and targeted 

interventions in heterogeneously mixing populations, and for computing their effect on 

epidemiological indices such as R0 and equilibrium prevalence. We then investigate under 

what circumstances interventions combine synergistically, both analytically and numerically, 

trying here to draw out a general picture and understanding rather than focusing on 

particular cases.

The rest of this paper is set out as follows. In Section 2 we introduce the general model class 

that we analyse, and explain how its features are motivated by properties of HIV and its 

interventions. In Section 3 we show how to compute R0 and equilibrium prevalence and 

incidence for this class of models. Equilibrium quantities can be efficiently obtained by 

iterating a discrete map. This, and its consequences, are proved in the Appendix. In Section 

4 we set out how to calculate changes in these quantities under interventions. In Section 5, 

we define a metric of synergy between interventions and show that combined interventions 

do not have an immediate synergistic effect on incidence because the synergistic effect is 

mediated through reductions in prevalence. In Section 5.2, we show that synergy does not 

occur for perfect vaccines in homogeneous populations, and then, in Section 6, go on to 

1Here and elsewhere in this paper, we use the term high-risk group in the sense familiar in the epidemiology of sexually transmitted 
infections, i.e. to mean those individuals who, through their behavioural or biological characteristics, are more likely to become 
infected and subsequently transmit infection.
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consider more general interventions and populations numerically. Finally, in Section 7 we 

summarize and discuss our results, including mention of some of the short-comings of our 

analysis.

2 General model considered

Both the hazard of dying, and infectiousness are known to vary substantially during the 

course of a typical HIV infection [17, 25]. ART is typically commenced when the CD4-

positive lymphocyte count has dropped below a threshold, which is equivalent, on average, 

to starting ART at a certain time after infection. The effect of ART is both to prolong life, 

and to reduce infectiousness [5, 6, 14, 28]. Thus, to realistically model this, one needs to 

explicitly include time-since-infection for HIV. We will keep track of the number of 

individuals Nk(t) in class k, the number in class k who are susceptible Sk(t), and the number 

who have been infected for a length of time τ by introducing the density Ik(t, τ). The 

normalised infectiousness after this length of infection will be denoted ϕ(τ); and the excess 

death rate, ν(τ), over the constant background mortality rate µ. Given that some 

interventions against HIV apply to only one sex, it will be necessary to model genders 

explicitly. Further, differences in contact rates across a population are important for HIV and 

other STIs, heterogeneity that is most simply included by stratifying the population into two 

activity groups. To include 2 genders and high- and low-sexual activity groups, we need 4 

groups. Specifying the potential for different groups to infect one another in this context or 

more generally, requires a mixing matrix, which we will denote K. For a heterosexual 

population along these lines, with i = 1 … 4 corresponding to high-activity women, low-

activity women, high-activity men, and low-activity men respectively, K takes the form:

(1)

where M and W are 2 × 2 matrices. Generally, K will be a square matrix with non-negative 

entries at least some of which are positive.

Combining all these features leads us to a system of partial differential equations:

(2)

(3)

(4)
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(5)

where ∂x denotes partial differentiation with respect to a variable x. The quantity Bj(t) here 

denotes the recruitment rate into group j determined by the number of people beginning 

sexual activity in this group at time t. More generally, this might be group recruitment of any 

kind, including the standard example of birth.

We have not included a recovered class as clearance of HIV infection is not possible. 

Treatment of an infectious agent conforming to the SIR paradigm is possible within this 

framework if one is prepared to consider those with τ > T as ‘recovered’ for some T after 

which ϕ ≡ 0. However, one must take care of the meaning of prevalence in this case, which 

would measure the fraction no longer susceptible (i.e. lump both infectious and recovered 

individuals together).

3 Epidemiological indices

In this section, we show how to compute 3 epidemiological indices relating to an infection 

described with a model given by Eqns.5, namely: the reproductive number R0; the 

prevalence of infection at equilibrium; the incidence of infection at equilibrium.

3.1  R 0 

The next generation matrix (NGM) [10, 9, 11], contains as its ij-th element the expected 

number of type i individuals infected by a single type j individual over their infectious 

period, in the limit of a large population. For this model then,

(6)

(7)

where

(8)

is the cumulative hazard of death, and where P is a diagonal matrix whose elements are the 

proportions of the total population in each class. The matrix P derives from the factors 1/Nj 

in the force of infection Eqn.5, and P−1 from the factor of Sj → Nj in Eqn.4. Eqn.7 has the 

interpretation as the sum of an individual’s infectiousness at different stages of infection, 

discounted by their probability of surviving to that stage.
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R0 is defined as the largest eigenvalue of the next generation matrix [10, 9, 11]. Thanks to 

Eqn.6, R0 can equally be computed as the largest eigenvalue of . In the sequel, we will 

prefer to work with .

For the special case of a heterosexual population, with classes specified as men or women 

with high- or low-levels of sexual activity, K is 4 × 4 block off-diagonal, as in Eqn.1. If the 

block representing transmission from women-to-men is denoted W, and the block 

representing transmission from men-to-women M, one can compute:

(9)

(10)

(11)

where 

3.2 Equilibrium prevalence

In this section, we show how to obtain the prevalence in each group at equilibrium.

Eqn 3 can be solved by characteristics, however we will restrict out attention to the long 

time limit t → ∞. In this limit

(12)

and since each class comprises infected and susceptible individuals

(13)

where  If we use this, and write xj for the equilibrium prevalence as a 

proportion of group j:

(14)

it follows straightforwardly that
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(15)

(16)

where bj (∞) = Bj (∞)/Nj(∞) is the asymptotic per-capita recruitment-rate into group j. 
This could be a birth-rate, or in the case of sexually transmitted infections, a rate 

representing sexual debut in a given class. Intuitively, Eqn.15 says that as generations pass at 

equilibrium, the number of infections (x) is maintained by the force-of-infection  acting 

on those still susceptible (1 − x).

In the Appendix, we show that the equations Eqn.15 have the following properties:

1. The equilibrium prevalence equations 15 always admit the disease-free 

solution x = 0, and if R0 < 1 this is the only solution.

2. If R0 > 1, there is precisely one non-zero solution, and the prevalences 

satisfy

(17)

where υ is the dominant eigenvector of  normalised such that maxi υi = 

1.

3. If υ > 0 (true if, as here,  is irreducible), we can obtain the solution by 

iterating the map

(18)

on x(0) = (1, …, 1)T.

The fixed-point condition for the map ℳ of Eqn.18 is a simple rearrangement of the 

equilibrium equations Eqn.15. Iterating Eqn.18 is akin to generating a continued fraction 

expression for the fixed point. The Appendix shows that this procedure does in fact 

converge.

3.3 Equilibrium incidence

Incidence to class j at time t is simply Ij (t, 0). Denote the per-capita incidence in class j in 

the long-time limit limt→∞ Ij (t, 0)/Nj(t) = yj. By Eqns. 13,14:
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(19)

4 Intervention categories

In this section, we show how the NGM changes under general combinations of 

interventions, and how to compute the changes in each of the epidemiological quantities 

described above.

Similarly to [23, 15], we will separate interventions into two broad categories: ‘U-control’ 

interventions which are applied to the whole population regardless of infection status; and 

‘I-control’ interventions which are applied only to a subset of the infected individuals (for 

example treatment or behavioural interventions targeted at those HIV infected). We will 

allow interventions to affect the susceptibility to infection and the infectiousness when 

infected separately (as, e.g. in [30]), and for them to have different effects when applied in 

combination to the same individuals. Each intervention can have its own coverage, which 

may be different in each group of the population, and which may overlap with the other 

interventions in a specified way.

4.1 U-control interventions

4.1.1 Homogeneous populations—To fix notation and introduce concepts, we first 

consider the case of a homogeneous population. There is assumed to be only one class, so 

that the mixing matrix K, the NGM, and  are simply numbers (1 × 1 matrices). We will 

consider two interventions (1 and 2) applied to the population so that a proportion p0 will 

receive no intervention, a fraction p1 intervention 1 only, p2 intervention 2 only, and p3 will 

receive both 1&2.

In common with, e.g. [30, 18], we allow U-control interventions to be only partially effective 

at reducing both susceptibility to infection, and infectiousness if infected (reflecting the 

properties of existing interventions such as MC). Denote by fi the factor reduction in 

infectiousness for those in group i, and the multiplicative reduction in susceptibility by gi for 

those in group i. We will generally assume that multiple interventions compound 

multiplicatively for f and g separately, but this is not necessary. Under the above scenario, 

the new NGM,  becomes:

(20)

capturing the reduced infectiousness of intervention and non-intervention individuals, and 

the proportion of contacts which are expected to be with one class or the other. This is 

defined in a standard way, and records the expected number of infections in the new classes 
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produced over the infectious period of a single individual in some new class. The new R0 is 

defined as the largest eigenvalue of this matrix.

To calculate the new equilibrium quantities, we will need the change in  . The force of 

infection splits as:

(21)

so that upon assigning these forked groups different infectious and susceptibility properties, 

the new version of Eqn.15 replaces  with

(22)

4.1.2 Take and degree—To clarify the role of the quantities f and g capturing the 

reduced infectiousness and susceptibility of intervention individuals respectively, consider 

the case with only one intervention applied to a fraction p of the population. Our efficacies 

(1 − f) and (1 − g) for preventing transmission and infection, respectively, are then related to 

the notions of ‘take’ and ‘degree’ for a vaccine [19, 12, 24]. If x̄ is the mean equilibrium 

prevalence across the vaccinated and unvaccinated groups, we can distinguish between three 

possible scenarios: 1) vaccinating everyone with a vaccine of efficacy (1 − g) at preventing 

infection (‘degree’); 2) vaccinating a proportion p of the population which is perfectly 

efficacious at preventing infection (‘take’, g = 0); 3) vaccinating a proportion p of the 

population with a vaccine which is perfectly efficacious at preventing transmission (‘take’, f 
= 0). Writing x̄deg(g) for the degree case prevalence of case 1), and x̄g=0(p) and x̄f=0(p) for 

cases 2) and 3) respectively, we can use

(23)

Using this in Eqn.15, and writing x and y for the prevalences in the unvaccinated and 

vaccinated groups respectively, the relevant equations in the three cases become:

(24)
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(25)

(26)

(27)

One can solve these and average as x̄ = (1 − p)x + py in the three cases to calculate that, 

where positive, the mean prevalences are:

(28)

(29)

(30)

(zero when a right-hand side is negative). These prevalences are compared in Fig. 4.1.2, for 

 and for the same mean level of protection in the population (i.e. coverage for the 

take scenarios; efficacy = 1 − g for the degree scenario). They share the same elimination 

threshold, but have rather different forms. In particular, the g = 0 case is linear, the degree 

scenario convex, and the f = 0 case has regions where it is convex and regions where it is 

concave. These differences in convexity represent the difference between local super- or sub-

additivity of response, and are thus important to our later discussion of synergy.

4.1.3 Heterogeneous populations—To arrive at  for the case of a heterogeneous 

population, where  is now an n × n matrix with n > 1, one must replace each element 

by:

(31)
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(32)

(33)

Here,  denotes the proportion of group i who are subject to the combination of 

interventions indexed by l in this group, and  and  are the corresponding reductions in 

infectiousness and susceptibility respectively. There are nj non-trivial combinations of 

interventions applied to group j. If Nj interventions are applied to group j and all possible 

combinations arise, this would mean nj = 2Nj.

Similarly, the new NGM  is found by replacing each ij-th element of  by:

(34)

(35)

(36)

For our specific example of a two-activity level heterosexual population, with K of the form 

Eqn. 1, applying n intervention combinations to men and n to women would yield

(37)

where mf and wf are 2 × (n + 1) matrices encoding the changes in men and women’s 

infectiousness respectively, and similarly mg and wg are (n + 1) × 2 matrices enforcing the 

changes in susceptibility for men and women.

Remarkably, one can still calculate R0 in closed form. The characteristic equation, χ(λ), for 

the new  obeys
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(38)

where we have used Leibniz’s identity for determinants and the standard result that det(1 + 

CDT) = det(1 + DTC) (see, e.g., [20]). This brings the problem into the form for a 2 × 2 

matrix, no matter how many interventions we apply. Generally then, applying 

interventions to each group of gender X and activity-level Y, we have

(39)

(40)

(41)

(42)

(43)

(44)

where  is the reduction in infectiousness for the ith intervention in gender X, activity Y, 

etc.

This is similar to [7]. Note that, unlike equilibrium prevalence and incidence, R0 is only 

affected by the group means of the product of susceptibility and infectiousness.
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Another possible quantity of interest is the instantaneous incidence at the moment the 

interventions are introduced. Without interventions, this is given by

(45)

where F is the force of infection from each group (given as the population mean value of ϕ 

in each group), and S the vector of susceptible counts in each group. Under a general 

intervention in a population with N groups,

(46)

(47)

(48)

(49)

(50)

Note that this is depends only on the means of the fs and gs, unlike R0, and incidence and 

prevalence at equilibrium.

4.2 I-control interventions

We will assume that, upon infection, a proportion πj of the Sj move onto an unbarred Ij time-

course corresponding to no treatment, and a proportion  onto the  time-course (with its 

treatment-modified  and ). That is, a proportion  are destined at infection to undergo 

treatment, possible at some later stage, in which case  and  would only depart from 

the untreated values ϕ(τ) and ν(τ) only once τ reaches the average treatment start time. 

Then, instead of Eqn.5, we have

(51)
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(52)

(53)

(54)

(55)

(56)

write

(57)

(58)

and denote the fraction of group j infected and destined for treatment as x̄j, and the fraction 

of group j infected and destined for no treatment as xj. Then we can proceed with the t → ∞ 

analysis as in Section 3.2 to obtain:

(59)

(60)

implying that  Conservation of people implies that

(61)
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and therefore, introducing the total fraction infected in group j

(62)

we have

(63)

(64)

Bringing all this together, the equations for equilibrium prevalence become

(65)

with

(66)

(67)

For given πj and  can be obtained from  by knowing the average survival times c and 

c ̄, and the ratio h̄/h. Note that if the intervention is randomly targeted, the ratio h̄/h alone 

suffices.

To calculate the incidence in group j at equilibrium, incj, one uses Eqns. 63 and 64 to obtain

(68)
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4.3 Mixed interventions

Cases combining both U- and I-control interventions are a simple extension of the above. 

Note that I-control interventions do not result in a proliferation of groups. The modifications 

for I-control are simply made to each separate population group with a particular 

combination of U-control interventions applied to it.

4.4 Targeting and Overlaps

Later, we will consider targeted interventions. This means preferentially directing resources 

towards groups in the population who are contributing more to transmission. In a two-group 

population, group 1 making up proportion ρ1 of the whole population and group 2 making 

up a proportion ρ2, this means that a total coverage c preferentially applied to group 1 will 

result in the following coverages c1 and c2 in each group:

(69)

(70)

Within each group, we will consider three possible distribution scenarios for multiple 

interventions, representing different levels of overlap: 1) random overlap - the overlap that 

results from uncoordinated distribution of each intervention within a group, i.e. 

independently and at random; 2) minimum overlap - the two interventions are applied 

avoiding each other, so as to minimize the number of people in each group who receive both 

interventions; 3) maximum overlap - the number of individuals receiving both interventions 

is maximized, with the smallest intervention nested inside the larger. These situations are 

caricatured by Venn diagrams resembling a butterfly, two separate circles, and concentric 

circles respectively. For given coverages c1, and c2, this means the coverages (p0, p1, p2, p3) 

are given in each scenario by

(71)

(72)
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(73)

with p1 = c1 − p3 and p2 = c2 − p3 in all the cases.

5 Synergy

There are many senses in which one could take two interventions 1 and 2 to be synergistic in 

improving some measure of performance. We will call two interventions synergistic if the 

reduction of some index of disease burden, Q, under both interventions (1&2) is greater than 

the sum of the reductions in Q for each intervention separately. More particularly, we will 

measure the level of synergy by the quantity

(74)

where Q(∅) is the value of Q without interventions; Q(1), Q(2), Q(1&2) the values under 

intervention 1, 2 or 1&2 combined, respectively. This is chosen so that σ > 0 if the 

reductions in the index Q are super-additive, i.e. ∆1 + ∆2 > ∆12 where ∆s = (Q(∅)−Q(s)) is 

improvement in Q under intervention set s. It also has the advantage of being dimensionless, 

so that it is independent of any choice of units and depends only on relative changes.

Additivity is perhaps the most natural null model with which to compare combined 

interventions, as resource use is usually additive. However, one might consider other null 

models, e.g. that the factor (F12 = Q(1&2)/Q(∅)) by which combined interventions reduce 

the index Q is the product of the reduction factors for each intervention separately (F1F2). 

This leads to a definition of synergy as satisfaction of the condition F12 < F1F2. This 

multiplicative criterion for synergy is a weaker condition than the additive condition we 

favour. This can been seen since Fs = (1−∆s/Q(∅)) implies the condition F12 < F1F2 is 

equivalent to ∆12 > ∆1 + ∆2 − ∆1∆2/Q(∅).

Although multiplicative synergy may seem a mathematically appealing null model for 

combining proportional changes, the additive definition more closely corresponds to 

intuitive notions of the benefits synergy confers. As an illustration of this, consider a 

situation with a linear response. In this case, subsequent improvements in coverage are 

considered synergistic in the multiplicative definition, but not the additive definition. 

Specifically, consider two increments of size δ in the coverage of a take vaccine. As shown 

in Eqn.29 and illustrated in Figure.4.1.2, the response of prevalence is a linear decline 

(above eradication). The additive definition of synergy would not register subsequent 

improvements in coverage as synergistic (σ = 0), whereas the multiplicative definition would 
regard these subsequent increments as synergistic, since (1 − 2δ) < (1 − δ)2.
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5.1 Population-level effects

In this section we show that there is no ‘population-level’ synergy for instantaneous 

incidence, as opposed to equilibrium incidence. By this, we mean that unless two 

interventions applied to the same individual synergize (i.e. produce a superadditive reduction 

in the product of infectivity and susceptibility), the two interventions cannot synergize for 

the population as a whole (i.e. the reduction in incidence cannot be superadditive). This is in 

contradistinction with equilibrium quantities, where ‘herd immunity’ allows non-linear gains 

as one reduces R0.

Remembering that  and  are diagonal, one can use Eqn.46 to cast the instantaneous 

incidence under interventions as:

(75)

where Pijkl = SiKijFl depends on the baseline population structure and disease transmission, 

and γijkl = ij kl depends on the interventions. Since Pijkl ≥ 0 and it has a non zero sum, 

one can regard this as proportional to a probability distribution over i, j, k and l, so that

(76)

Note that γ(∅)ijkl = δijδkl. The combined effect of interventions 1 and 2 is superadditive if

(77)

which is therefore possible only if [γ(1)γ(2) − γ(1&2)] ≥ 0, which is to say, if the infection-

weighted average across genders and activity classes of the reductions for individuals is 

more than multiplicative when interventions are combined. The average cannot be greater 

than zero without some synergy at the individual level in the above sense.This is in line with 

the incidence being linear in the product of infectiousness and susceptibility. The inequality 

Eqn.77 is harder to satisfy the more effective interventions 1 and 2 are by themselves.

5.2 An example without synergy

One last generality before considering a specific case, is that for interventions against 

infection in homogeneous populations, which are perfectly efficacious (‘take’, g = 0), there 

is never any synergy. The mean prevalence in this case takes the particularly simple form

(78)
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(and zero where the right-hand side is negative) and it is easy to show from this that for any 

coverages and any of the overlap scenarios of Section 4.4 σ ≤ 0, with the minimum overlap 

strategy performing best. Although this is a very simple example, two aspects remain true 

more generally: synergy is hard when interventions are individually very effective, and 

minimum overlap distribution strategies tend to perform best.

6 Numerical examples

In this section we present the results of numerical investigations into the population-level 

interactions between interventions. While R0 has proved spectacularly useful in infectious 

disease epidemiology, we will not pursue its behaviour here as it is only an indirect metric of 

the burden of disease - for example, if R0 < 1 the endemic prevalence is zero whatever the 

value of R0. Moreover, it is less useful as a descriptor of heterogeneously mixing 

populations, e.g. the equilibrium prevalence need not be a monotone function of R0. In view 

of the results of Section 5.1, the best candidate performance metrics for investigating 

interactions between interventions are the equilibrium prevalence and incidence. In the 

below, we will concentrate on the incidence, though the results for equilibrium prevalence 

would be extremely similar.

6.1 Homogeneous populations

Typical results for interventions in a homogeneous population are presented in Fig.6.1 and 

discussed in Section 7.

6.2 Heterogeneous populations

Rather than try to consider all possible types of heterogeneity, we will in this section focus 

on our example of HIV with K given by Eqn.1. We will parametrize M and W in the 

standard way: if ρH and ρL are the proportion of men (and women) who are categorized high-

activity and low-activity respectively, and the ratio of high:low activity is H, then

(79)

where α is an parameter between 0 and 1 quantifying assortativity, and β is an infection rate 

which can be specified by choosing  - the value R0 would take if the population were 

low-activity only.

Typical results for interventions in a heterogeneous population are presented in Fig.6.2 and 

discussed in Section 7.

7 Discussion

The behaviour of multiple interventions in structured populations is difficult to investigate, 

to a large part because the number of variants one could consider grows exponentially with 

the number of interventions. It is therefore important to use models and tools which are as 
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simple as possible, but which are still able to include pertinent features of interventions. This 

means being able to model interventions which: are applied only to infected individuals (I-

control); are targeted by membership of population sub-group; may overlap with each other 

in different patterns; differentially effect susceptibility to infection and infectiousness if 

infected; modify any of these effects at the individual level when applied together; alter the 

level and course of infectiousness through time; change the distribution of survival times as 

infectious. By concentrating on equilibrium prevalence and incidence, we show above how 

this wealth of complexity can be encoded in changes to the next-generation matrix (NGM) 

following certain rules, and that the equilibrium quantities can then be simply calculated by 

iteration. This makes exploring many possibilities more feasible, and a certain amount of 

analytical insight possible. The fact that Eqn. 15 for per-capita quantities do not depend on 

recruitment rates avoids unnecessary assumptions, and means that in effect, we are 

considering equivalence classes of model which share the same NGM.

In considering whether two (or more) interventions achieve an additional effect that one 

might term synergistic, one must choose a measure of effect or performance, and a precise 

sense in which ‘synergy’ means a combination is particularly beneficial. The simplest choice 

for a definition of synergy is that the improvement in some performance index when 

interventions are combined, is more than the sum of improvements for each intervention 

separately (super-additive). Additivity is natural since the resources used to affect 

interventions are additive (unless cost savings are achieved by coordinating combined 

interventions). Our chosen definition of Eqn.74, satisfies these requirements with σ being 

positive or negative according to whether combinations achieve super- or only sub-additivity.

Evident candidates for a performance measure include: instantaneous incidence; equilibrium 

incidence; equilibrium prevalence; and R0. We have not considered R0 because it is not 

directly related to disease burden, and less useful in structured populations. Instantaneous 

incidence has the advantages of being concrete, immediate, and depending on fewer model 

assumptions that the other measures. However, population-level interactions due to the non-

linearity of the dynamics are invisible in this quantity. We show in Section 5.1 that any 

synergy for the population in this measure is simply a sum of the individual-level synergy 

for each pairing, weighted by the intensity of each pairing as a route of infection. This is 

because instantaneous incidence is bilinear in the current state of the system and, as in the 

simple SIR model, fails to capture herd- or threshold-effects. Theory indicates that 

equilibrium incidence and prevalence should behave very similarly (identically, unless 

interventions alter infectious lifespan). We chose to focus on equilibrium incidence because, 

in the case of HIV, increases in lifespan due to ART make prevalence a more removed 

measure of an intervention’s impact.

In Section 5.2, we point out that synergy does not occur for any coverage or combination of 

U-control interventions in homogeneous populations that have perfect take in eliminating 

susceptibility to infection, and that minimum overlap distributions do least badly in terms of 

σ. The messages from this observation which hold more generally are that:

1. synergy is hardest to achieve for interventions which are individually very 

efficacious
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2. distribution strategies which minimize overlap tend to do best.

Neither of these features should be surprising: applying an intervention to someone who is 

already well protected from infection is usually redundant, whereas reaching more people 

with at least one intervention can bring nonlinear benefits if the prevalence response curve 

steepens. The results of Fig. 2c are typical. Synergy increases as higher coverages begin to 

reach nonlinear regimes, with peak synergy occurring in a ridge after which it declines 

sharply due to redundancy, flattening out at σ = −0.5, which results if each intervention 

alone is enough to eliminate the infection. For poorer individual interventions therefore, the 

peak occurs at higher coverages (Fig. 2d), or may even achieve a maximum at complete 

coverage for particularly poor interventions. For asymmetric cases, areas with positive 

synergy are shifted towards the axis for the poorer intervention.

Heterogeneous populations introduce another dimension. If a small fraction of the 

population is responsible for much of the transmission, universal use of interventions can 

result in redundancy by widespread application amongst those unlikely to transmit. If 

interventions are targeted against high-risk portions of the population, they are vastly more 

effective at reducing prevalence; but they are also more likely to achieve synergy. Figs. 3a 

and 3b show an example where synergy is regained by targeting, and peaks along individual 

coverages a little larger than the proportion of the population who are high-risk. For 

individually less effective interventions that are less redundant without targeting, the effect 

can be much more marked as in Figs. 3c and 3d. Here, strong synergy is achieved for wide 

ranges of coverage, as long as a substantial fraction of the high-risk group has been reached. 

This represents the third general message to emerge from this work:

3. targeting interventions at high-risk groups can achieve synergy where there 

would otherwise be redundancy.

There are several shortcomings of our discussion which should be borne in mind. First, in 

considering equilibria, we have completely ignored the temporal aspect. It may be the case, 

for example, that interventions which are redundant in our sense because they each eliminate 

the infection, nevertheless have benefit when used in tandem because they shorten the time 

to elimination. Secondly, our treatment has been deterministic. Redundant interventions may 

have added benefits used in combination, in terms of reducing the probability or expected 

size of stochastic outbreaks. Thirdly, in considering overlaps, we have ignored distribution 

costs. If one is interested in synergies in cost-effectiveness, it may be that overlapping 

distribution strategies do better if costs are strongly determined by total coverage. Lastly, we 

have not considered changes in mixing patterns, which might be achieved through 

behavioural interventions. Each of these consideration carries with it substantial added 

complications, and here we have sought to keep an already complex system simple enough 

to allow some insight. However, we hope that this work has provided a sensible concrete 

definition of synergy for multiple interventions, at least a caricature of its behaviour in 

structured populations, and some tools for more specific further investigations.
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Appendix

A1.1 Solutions of equilibrium equations

We want to establish some results about the solutions of the final prevalence equations Eqn.

15, where the next generation matrix  is assumed to be non-negative (i.e. Kij ≥ 0 ∀i, j) and 

irreducible. We are only interested in solutions with 0 ≤ xi ≤ 1, i.e. x ∈ [0, 1]n =: U. Notice 

that x = 0 is always a solution to Eqn.15.

A1.1.1 R0 < 1

First, we establish

Theorem A1.1. If R0 < 1, x = 0 is the only solution of Eqn.15 in U

It will be useful to define the map ℳ component-wise by

(80)

The relevance of this is that x* is a solution of Eqn.15 if and only if it is a fixed point of ℳ:

(81)

Proof. Let  be the intersection of the closed Euclidean ball of radius  centred at the 

origin and  Recall that R0 is defined as the dominant eigenvalue of the matrix 

(82)

Thus, if d(., .) denotes the Euclidean distance,

(83)

Since R0 < 1 by assumption, ℳ is a contraction mapping. Also, it maps  into itself. The 

situation therefore matches the requirements of the Banach fixed point theorem, which 

guarantees the existence of a unique fixed point in  We know by inspection that this 

solution is x = 0. Since  and 0 ∈ U, 0 is the unique fixed point of ℳ in U.
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A1.2 R0 > 1

When R0 > 1, ℳ is no longer a contraction mapping, and we must work a bit harder.

Theorem A1.2 (Existence). When R0 > 1 there is at least one solution to Eqn.15 other than 
x = 0.

Let Uy = [y1, 1] × ⋯ × [yn, 1] for a vector y with all its components in [0, 1]; and let v be 

the maximal eigenvector of  normalised so that the largest component is 1.

Lemma A1.3. When R0 > 1, there is an 0 < є < 1 such that ℳ maps Uєv into itself.

Proof of lemma.

(84)

Can we choose an є > 0 so that

(85)

For each i, this inequality rearranges as

(86)

Since maxi vi = 1, our question is answered in the affirmative by choosing 

Let w = єv + q, where qi ≥ 0. Note that

(87)

Since also

(88)

for any z with zi ≥ 0, any vector in Uєv is again mapped into Uєv under ℳ.
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Proof of Theorem A1.2. The set Uєv and the map ℳ satisfy the requirements of the 

Schauder fixed point theorem, and so ℳ must have at least one fixed point in Uєv. Since 0 ∉ 

Uєv this is distinct from the trivial fixed point.

Theorem A1.4 (Uniqueness). When R0 > 1 there is only one solution to Eqn.15 in Uєv.

Proof of Theorem A1.4. Suppose x and y are both fixed points of ℳ in Uєv. Then

(89)

using the fixed point property of x and y. It follows from this that

(90)

Since R0 > 1, this implies that d(x, y) = 0, and therefore x = y.

Remark A1.5. In fact we have also proved that the prevalences satisfy the bound

(91)

where υ is the dominant eigenvector of  normalised such that maxi υi = 1

At this point, we will restrict to the the case where all the components of the maximal 

eigenvector of the next generation matrix are strictly positive. This is a fairly natural 

assumption, as a zero component of v would correspond to a group which does not become 

infected during the exponential growth phase of an epidemic. In most cases, the analysis 

could be rephrased so as to omit this inert group.

Theorem A1.6 (Convergence). Let x0 be the vector with each x0|i = 1. If R0 > 1, and each υi 

> 0 for the dominant eigenvector of  υ. Then xn = ℳn(x0) converges to the non-trivial 
fixed point of ℳ.

Proof of Theorem A1.6. Let y be the non-trivial fixed point of M.

If y ≠ єυ, then since y ∈ Uєυ, there is a δ > 0 such that y|i − єυi ≥ δ/R0.
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(92)

means that

(93)

and therefore

(94)

If instead y = єv, ℳ(y) = y implies that

(95)

and, in turn, that  The symmetry of x0 is preserved under ℳ, allowing us to 

reduce to a one dimensional problem:

(96)

(97)

The convergence of the map Eqn.97 to the fixed point  from m0 = 1 is easy to 

see by considering the graphs of y = R0x/(1 + R0x) and y = x in the usual way.
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FIG 1. 
Degree and take vaccination (for preventing infection, and for preventing transmission) in a 

homogeneous population with R0 = 2.
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FIG 2. 
Synergy for symmetric U-interventions in a homogeneous population. Efficacy is (1 − g), f = 

1 and R0 = 2.
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FIG 3. 

Gains in synergy due to targeting: symmetric U-control with  ρH = 0:1, H = 200, α 

= 0.5, f = 1 and g = 0.25. (a) and (b): random overlap . (c) and (d): minimum overlap.
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