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Abstract
Lactoferrin is a multifunctional mammalian immunity protein that limits microbial growth

through sequestration of nutrient iron. Additionally, lactoferrin possesses cationic protein

domains that directly bind and inhibit diverse microbes. The implications for these dual func-

tions on lactoferrin evolution and genetic conflicts with microbes remain unclear. Here we

show that lactoferrin has been subject to recurrent episodes of positive selection during pri-

mate divergence predominately at antimicrobial peptide surfaces consistent with long-term

antagonism by bacteria. An abundant lactoferrin polymorphism in human populations and

Neanderthals also exhibits signatures of positive selection across primates, linking ancient

host-microbe conflicts to modern human genetic variation. Rapidly evolving sites in lactofer-

rin further correspond to molecular interfaces with opportunistic bacterial pathogens caus-

ing meningitis, pneumonia, and sepsis. Because microbes actively target lactoferrin to

acquire iron, we propose that the emergence of antimicrobial activity provided a pivotal

mechanism of adaptation sparking evolutionary conflicts via acquisition of new protein

functions.

Author Summary

Immunity genes can evolve rapidly in response to antagonism by microbial pathogens, but
how the emergence of new protein functions impacts such evolutionary conflicts remains
unclear. Here we have traced the evolutionary history of the lactoferrin gene in primates,
which in addition to an ancient iron-binding function, acquired antimicrobial peptide
activity in mammals. We show that, in contrast to the related gene transferrin, lactoferrin
has rapidly evolved at protein domains that mediate iron-independent antimicrobial func-
tions. We also pinpoint signatures of natural selection acting on lactoferrin in human pop-
ulations, suggesting that lactoferrin genetic diversity has impacted the evolutionary
success of both ancient primates and humans. Our work demonstrates how the emergence
of new host immune protein functions can drastically alter evolutionary and molecular
interactions with microbes.
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Introduction
Genetic conflicts between microbes and their hosts are an important source of evolutionary
innovation [1]. Selective forces imposed by these antagonistic interactions can give rise to dra-
matic bouts of adaptive gene evolution through positive selection. J.B.S. Haldane originally
speculated on the importance of infectious disease as an “evolutionary agent” over 60 years ago
[2], and the Red Queen hypothesis later posited that predators and their prey (or pathogens
and their hosts) must constantly adapt in order to sustain comparative fitness [3,4]. More
recent studies have demonstrated how evolutionary conflicts progress at the single gene or
even single nucleotide level, as molecular interfaces between host and microbial proteins can
strongly impact virulence and immunity [5–7]. Host-pathogen interactions thus provide fertile
ground for studying rapid gene evolution and acquisition of novel molecular traits [8].

Lactoferrin presents a compelling model for investigating adaptation from an ancestral
“housekeeping” function to a specialized immunity factor. Lactoferrin arose from a duplication
of the transferrin gene in the ancestor of eutherian mammals roughly 160 million years ago [9].
A fundamental and shared feature of these proteins is the presence of two evolutionary and
structurally homologous iron binding domains, the N and C lobes, each of which chelates a sin-
gle iron ion with high affinity. Iron binding by these proteins can effectively starve microbes of
this crucial metal, a protective effect termed nutritional immunity [10,11]. Microbes in turn
actively scavenge iron from these and other host proteins in order to meet their nutrient
requirements [12,13]. The importance of iron in human infectious disease is highlighted by
genetic disorders of iron overload, such as hereditary hemochromatosis, which render affected
individuals highly susceptible to bacterial and fungal infections [14,15]. In addition to its role
in nutritional immunity, lactoferrin has acquired new immune functions independent of iron
binding following its emergence in mammals. Lactoferrin is expressed in a variety of tissues
and fluids including breast milk, colostrum, saliva, tears, mucous, as well as the secondary
granules of neutrophils and possesses broad antimicrobial activity [16]. Portions of the lacto-
ferrin N lobe are highly cationic, facilitating interaction with and disruption of microbial mem-
branes. Two regions of the lactoferrin N lobe in particular, lactoferricin and lactoferrampin,
can be liberated from the lactoferrin polypeptide by proteolytic cleavage and exhibit potent
antimicrobial activity against bacteria, fungi, and viruses [17,18]. Lactoferrin, as well as lacto-
ferricin alone, can directly bind the lipid A component of lipopolysaccharide (LPS) as well as
lipoteichoic acid, contributing to interactions with surfaces of Gram-negative and Gram-posi-
tive bacteria [19,20]. Lactoferrin thus poses a unique challenge for microbes—while its ability
to bind iron makes it an attractive target for “iron piracy,” lactoferrin surface receptors could
render cells more susceptible to associated antimicrobial activity. Despite a growing apprecia-
tion for lactoferrin’s immune properties, the evolutionary implications of these unique func-
tions remain unclear. In the present study we decipher recent signatures of natural selection
acting on lactoferrin in primates as well as modern humans to understand the evolutionary
consequences of a newly acquired antimicrobial activity from a distinct ancestral function.

Results

Positive selection has shaped the lactoferrin N lobe in primates
To assess the evolutionary history of lactoferrin in primates, we assembled gene orthologs from
publicly available databases and cloned lactoferrin complementary DNA (cDNA) prepared
from primary cell lines. In total, we compared 15 lactoferrin orthologs from hominoids, Old
World, and NewWorld monkeys, representing roughly 40 million years of primate divergence
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(Fig 1A and S1 Fig). We then used maximum likelihood-based phylogenetic approaches (per-
formed with the PAML and HyPhy software packages) to calculate nonsynonymous to synony-
mous substation rate ratios (dN/dS) across this gene phylogeny [21–23]. For our study we
included the N-terminal 19 amino acid positions of the full-length lactoferrin protein, which
are removed during processing of the mature polypeptide in humans. Our analysis indicated
that lactoferrin has evolved under episodic positive selection in the primate lineage, consistent
with a history of evolutionary conflict with microbes (Fig 1A and S1–S7 Tables). These findings
are also in line with previous genome-wide scans for positive selection in primates which iden-
tified the lactoferrin gene (LTF) among other candidate loci [24]. We next determined signa-
tures of selection across individual codons in lactoferrin. In total, 17 sites displayed strong
evidence of positive selection (posterior probability>0.95 from Naïve Empirical Bayes and
Bayes Empirical Bayes analyses in PAML), with 13 of the 17 sites found in the N lobe (Fig 1B
and 1C and S1 Fig and S2, S4, S5 and S6 Tables). This observation was notably dissimilar from
a parallel analysis of primate serum transferrin, where sites under positive selection were
restricted to the C lobe (Fig 1B and 1C and S3 Table). These results are further consistent with
our previous work indicating that rapid evolution in primate transferrin is likely due to antago-
nism by the bacterial iron acquisition receptor TbpA, which exclusively binds the transferrin C
lobe [25–28]. Thus, while lactoferrin and transferrin both exhibit signatures of positive selec-
tion in primates, patterns of selection across the two proteins are highly discordant.

Evolution and diversity of lactoferrin in modern humans
Evidence of episodic positive selection in primate lactoferrin led us to more closely investigate
variation of this gene across human populations. Data from the 1000 Genomes Project revealed
six nonsynonymous polymorphisms at greater than 1% allele frequency in humans (S8 Table).
Of the 17 sites we identified as rapidly evolving across primate species, amino acid position 47
overlapped with a high frequency arginine (R) to lysine (K) substitution in the N lobe of lacto-
ferrin in humans (Fig 2A and S8 and S9 Tables). This position is markedly polymorphic
between populations; while individuals of African ancestry carry the K47 allele at about 1% fre-
quency, this variant is found in non-African populations at roughly 30–65% allele frequency,
with the highest frequencies observed among Europeans (Fig 2B and S9 Table). The presence
of R47 in related great apes combined with its high frequency in African populations suggests
that R47 is in fact the ancestral allele in humans. Data from the Neanderthal genome browser
(http://neandertal.ensemblgenomes.org) further revealed lysine to be the consensus residue at
position 47 in recently sequenced Neanderthals. The presence of the lactoferrin K47 allele in
Neanderthal and non-African human populations and its near absence in Africans suggests
one of several intriguing genetic models for the history of this variant, including long-term alle-
lic diversity in hominins, convergent evolution, or introgression from Neanderthals into mod-
ern humans.

Given the shared variation at position 47 between primate species and among human popu-
lations, we sought to determine whether lactoferrin exhibits signatures of positive selection in
modern humans. Calculation of pairwise FST between a subset of human populations identified
an elevated signal of differentiation between European (CEU) and African (YRI) populations
[29], consistent with observed differences in allele frequencies between these groups (S2 Fig).
The FST at rs1126478 was 0.70 (empirical p-value< 0.001), 0.30, and 0.03 for CEU-YRI,
CEU-CHB, and CEU-FIN, respectively. Single nucleotide variants neighboring rs1126478 also
showed signs of elevated FST suggesting that a shared CEU haplotype was driving the signal of
differentiation (S2 Fig).
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Fig 1. Dynamic evolution of the lactoferrin N lobe in primates. A. Paired primate phylograms showing signatures of positive
selection in lactoferrin and transferrin. dN/dS ratios along each lineage are shown, with ratios greater than 1 (indicative of positive
selection) shown in blue. Branches with no silent or nonsynonymous mutations display ratios in parentheses. *For lactoferrin
analyses the sequence of the Taiwanese macaque was used, whereas for transferrin rhesus macaque was included. This
difference does not change the topology of the primate phylogram.B. Sites subject to positive selection in lactoferrin and transferrin
are shown (blue arrows) along a schematic of the two proteins (phylogenetic analysis by maximum likelihood, posterior probability
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We next applied measures of haplotype homozygosity to assess the possibility that the K47
haplotype has been subject to natural selection in humans. Linkage around R47 alleles breaks
down rapidly within a few kilobases, while the K47 variant possesses an extended haplotype
(homozygosity of 0.5 at 21,913 bases), consistent with the possibility of an adaptive sweep in
this genomic region (Fig 2C). A selective sweep is also consistent with bifurcation plots around
position 47, where the K47 haplotypes possess increased homogeneity relative to R47 haplo-
types (Fig 2D). We observed a slight an elevation of the genome-wide corrected integrated hap-
lotype score (iHS) for the K47 allele (-1.40136) and a depletion of observed heterozygosity (S2,
S3 and S4 Figs). We also examined the patterns of cross population extended haplotype homo-
zygosity (XP-EHH). Consistent with the FST and EHH results, the XP-EHH score was elevated
at the K47 position when CEU individuals were compared against YRI (1.1; p-value: 0.129) or
CHB (3.1; p-value: 0.003)(S5 Fig). While XP-EHH between CEU and YRI was moderate, sur-
rounding SNPs less than 3 kilobases away had values as high as 2.89 (rs189460549; p-value:
0.01). Genome-wide, the K47 XP-EHH signal is moderate compared to other loci. Next we
compared the joint distribution of the p-values from dN/dS analyses [24] with the empirical p-
values from the CEU-CHB XP-EHH analyses (S6 Fig). The previous genome-wide rank for lac-
toferrin, from dN/dS analyses, was 226 before considering the joint distribution and 156 after.
The top 20 genes with the greatest change in rank (dN/dS p-value< 0.01) include BLK, DSG1,
FAS, SLC15A1, GLMN, SULT1C3,WIPF1, and LTF. This meta-analysis highlights candidate
genes that have undergone species-level as well as population-level selection in primates and
humans, respectively. By integrating molecular phylogenetic analyses and population genetics
approaches, we pinpointed signatures of positive selection associated with an abundant human
lactoferrin polymorphism.

Rapid evolution of lactoferrin-derived antimicrobial peptides
Signatures of positive selection in the lactoferrin N lobe among diverse primates, including
position 47 in humans, led us to more closely investigate evolutionary pressures that have influ-
enced variation in this region. After gene duplication from ancestral transferrin, lactoferrin
gained potent antimicrobial activities independent of iron binding through cationic domains
capable of disrupting microbial membranes. Two portions of the lactoferrin N lobe in particu-
lar, termed lactoferricin (amino acids 20–67 in full-length protein; 1–48 in mature protein) and
lactoferrampin (amino acids 288–304 in full-length protein; 269–285 in mature protein), have
been implicated in these antimicrobial functions [18,30].

Phylogenetic analysis revealed that several sites corresponding to lactoferricin and lactofer-
rampin display signatures of positive selection (Fig 3A and 3B). Notably, positive selection in
lactoferricin localized to sites harboring cationic (lysine, arginine) or polar uncharged residues
(asparagine), which could mediate membrane disruption and regulate antimicrobial activity.
Position 47, which exhibits signatures of selection in humans as well as other primates, also lies
within the lactoferricin peptide region. In contrast, hydrophobic tryptophan residues proposed
to mediate insertion into microbial membranes are completely conserved among primates, as
are cysteine residues that participate in intramolecular disulfide bond formation (Fig 3A). We
also observed rapid evolution of the position immediately C-terminal to the pepsin cleavage
site in lactoferrampin (Fig 3A), suggesting that the precise cleavage site in this peptide may be
variable among species. Notably, the proteases responsible for lactoferrin processing in

>0.95 by Naïve and Bayes Empirical Bayes analyses). The relative positions of the N and C lobes are shown.C. Ribbon diagrams
for crystal structures of diferric lactoferrin (PDB: 1LFG) and transferrin (PDB: 3V83), with side chains of sites under positive
selection calculated in B shown in blue. Iron in the N and C lobes is shown in red.

doi:10.1371/journal.pgen.1006063.g001
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Fig 2. Diversity and evolution of human lactoferrin. A. Schematic representation of the lactoferrin protein showing positions of
abundant (>1% allele frequency) nonsynonymous polymorphisms found in humans (arrows). Sites previously identified under positive
selection across primates are shown as blue bars. The position of one variant, rs1126478 at amino acid position 47, which is also rapidly
evolving in primates, is shown in magenta. The position of lysine 47 (K47) is also shown in the lactoferrin crystal structure (bottom panel).
B. Relative allele frequencies of the R47 (blue) and K47 (red) lactoferrin variants shown as pie charts across human populations. Data
were obtained from the 1000 Genomes Project Phase III. C. Extended haplotype homozygosity (EHH) plot around the lactoferrin for the
R47 (blue) and K47 (red) around the variable position site, showing the extended haplotype around the K47 variant.D. Haplotype
bifurcation plot showing breakdown of linkage disequilibrium in individuals carrying the lactoferrin R47 (blue) and K47 (red) alleles around
the variant position. Thickness of the line corresponds to the number of individuals with shared haplotypes.

doi:10.1371/journal.pgen.1006063.g002
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Fig 3. Rapid evolution of lactoferrin-derived antimicrobial peptides and pathogen binding interfaces. A. Amino acid
alignment of the lactoferricin and lactoferrampin peptide sequences across primates. Sites under positive selection are denoted
with black arrows, with amino acids at these positions color-coded. Conserved tryptophan (red) and cysteine (blue) residues are
highlighted, which contribute to target membrane interactions and disulfide bond formation respectively. The reported cleavage
sites of the two peptides are denoted with red arrows.B. Left: solution structure of the free human lactoferricin peptide (PDB: 1Z6V),
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mucosal secretions and neutrophils remain elusive; identification of such factors will assist in
revealing the consequences of genetic variation proximal to cleavage sites. Expanding our phy-
logenetic analysis to other mammalian taxa, we found that lactoferrin also exhibits signatures
of positive selection in rodents and carnivores (S7 Fig and S10 Table). While the specific posi-
tions that contribute most strongly to these signatures could not be resolved with high confi-
dence, N-terminal regions corresponding to lactoferricin in primates are absent in several
rodent and carnivore transcripts, suggesting that this activity may have been lost or modified
in divergent mammals. These observations are further consistent with previous work which
identified signatures of positive selection in lactoferrin antimicrobial peptide domains across
diverse mammals [31]. Together these results demonstrate that lactoferrin-derived cationic
peptides of the N lobe are rapidly evolving at sites critical for antimicrobial action.

Distinct microbial interfaces are subject to positive selection in lactoferrin
While rapid evolution of the lactoferrin N lobe may reflect selection for improved targeting of
microbial surfaces, it could also represent adaptations that prevent binding by inhibitors
encoded by bacteria. For example, pneumococcal surface protein A (PspA) is a crucial viru-
lence determinant of Streptococcus pneumoniae, and several studies have demonstrated that
PspA specifically binds and inhibits antimicrobial portions of the lactoferrin N lobe [32]. Con-
sistent with an important evolutionary impact for this interaction, numerous sites under
positive selection in the lactoferrin N lobe lie proximal to the PspA binding interface [33],
including those corresponding to the lactoferricin peptide (Fig 3C). These data suggest that
adaptive substitutions in lactoferrin could negate PspA binding, leading to enhanced immunity
against S. pneumoniae or related pathogens.

Many strains of pathogenic Neisseria, which cause the sexually transmitted disease gonor-
rhea as well as acute meningitis, encode lactoferrin binding proteins (LbpA and LbpB) which
mediate iron acquisition from lactoferrin [34,35]. Of four sites identified under positive selec-
tion in the lactoferrin C lobe, at least two appear proximal to the proposed Neisseria LbpA
binding interface based on recent molecular modeling studies (S8 Fig) [36]. One of these, posi-
tion 589, also aligns to a region under strong positive selection in transferrin (position 576 in
humans) which directly contacts the related bacterial receptor TbpA (Fig 1B) [28]. These find-
ings suggest that, similarly to transferrin, antagonism by bacterial Lbp proteins may have pro-
moted natural selection in the lactoferrin C lobe. Signatures of selection at distinct lactoferrin-
pathogen interfaces thus highlight the diverse conflicts that have arisen during the evolution of
this unique immunity factor.

Discussion
Together our results suggest that the emergence of novel antimicrobial activity in the N lobe of
lactoferrin strongly influenced host-microbe interactions in primates, including modern
humans (Fig 4). High disparity in sites under positive selection between the N and C lobes of
lactoferrin and transferrin indicate that distinct selective pressures influenced these proteins
during primate evolution. We previously demonstrated that primate transferrin has been

with sites under positive selection (blue), including position 47 (magenta) indicated. Conserved tryptophan and cysteine residues
highlighted in A are also shown. Right: enlarged view of the human lactoferrin N lobe highlighting sequences corresponding to
lactoferricin (cyan) and lactoferrampin (green) antimicrobial peptides. Sites previously identified under positive selection in primates
are shown in blue, with the position 47 variant shown in magenta.C. Crystal structure (PDB: 2PMS) of human lactoferrin N lobe
(gray) bound to PspA from Streptococcus pneumoniae (orange). Side chains of sites under positive selection (blue), including
position 47 (magenta) are shown.

doi:10.1371/journal.pgen.1006063.g003
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engaged in recurrent evolutionary conflicts with the bacterial receptor, TbpA [25]. This recep-
tor is an important virulence factor in several Gram-negative opportunistic pathogens includ-
ing Neisseria gonorrhoeae, Neisseria meningitidis,Haemophilus influenzae, as well as related
animal pathogens [26,37–39]. Notably, TbpA binds and extracts iron exclusively from the C
lobe of transferrin, and signatures of positive selection in transferrin are almost entirely
restricted to the TbpA binding interface (Fig 1) [25]. The fact that transferrin family proteins
are recurrently targeted by microbes for iron acquisition may have provided the selective
advantage for antimicrobial functions that arose in the lactoferrin N lobe.

Our results suggest at least two non-mutually exclusive scenarios for evolutionary conflicts
involving the lactoferrin N lobe. Positive selection in this region could reflect adaption of lacto-
ferrin for enhanced targeting of variable pathogen surfaces. Lactoferricin is capable of binding
the bacterial LPS, which itself is heavily modified in many human-associated bacteria to medi-
ate immune evasion and could provoke counter-adaptations at this interface. Conversely, vari-
ation in the lactoferrin N lobe could negate interactions with bacterial inhibitory proteins such
as PspA encoded by S. pneumoniae. Lactoferrin binding activity has also been identified in sev-
eral other important bacterial pathogens including Treponema pallidum [40], Staphlococcus

Fig 4. Model of lactoferrin evolution and genetic conflicts with pathogens. Following a duplication of the transferrin gene in
the ancestor of eutherian mammals, interactions between the transferrin (yellow) C lobe and the bacterial transferrin receptors
such as TbpA (green) led to the emergence of a molecular arms race. In contrast, while lactoferrin has likely also been engaged
in evolutionary conflicts with pathogen iron acquisition receptors like LbpA (purple), the emergence of antimicrobial peptide
activity in the N lobe would have provided novel defense activity against pathogens targeting lactoferrin as an iron source. This
function would have led to the emergence of pathogen inhibitors of lactoferrin antimicrobial peptide activity (such as PspA or
LbpB), which have dominated subsequent evolutionary conflicts localized to the lactoferrin N lobe.

doi:10.1371/journal.pgen.1006063.g004
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aureus [41], and Shigella flexneri [42], raising the possibility of multiple independent evolution-
ary conflicts playing out at the lactoferrin N lobe. Iron-loaded lactoferrin could further be
viewed as a “Trojan horse,” where microbes that target it as a nutrient iron source may be more
susceptible to antimicrobial peptides. Consistent with this hypothesis, recent work has sug-
gested that Neisseria encoded LbpB recognizes the lactoferrin N lobe, in contrast to its homolog
TbpB which selectively interacts with the iron-loaded C lobe of transferrin [35,43,44]. LbpB
binding to the lactoferrin N lobe could thus provide a counter-adaptation with dual benefits by
neutralizing lactoferrin antimicrobial activity through negatively charged protein surfaces
while simultaneously promoting iron acquisition by its co-receptor, LbpA [43]. These observa-
tions point to adaptations involving de novo protein functions on both sides of this molecular
interface.

It is important to note that many “pathogenic” bacteria that routinely encounter lactoferrin
in the respiratory mucosa are generally commensals that rarely cause disease. For example,H.
influenzae colonizes a huge proportion of the human population but typically only causes dis-
ease in young children who lack a robust immune response. In addition, the dual functions of
lactoferrin likely have pleiotropic effects on complex microbial communities in the host
mucosa, with inhibition of some members creating new niches for others. Thus, the evolution-
ary forces acting on lactoferrin and the consequences for positive selection are likely more
nuanced than a two-dimensional host-pathogen arms race. Future studies aimed at under-
standing the functional impact of lactoferrin variation will assist in understanding such com-
plex biological effects.

Our results raise the possibility that the lactoferrin K47 variant introgressed into humans
from Neanderthals at some point after the out-of-Africa expansion [45]. An alternative expla-
nation could be convergent evolution of lactoferrin in distinct lineages of early hominins for
enhanced immune function. Recent reports indicate that the human lactoferrin K47 variant,
within the N lobe lactoferricin peptide, may have a protective effect against dental cavities asso-
ciated with pathogenic bacteria [46]. Moreover, saliva isolated with patients homozygous for
the K47 variant possesses enhanced antibacterial activity against oral Streptococci relative to
homozygous R47 individuals [47]. Future analysis of lactoferrin sequence in archaic humans
could provide additional insight on the history and functional properties of this variant.
Together these studies provide a direct link between variation in the lactoferrin N lobe and pro-
tection against disease-causing bacteria, consistent with adaptive evolution of lactoferrin in
humans and other primates.

Notably, the lactoferrin gene, LTF, is located only ~60 kilobases away from CCR5, a chemo-
kine receptor which is also an entry receptor for HIV [48–52]. A 32-base pair deletion in CCR5
(CCR5-Δ32) confers resistance to HIV infection, and is present at a high frequency in northern
Europeans while absent from African populations [53]. Although early evidence suggested that
CCR5-Δ32might itself be subject to positive selection in humans, more recent studies have
concluded that these signatures are more consistent with neutral evolution [54]. It is intriguing
that, like CCR5-Δ32, the lactoferrin K47 variant exhibits increased allele frequency in European
populations relative to Africans. However, the presence of the K47 variant at high frequencies
in Asian and American populations points to a much earlier origin for this variant than CCR5-
Δ32. Moreover, EHH and bifurcation analyses indicate that the haplotypes associated with the
lactoferrin K47 variant do not encompass CCR5, suggesting that variation at the CCR5 locus is
unlikely to contribute to signatures of selection in LTF (Fig 2B and 2C and S9 Table). The prox-
imity of the LTF and CCR5 genes combined with their high degree of polymorphism and
shared roles in immunity suggest the potential for genetic interactions relating to host defense.
Future studies could reveal functional or epidemiological links between these two factors in
human immunity.
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In summary, we have discovered that lactoferrin constitutes a crucial node of host-microbe
evolutionary conflict based on signatures of natural selection across primates, including
humans. Our findings suggest an intriguing mechanism for molecular arms race dynamics
where adaptations and counter-adaptations rapidly emerge at the level of new protein func-
tions in addition to recurrent amino acid substitutions at a single protein interface (Fig 4). Our
evolutionary analyses highlight how the process of gene duplication and subfunctionalization
can drastically alter the progression of host-microbe genetic conflicts.

Materials and Methods

Primate genetic sources
RNA was obtained from the following species via the Coriell Cell Repositories where sample
codes are indicated: Homo sapiens (human; primary human foreskin fibroblasts; gift from A.
Geballe), Gorilla gorilla (western lowland gorilla; AG05251), Papio anubis (olive baboon;
PR00036), Lophocebus albigena (grey-cheeked mangabey; PR01215), Cercopithecus aethiops
(African green monkey; PR01193), Colobus guereza (colobus monkey; PR00240), Callithrix
geoffroyi (white-fronted marmoset; PR00789), Lagothrix lagotricha (common woolly monkey;
AG05356), Saimiri sciureus (common squirrel monkey; AG05311). Gene sequences from addi-
tional primate, rodent, and carnivore species were obtained from Genbank.

cDNA cloning and sequencing
RNA (50 ng) from each primate cell line was prepared (RNeasy kit; Qiagen) and used as tem-
plate for RT–PCR (SuperScript III; Invitrogen). Primers used to amplify lactoferrin cDNA
were as follows: GTGGCAGAGCCTTCGTTTGCC (LF-forward; oMFB256) and GACAG
CAGGGAATTGTGAGCAGATG (LF-rev; oMFB313). PCR products were TA-cloned into
pCR2.1 (Invitrogen) and directly sequenced from at least three individual clones. Gene
sequences have been deposited in Genbank (KT006751 –KT006756).

Phylogenetic analyses and structural observations
DNAmultiple sequence alignments were performed using MUSCLE and indels were manually
trimmed based on amino-acid comparisons. A generally accepted primate species phylogeny
[55] (Fig 1A) was used for evolutionary analysis. A gene tree generated from the alignment of
lactoferrin corresponded to this species phylogeny (PhyML; http://atgc.lirmm.fr/phyml/).
Maximum-likelihood analysis of the lactoferrin and transferrin data sets was performed with
codeml of the PAML software package [21]. A free-ratio model allowing dN/dS (omega) varia-
tion along branches of the phylogeny was employed to calculate dN/dS values between lineages.
Two-ratio tests were performed using likelihood models to compare all branches fixed at dN/
dS = 1 or an average dN/dS value from the whole tree applied to each branch to varying dN/dS
values according to branch.

Positive selection in lactoferrin was assessed by fitting the multiple alignment to either F3X4
or F61 codon frequency models. Likelihood ratio tests (LRTs) were performed by comparing
pairs of site-specific models (NS sites): M1 (neutral) with M2 (selection), M7 (neutral, beta dis-
tribution of dN/dS<1) with M8 (selection, beta distribution, dN/dS>1 allowed). Additional
LRTs from the HyPhy software package that also account for synonymous rate variation and
recombination (FUBAR, REL, FEL, MEME, BUSTED) were performed [22,23]. Molecular
structures of lactoferrin, transferrin and associated proteins were visualized using Chimera
(http://www.cgl.ucsf.edu/chimera/).
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Human population genetics analysis
For variant-based analyses we used genotype calls from the 1000 Genomes project (release:
20130502, shapeit2 phased). Weir and Cockerham’s Fst estimator [29] was used for the popula-
tion comparisons, implemented in GPAT++. EHH and the bifurcation diagrams were calcu-
lated using the [R] package REHH [56]. Genome-wide iHS scans were performed using
GPAT++ and XPEHH plots were generated previously published datasets [57,58].
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