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The Trivers – Willard hypothesis: sex ratio
or investment?

Carl Veller1,2, David Haig1 and Martin A. Nowak1,2,3

1Department of Organismic and Evolutionary Biology, 2Program for Evolutionary Dynamics, and 3Department of
Mathematics, Harvard University, MA, USA

The Trivers–Willard hypothesis has commonly been considered to predict

two things. First, that a mother in good condition should bias the sex ratio

of her offspring towards males (if males exhibit greater variation in reproduc-

tive value). Second, that a mother in good condition should invest more per

son than per daughter. These two predictions differ empirically, mechanisti-

cally and, as we demonstrate here, theoretically too. We construct a simple

model of sex allocation that allows simultaneous analysis of both versions of

the Trivers–Willard hypothesis. We show that the sex ratio version holds

under very general conditions, being valid for a large class of male and

female fitness functions. The investment version, on the other hand, is

shown to hold only for a small subset of male and female fitness functions.

Our results help to make sense of the observation that the sex ratio version

is empirically more successful than the investment version.
1. Introduction
The Trivers–Willard hypothesis (TWH) [1] predicts that, when one sex exhibits

more variation in reproductive value, then mothers in good condition should

‘prefer’ offspring of that sex, while mothers in poor condition should ‘prefer’ off-

spring of the other sex. (In polygynous species, the sex with more variable

reproductive value is usually males; for convenience we shall adopt this conven-

tion throughout.) What should be meant by ‘prefer’, however, is not entirely clear.

Two definitions can be found in the empirical literature.

One definition is that mothers in good condition should bias their progeny sex
ratios towards sons, and mothers in poor condition towards daughters. This

interpretation is suggested by the title of Trivers and Willard’s original paper,

‘Natural selection of parental ability to vary the sex ratio of offspring’. This ‘sex

ratio version’ of the TWH has been the subject of a large empirical literature—

well-known examples exist for red deer [2,3], feral horses [4], parasitoid wasps

[5] and humans [6,7].

The second definition is that mothers in good condition should bias their

parental care towards sons, and mothers in poor condition towards daughters.

This definition also seems to be implied by Trivers & Willard [1, p. 91]: ‘In species

with a long period of [parental investment] after birth of young, one might expect

biases in parental behaviour toward offspring of different sex, according to par-

ental condition; parents in better condition would be expected to show a bias

toward male offspring.’ Many empirical tests of this ‘investment version’ of the

TWH have also been conducted. For example, Fujita et al. [8] conclude that the

TWH is supported by their finding that mothers of low socio-economic status

in agropastoral villages in northern Kenya produce more nutritious milk when

breastfeeding daughters than sons, and vice versa for mothers of high socio-econ-

omic status. The assumption that biased parental investment is part of the TWH

extends far into the empirical literature (see, e.g. [9–18], and the references in

these papers) and is explicitly defended in [19].

The two versions of the TWH clearly make very different empirical predic-

tions. A broad observation is that the sex ratio version is empirically more

successful than the investment version [20]. On the sex ratio version, for example,

of the 37 studies of ungulate mammals surveyed by Sheldon & West [21],

29 found a sex ratio effect in the direction predicted by the TWH. Fifteen of the
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37 studies returned significant results ( p , 0.05); of these 15, 13

were in the direction predicted by the TWH.1 In a statistical

meta-analysis of these studies, Sheldon & West [21] found a

significant positive correlation between maternal condition

and the proportion of male offspring. In humans, adequately

powered empirical tests tend to find a small sex ratio bias in

the direction predicted by the TWH [24,25].

Empirical tests of the investment version, on the other

hand, tend to show more mixed results. Only four of the

eight studies of non-human mammals surveyed by Keller

et al. [20] found an investment effect in the direction predicted

by the TWH, and studies in humans have proved similarly

inconclusive [20]. There could be methodological reasons for

this. For example, while it is obvious what outcome to measure

when testing for biased sex ratios, it is not as obvious when test-

ing for biases in parental care, as parental care can take many

forms [20]. There also does not yet exist an extensive review

of empirical tests of the investment version, and so any state-

ments about its empirical success must be preliminary. With

these caveats in mind, it is still safe to conclude that the sex

ratio version has thus far been empirically more successful.

The two versions of the TWH also differ mechanistically,

an observation which has significant implications for research

into the physiological and behavioural bases of the parental

biases predicted by the hypothesis. The aim of the present

paper is to characterize how the two versions differ in

theory. This issue has been raised by Carranza [26], who

gave a simple graphical example for which the sex ratio

version holds while the investment version does not—

though see [19] for a critical review of this example.

Although much theoretical work has been carried out on

the TWH and sex allocation, in general, it has typically not

focused on the distinction between the two versions of the

hypothesis that are tested in the empirical literature. Most

models of sex allocation (e.g. [27, §§1–3]) combine sex ratio

and investment costs into a single variable for each sex,

‘parental expenditure’ (or ‘allocation’). This variable is useful

for a number of general arguments, most notably Fisher’s prin-

ciple [28,29] that, under certain assumptions, total population

parental expenditure on offspring of the two sexes should be

equal. Other models of sex allocation have held brood compo-

sition fixed, and derived conditions under which parental

investment should be biased towards male or female offspring

(e.g. [27,§5], [30,31]). Others have focused simultaneously on

sex ratio and clutch size in cases where sibling interaction is rel-

evant, but have not studied the level of parental investment/

care in individual offspring [32–35].

A unified model allowing for simultaneous analysis of the

sex ratio and investment versions of the TWH is therefore lack-

ing. Here, we construct a simple model to expose the logic

underpinning both the sex ratio and investment versions of

the TWH. We show that, while the sex ratio version holds

under very general specifications of how adult condition trans-

lates to fitness for males and females, the investment version

is very sensitive to the nature of these condition-to-fitness

functions. This theoretical result helps to make sense of the

disparity in empirical success between the two versions of

the hypothesis.

2. The general model
The TWH is based on three assumptions. First, that parental

condition (usually taken to be mother’s) correlates with
offspring condition. Second, that offspring condition persists

into adulthood, so that it is relevant for reproductive value.

Third, that ‘Adult males will be differentially helped in [repro-

ductive success] (compared with adult females) by slight

advantages in condition’ [1, p. 91].

‘Condition’ is not explicitly defined in the original paper

of Trivers & Willard [1]. Its definition has remained vague in

much of the biological literature [36], but in the context of the

TWH, can involve many physical factors, including the ability

of a parent to provision its offspring, as well as heritable factors

such as traits under direct genetic control and social status. It is

important to note that condition cannot be interpreted simply

as reproductive value—either of parent or offspring—because

the TWH requires that condition translate to reproductive

value differently for males and females.

We capture the three assumptions of the TWH in the

following simple model.

Each mother is of a certain physical condition, cm

(continuously distributed), and has a single brood of pre-

cisely two offspring. A mother’s total investment capability,

which she apportions fully between her two offspring, is

limited by her physical condition to I(cm), assumed to

be non-decreasing in cm (mothers in better condition are

able to invest more) and smooth. The post-investment

condition of an offspring whose mother was of condition

cm and who received investment i is, regardless of its sex,

c(cm, i), increasing in both arguments (ð@=@cmÞcðcm, iÞ . 0

and ð@=@iÞcðcm, iÞ . 0) and concave in investment

(ð@2=@i2Þcðcm, iÞ , 0). This post-investment condition is

assumed to persist into adulthood, and to be the quantity

that is relevant for offspring fitness.

That c should depend on i is clear. In our model, ‘invest-

ment’ is taken to mean the level of direct parental care for a

single offspring. It is plain that, by this definition, offspring

condition should increase with investment.

Why does c depend directly on cm too? Parental condition

can affect offspring’s condition directly (as opposed to

indirectly, through greater investment capacity) in several

ways, examples of which are: (i) if condition depends on

social rank, and rank is hereditary—as, for example, in

baboons [37], spotted hyenas [38] and red grouse [39]; and

(ii) if condition is in part determined genetically (this could

apply either to maternal or paternal condition: in our model,

cm could equally well refer to either). This genetic mechanism

of condition transmission is especially clear for sexually

selected traits [40–43].2

The model thus far captures the first two assumptions of

Trivers & Willard [1]. Their third assumption, in the context

of our model, means at the very least that adult condition

c(cm, i) translates differently into reproductive success for

males than it does for females. (In fact, the focal quantity

should be reproductive value, not reproductive success [22].

We abbreviate this to ‘fitness’.) A son in condition c will be

assumed to have fitness fF(c), while a daughter in the same

condition will have fitness fC(c).

The optimization problem for a mother in condition cm is one

of backwards induction: first, to choose the optimal investment

decision for each possible brood (male–male, male–female

and female–female), and then, using the maximum fitness

sums that arise from these investment decisions, to choose the

sex ratio that maximizes the expected sum of her offspring’s

fitnesses. Denoting by p the probability of having a son

(the same probability is assumed to apply independently for



offspring fitness

adult condition, c

f  = lc ( l > 1)

f  = c + k (k > 0)

c*

Figure 1. The ‘classic’ Trivers – Willard fitness functions, for which the sex
ratio version of the Trivers – Willard hypothesis holds, while the investment
version does not. Because male fitness always increases faster with condition
than does female fitness, fitness returns to investment in a male offspring are
always greater than in a female offspring of the same initial condition, and so
a mother with a mixed brood will always invest more in the male of the
brood, no matter her own condition.
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each of the two offspring), the optimization problem can be

formally written:

max
p[½0,1�

max
i1,i2,i3[½0,IðcmÞ�

p2½fFði1Þ þ fFðIðcmÞ � i1Þ�

þ 2pð1� pÞ½fFði2Þ þ fCðIðcmÞ � i2Þ�

þ ð1� pÞ2½fCði3Þ þ fCðIðcmÞ � i3Þ�,

where fF (i1), for example, is shorthand for fF (c(cm, i1)).
In the context of our model, the sex ratio version of the

TWH may be stated as follows: there exists a threshold

maternal condition such that a mother in better condition

has an optimal progeny sex ratio that is male-biased, while

a mother in worse condition has an optimal sex ratio that is

female-biased. The question of whether a mother should

have a male- or female-biased sex ratio is shown in the elec-

tronic supplementary material, appendix S1 to be equivalent

to the simpler question of whether she would prefer to have

two male or two female offspring (which is not to say that her

optimal sex ratio is then necessarily one or zero—this is just

a ‘litmus test’ for the optimal sex ratio being biased by

any amount).

The investment version of the TWH, on the other hand,

is this: there exists a threshold maternal condition such

that a mother in better condition, upon having a mixed

brood (one male and one female offspring), will invest

more in her son than in her daughter, while a mother in

worse condition will invest more in her daughter than in

her son.

It should be noted, in the light of the facts that checking

the sex ratio version amounts to comparing the fitness sum

of an all-male brood with that of an all-female brood, and

checking the investment version amounts to comparing

investment patterns in a mixed brood, that our results are

based on simultaneous optimization, by backwards induc-

tion, of the sex ratio and investment decisions. In particular,

the optimal sex ratio will itself depend on the optimal invest-

ment patterns for the various possible brood compositions,

as is made clear in electronic supplementary material,

appendix S1.

The model presented above is not meant to represent rea-

lity in full detail, but rather to make accessible the logic

underpinning the two versions of the TWH. More complex

models that extend our framework to more realistic settings

would also be desirable. For example, we have ignored pos-

sible demographic differences between the sexes, though

these have recently been shown to influence predictions of

the TWH [23]. Our assumption that each mother has exactly

two offspring is not realistic but simplifies the analysis con-

siderably, and is the smallest brood number that still allows

for simultaneous analysis of sex ratio and investment bias.

It is argued in the Discussion section and electronic sup-

plementary material, appendix S3 that the case of a

monotocous species, where single offspring are raised in

sequence, will not differ much from our simple single-period,

two-offspring model.

It will also be noted that our model applies best to con-

texts where: (i) the sex ratio and parental care decisions are

separable (e.g. in time), and (ii) parental care is of a continuous,

quantitative form (e.g. the length of the period of parental

care—duration of gestation, or time until weaning, say—or

the fat content of breast milk). In such cases, the conceptual

difference between the sex ratio and investment versions of
the TWH is clear: (i) excludes cases where the sex ratio and

investment decisions coincide, such as in parasitoid wasps.

It applies, on the other hand, to vertebrate species where

parental care is given post-conception and post-birth; and

(ii) excludes those discrete parental care decisions that are

harder, conceptually, to distinguish from sex ratio decisions,

such as sex-biased brood reduction [30,44].
3. An example where the investment version
fails

A simple case that satisfies Trivers and Willard’s assumption 3,

and which results in a mother always investing more in the

male of a mixed brood, no matter her condition (and thus

contra the investment version of the TWH), is where the

fitness-condition profiles are linear for both males and

females: fFðcÞ ¼ lc and fCðcÞ ¼ cþ k, with l . 1 so that the fit-

ness profile is steeper for males than for females (clearly

satisfying Trivers and Willard’s assumption 3; figure 1). k . 0

can be adjusted arbitrarily; for example, it can be adjusted so

that the average reproductive value of sons and daughters

coincides. Alternatively, if offspring of one sex cost more to

raise than offspring of the other sex, this could be represented

by the fitness function of the more expensive sex shifting

downwards for each condition; such a shift would lead to a

population sex ratio biased against that sex. These facts con-

cerning the adjustability of the fitness functions—i.e. the

average fitness effects of having male and female offspring

and, therefore, also the population sex ratio—are also true of

all later specifications.

The investment decision of a female in condition cm who

has a mixed brood, denoting by is how much she invests in

her son, amounts to the following maximization problem:

i�s :¼ arg max
is

fFðcðcm, isÞÞ þ fCðcðcm, IðcmÞ � isÞÞ

¼ arg max
is
½lcðcm, isÞ� þ ½cðcm, IðcmÞ � isÞ þ k�:

Her investment will be male-biased if i�s . IðcmÞ=2, i.e. if

i�s . IðcmÞ � i�s . Assuming an interior solution i�s [ ð0, IðcmÞÞ,
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the first-order condition for i�s amounts to equating the male

and female offspring’s marginal fitness returns to investment:

@

@is
ð½lcðcm, isÞ� þ ½cðcm, IðcmÞ � isÞ þ k�Þ

���
is¼i�s
¼ 0

) l@2cðcm, i�s Þ � @2cðcm, IðcmÞ � i�sÞ ¼ 0

) @2cðcm, i�sÞ , @2cðcm, IðcmÞ � i�sÞ
) i�s . IðcmÞ � i�s ,

where @2cð�, �Þ refers to the partial derivative of c with respect to

its second argument, and where the second-to-last step follows

from l . 1 and the last step from the concavity assumption

@22c , 0 (@22cð�, �Þ is the second partial derivative). Thus, no

matter a mother’s condition, she always biases investment in

favour of the male offspring of a mixed brood. The reason for

this is that the marginal returns to investment in a male

offspring, l@2cðcm, iÞ, are always greater than the returns to

investment in a female of the same condition, @2cðcm, iÞ.3
We shall show later (§5) that the sex ratio version of the

TWH holds under quite general conditions on fF and fC.

These conditions are satisfied by the linear fitness functions

studied in this section. Still, owing to the simplicity of the pre-

sent fitness functions, it will nonetheless be instructive to

demonstrate here that the sex ratio version of the TWH

holds for them.

It is proved in the electronic supplementary material,

appendix S1 that a mother of condition cm will have an opti-

mal sex ratio that is male-biased if and only if she would

prefer, in fitness terms, to have two male offspring than

two female offspring (again, we stress that this comparison

of the fitness sums of an all-male brood and an all-female

brood is a diagnostic test for whether the mother’s optimal

sex ratio is at all male- or female-biased, and does not

imply that her optimal sex ratio is necessarily one or zero).

Note that she always apportions investment equitably

among a same-sex brood, owing to the concavity of fitness

with respect to investment for both male and female off-

spring (a result of condition being concave in investment

and this concavity being maintained under the linear trans-

formation to fitness). So the condition for a male-biased sex

ratio amounts to the following inequality:

2fF cm, IðcmÞ=2ð Þ . 2fC cm, IðcmÞ=2ð Þ
, 2lc cm, IðcmÞ=2ð Þ . 2 c cm, IðcmÞ=2ð Þ þ k½ �
, c cm, IðcmÞ=2ð Þ . k=ðl� 1Þ:

But as ð@=@cmÞcðcm, IðcmÞ=2Þ ¼ @1cðcm, IðcmÞ=2Þ þ @2cðcm,

IðcmÞ=2ÞI0ðcmÞ=2 . 0, and assuming the existence of some

c�m [ ð0, 1Þ such that cðc�m, Iðc�mÞ=2Þ ¼ k=ðl� 1Þ ¼: c�, this

implies that mothers with condition above c�m have a male-

biased optimal sex ratio, and mothers with condition below

c�m have a female-biased optimal sex ratio. The sex ratio ver-

sion of the TWH therefore holds in this case, while the

investment version does not.

Finally, it is interesting that mothers of condition c�m,

though indifferent between having an all-male brood and

an all-female brood, are not indifferent between those choices

and having a mixed brood. To see this, note that each male in

an all-male brood of such a mother has the same fitness as

each female in an all-female brood, and each receives the

same investment Iðc�mÞ=2. Thus, a mother with a mixed

brood could achieve the same fitness sum as with a same-

sex brood if she invests Iðc�mÞ=2 in each offspring, male and

female. But as the argument above demonstrates, this is not
the optimal investment decision for the mother: she should

always invest more in the male offspring than in the female

offspring of a mixed brood. So her fitness sum from having

a mixed brood and apportioning investment optimally is

strictly higher than her fitness sum from having a same-sex

brood and apportioning investment optimally; and as a

result, by continuity, mothers whose condition is sufficiently

close to c�m, though the bias in their sex ratio is determined by

whether their condition is higher or lower than this value,

would nonetheless have optimal sex ratios that are mixed

(i.e. not zero or one). The intuition for this result is that,

with a mixed brood, the mother can divert investment

away from the female offspring, for whom it is relatively

unproductive (in fitness terms), towards the male offspring,

for whom it is relatively productive. This choice is not

available to the mother of a same-sex brood.

This explanation complements other reasons for why selec-

tion favours individual sex ratios that are not zero or one. For

example, in situations with local within-sex competition for

mates, selection can favour extreme sex ratios [45], but it will

also not favour those that are zero or one. It also suggests an

additional benefit of precise control of brood composition

(i.e. ‘homeostatic’, as opposed to probabilistic, sex ratios) over

the usually-cited lower-variance benefit [46,47], which is

known to be small [47,48].
4. Broad sufficient conditions for the sex ratio
version to hold

Assume that the optimal investment decision for the mother

of a same-sex brood, no matter her condition, is always to

apportion investment equitably between her two offspring.

This holds if the functions fF(c(cm, i)) and fC(c(cm, i)) are

both concave in investment i—loosely speaking, given that

c(cm, i) is already concave in i, this means that either fF and

fC are themselves (weakly) concave, or that any convexities

in them are not sufficient to overturn the concavity of

c(cm, i) in i. This is satisfied, for example, by the linear fitness

functions assumed in §3, by those displayed in figure 4, and

by those displayed in figure 3 provided the convex fitness

function fF(c) is not too convex.4

With this assumption, a simple and natural set of ‘single-

crossing’ conditions under which the sex ratio version of the

TWH always holds is as follows.

(SC1) The condition-fitness profiles for males and females

cross only once (at c*), with the male profile starting

below the female profile (in poor adult condition,

males are less fit than females: c , c� ) fFðcÞ , fCðcÞ)
and ending above it (in good adult condition, males

are fitter than females: c . c� ) fFðcÞ . fCðcÞ);
(SC2) There exists some maternal condition c�m such that

c� ¼ cðc�m, Iðc�mÞ=2Þ.

If fF(c(cm,i)) and fC(c(cm,i)) are concave in i, and if (SC1) and

(SC2) hold, then mothers in condition cm . c�m have optimal

sex ratios that are male-biased, while those in condition

cm , c�m have optimal sex ratios that are female-biased.

To prove this, first consider the case of a female in con-

dition cm . c�m. A sufficient condition for her optimal sex

ratio to be male-biased is that she would achieve higher

fitness with an all-male brood than with an all-female



unique local max. also global max.

0

mixed brood’s fitness 
sum:

optimal
investment
is male-
biased

optimal
investment
is female-
biased

slope at is = I(cm)/2 points
towards global max.

I(cm)/2 I(cm)

investment in the male of a mixed brood, is

0 I(cm)/2 I(cm)

investment in the male of a mixed brood, is

f  (c(cm, is))

+ f  (c(cm, I(cm) – is))

Figure 2. If the fitness sum of a mixed brood is ‘single-humped’ with respect to investment in the male of the brood, then the slope of the function at the point of
equitable investment points in the direction of the optimal bias in investment, significantly simplifying detection of the latter in our model.
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brood (as shown in the electronic supplementary material,

appendix S1). As her optimal investment decision in either

case is equitable apportionment among the brood, this

condition becomes:

2fF c cm, IðcmÞ=2ð Þð Þ . 2fC c cm, IðcmÞ=2ð Þð Þ:

But as ð@=@cmÞcðcm, IðcmÞ=2Þ ¼ @1cðcm, IðcmÞ=2Þ þ @2cðcm,

IðcmÞ=2ÞI0ðcmÞ=2 . 0, we have that cm . c�m )
cðcm, IðcmÞ=2Þ . cðc�m, Iðc�mÞ=2Þ ¼ c�, and so, from the

single-crossing condition (SC1), fFðcðcm, IðcmÞ=2ÞÞ .

fCðcðcm, IðcmÞ=2ÞÞ.
A female in condition cm , c�m would, by a similar argu-

ment, achieve higher fitness with an all-female brood than

with an all-male brood, and so her optimal sex ratio would

be female-biased.

The case where at least one of fFðcðcm, iÞÞ or fCðcðcm, iÞÞ is

not everywhere concave in i is more complicated, and in gen-

eral, the single-crossing conditions do not guarantee that the

sex ratio version holds (a graphical counterexample is given

in the electronic supplementary material, appendix S2).
5. Narrow sufficient conditions for the
investment version to hold

We have seen in §3 that, for a simple set of fitness functions

that satisfy the Trivers–Willard assumptions, the invest-

ment version of the hypothesis does not hold. In this

section, we derive conditions under which the investment

version of the TWH does hold. They are significantly nar-

rower than the basic set of assumptions stated by Trivers &

Willard [1].

To simplify the analysis, we assume that to determine the

investment bias (male or female) in a mixed brood of a

mother in condition cm, it suffices to check in which direction

natural selection ‘points’ from an initial state of equitable

investment in the male and female offspring (i.e. does it

point towards increased, and thus biased, investment in the

male or in the female?). If the ancestral state is equitable

apportionment of investment within mixed broods, and if
maternal behavioural changes are gradual, then this is the

investment bias that natural selection would lead to.

Mathematically, this amounts to checking the slope of the

mixed brood’s fitness sum fFðcðcm, isÞÞ þ fFðcðcm, IðcmÞ � isÞÞ
with respect to investment is in the male offspring, evaluated

at the point is ¼ I(cm)/2. If the brood’s fitness sum is of the

‘single-humped’ shape displayed in figure 2, i.e. with one

local maximum that is also the global maximum, and with

no local minima, then this slope indeed points towards the

global maximum.

The investment version of the TWH then simplifies to the

following: the partial derivative of the fitness sum of a mixed

brood, taken with respect to investment in the male offspring,

and evaluated at the point of equitable investment I(cm)/2, is

negative for maternal conditions below a certain threshold,

and positive for maternal conditions above that threshold.

This partial derivative, in general form, is given by:

@

@is
[ fFðcðcm, isÞÞ þ fCðcðcm, IðcmÞ � isÞÞ]

���
is¼IðcmÞ=2

¼ f 0F c cm, IðcmÞ=2ð Þð Þ@2c cm, IðcmÞ=2ð Þ

� f 0C c cm, IðcmÞ=2ð Þð Þ@2c cm, IðcmÞ=2ð Þ

¼ f 0F c cm, IðcmÞ=2ð Þð Þ � f 0C c cm, IðcmÞ=2ð Þð Þ
h i

@2c cm, IðcmÞ=2ð Þ:

ð5:1Þ

As @2cðcm, IðcmÞ=2Þ . 0, the sign of this expression is the

same as the sign of the term in square brackets in the last line.

The investment version of the TWH thus further simplifies

to the following: f 0Fðcðcm, IðcmÞ=2ÞÞ , f 0Cðcðcm, IðcmÞ=2ÞÞ for

all cm below some threshold, and f 0Fðcðcm, IðcmÞ=2ÞÞ .

f 0Cðcðcm, IðcmÞ=2ÞÞ for all cm above that threshold. In other

words, male fitness responds less to increases in adult

condition than does female fitness below some threshold

adult condition, and male fitness responds more to changes

in adult condition than does female fitness above that

threshold condition. This condition is rather specific, and

will hold for only a subset of the fitness functions that are

consistent with Trivers and Willard’s original assumptions.

Indeed, under a strict reading of Trivers and Willard’s

‘Assumption 3’ (quoted in §2), it appears that the condition



fitness

adult condition, c

f   convex enough

c*ĉ

f  = c + k (k > 0)

Figure 3. Fitness functions for which the investment version of the Trivers –
Willard hypothesis does hold. If the male fitness function is sufficiently
convex, then the very small slope at low conditions makes investment in
males in low condition unattractive relative to investment in females, and
so mothers in low condition should bias investment towards females. Con-
versely, investment in males in good condition is very attractive (their
fitness function is very steep), and so mothers in good condition should
bias their investment towards male offspring.

fitness

adult condition, c

f  concave enough

f 

Figure 4. Fitness functions for which a situation opposite that predicted by
the investment version of the Trivers – Willard hypothesis is expected to
result. Because the slope of the male fitness function starts out very
steep, investment in males in poor condition yields high fitness returns
and so mothers in poor condition would be expected to bias investment
towards the male of a mixed brood. Conversely, mothers in good condition
are expected to bias investment towards the female of a mixed brood,
because the eventual flatness of the male fitness function makes investment
in males in good condition relatively unproductive.
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(5.1) we have derived for the investment version to hold is in

fact disallowed! Nevertheless, there are some natural

instances where we might expect them to be fulfilled, as the

following example illustrates.

We keep the female fitness function from before, fC(c) ¼

c þ k, k . 0, and specify a convex male fitness function

fF(c) such that the slope of fF(c) is less than one (the slope

of fC(c)) for all adult conditions below a certain (realized)

threshold ĉ (we keep the notation c* for the point at which

fF and fC cross), and greater than one for all adult conditions

above that threshold (figure 3). That is, we require the male

fitness function to be sufficiently convex. Under this scenario,
it is clear that the condition (5.1) is satisfied, and we expect

the investment version of the TWH to hold in this case.

If we instead specify that the male fitness function be suf-

ficiently concave, while keeping the female fitness function

linear (figure 4), then a situation results that is directly

opposed to that predicted by the investment version of the

TWH. Now, mothers in poor condition are expected to bias

investment towards the male of a mixed brood, while

mothers in good condition are expected to bias investment

towards the female of a mixed brood. Nonetheless, the sex

ratio version of the TWH is expected still to hold in

this case, because the single crossing conditions (SC1) and

(SC2) hold.
6. Discussion
We have demonstrated, in the context of a simple unified

model, that the conditions under which the sex ratio version

of the TWH holds are significantly broader than those under

which the investment version is expected to hold. This helps

to make sense of the observation that empirical tests of the

former tend to return positive results, while empirical tests

of the latter return more mixed results [20].

The difference between the two versions of the hypothesis

can be understood in terms of the economic difference between

absolute and marginal value. Whether a mother in a certain

condition should bias her sex ratio towards male offspring

amounts to asking whether the male fitness function lies
above the female fitness function for the relevant condition,

i.e. whether there exists an absolute difference in fitness

between offspring of the two sexes. On the other hand, for a

mother with a mixed brood, whether she should bias parental

investment towards the male offspring amounts to asking

whether the male fitness function is steeper than the female

fitness function for the relevant condition, i.e. whether

improvement of the male’s condition yields a greater marginal

fitness return. This insight is clearly captured by Keller et al. [20,

pp. 356–357], who find no evidence for an investment version

Trivers–Willard effect in the USA:
[Resource allocation biasing] should be biased toward the off-
spring that most improves the parents’ fitness per unit
invested. However, this bias has no necessary link to the fitness
value of the offspring. Rather, it is predicted by cues related to
the marginal gains of allocating each particular resource to the
sex in question. The assumptions of the TWH (a higher corre-
lation between condition and [reproductive success] among
males than females, and a correlation between the parent’s and
offspring’s conditions) are unrelated to these marginal benefits,
but they are related to the fitness value of offspring.
Loosely, then, the sex ratio version of the TWH is expected

to hold when the male and female fitness functions are

such that males in poor condition have relatively low fitness

(the male fitness function starts out below the female fit-

ness function), males in good condition have relatively

high fitness (the male fitness function ends up above the

female fitness function) and the fitness functions cross once

(e.g. figures 1, 3 and 4). This describes the classic picture of

male and female fitness functions in polygynous species,

and so we should expect the sex ratio version of the TWH

to hold very generally.

The investment version, on the other hand, is expected to

hold only if the male fitness function is much flatter than the

female fitness function for poor conditions, but much steeper
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for good conditions (e.g. figure 3). This condition is much

more restrictive than that under which the sex ratio version

holds, and so we should expect the investment version of

the TWH to hold less generally than the sex ratio version.

Our model is simply intended to capture the logic of why

the sex ratio and investment versions of the TWH differ. We

discuss some of the model’s assumptions, and the possibility

of their relaxation, below.

First, our analysis optimizes over phenotypes, and there-

fore ignores both their genetic basis and the evolutionary

dynamics that might lead to their optimization. In this

sense, it is a heuristic analysis. Studying phenotypes in a

static, non-genetic setting was vital for simplicity of the

model (for a defence of this style of modelling, see Parker

& Maynard Smith [49]). Nonetheless, it remains possible

that the optimal behaviours derived here are not evolvable

in a simple population genetic framework.

Second, the assumption of a single fixed brood of con-

stant size two is, of course, not realistic in general, having

been made for the sake of tractability. One direction in

which the model could be made more realistic would be to

allow brood size to vary, and to undergo selection in conjunc-

tion with sex ratio and the pattern of parental investment.

While it is not clear whether this could be done in a way

that still permitted tractable analysis, it could alter the

interpretation of our results if there were significant inter-

actions between optimal brood size and the optima of our

variables of interest, sex ratio and the pattern of parental

investment ([48], [50,§9]).

In this vein, another way in which the model could be

generalized would be to consider sex ratio and investment

patterns across sequential broods. Consider the simplest

case that of two offspring raised one after the other. The

optimization problem faced by the mother is then slightly

different to that she faces in our single-brood model. For

example, she might be able to alter her sex ratio for the

second offspring conditional on the sex of her first offspring;

this option is not available to the mother of a single brood.

In this case, the results of the sequential model are very simi-

lar to those of the single-period model we have analysed

(electronic supplementary material, appendix S3). If, on the

other hand, her sex ratio cannot change between periods in

the sequential model, then a mother whose sex ratio is not

zero or one invests in her first offspring without knowing

the sex of her second offspring. This case is significantly

more complicated, but a tentative analysis (electronic sup-

plementary material, appendix S3) suggests that its results

would usually not differ significantly from those of our

single-period model.

Third, our model is, in the language of economic theory, a

‘partial equilibrium’ analysis: the decision problem faced by

one mother is independent of the decisions made by other

mothers. In our model, for example, the exogenous par-

ameter k, mediating the height of the female fitness

function, can be adjusted so that, given the population distri-

bution of maternal condition, the average reproductive

success of sons and daughters is equal. In reality, the

mating success of a male in good condition depends on the

number of other males in good condition, and this in turn

depends on the sex allocation decisions of other mothers in

the population. A full general equilibrium model would

specify a distribution of maternal conditions, and sex ratio

and investment strategies for mothers in each condition,
such that: (i) each mother’s strategies are optimal, given the

strategies of other mothers, (ii) the average reproductive

success of all sons would match that of all daughters, and

possibly (iii) the distribution of adult condition of the daugh-

ters matches that of the mothers. We do not believe that the

technical tools of sex allocation theory are yet advanced

enough to approach this general equilibrium problem, but

it represents an important avenue of future research.5

Fourth, our model treats maternal and offspring condi-

tion as continuous variables, where in reality the important

factor for reproductive success may be discrete, like rank

within a social hierarchy. The strategic concerns raised in

the previous paragraph apply with even more force here:

whether a mother’s investment in her son causes him to

jump up one place in the male condition ranking clearly

depends on the decision of the mother of the son presen-

tly ‘occupying’ that place. A more subtle complication

is that the discretization of the fitness functions’ domain

(here, within-sex rank) makes analysis of the effects of con-

tinuous variables (like investment) on fitness significantly

less tractable.

A related, but more fundamental problem with the

approach adopted here is that ‘condition’ is treated as an

abstract, and therefore unobserved, quantitative variable.

But many of the contingencies that we have shown to be of

theoretical importance involve the shape of reproductive

value functions with respect to condition; as condition is

not empirically observed, neither can the shape of these func-

tions be. The criteria that we have derived for when the sex

ratio and investment versions of the TWH hold are therefore

not directly measureable.

Getting around this problem would require substitution

of ‘condition’ for an imperfect but observable proxy variable,

such as weight. That is, it would require measurement of the

fitness functions with respect to weight, and how weight

responds to parental condition and investment. This would

detract significantly from the generality of the theory, and

would be accurate only insofar as weight correlates closely

with true condition. It is possible that a composite proxy

involving many variables (such as weight, nutritional

status, sexual ornaments, etc.) might improve this correlation.

This problem applies not only to our model, but to all

theoretical models of the TWH that treat ‘condition’ as an inter-

mediate variable [36]. It appears to us to be the chief obstacle to

generating testable predictions from such models, and its

solution is therefore a crucial line of future research.
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Endnotes
1Insignificant results can be explained either by inadequate sample
size or constraints imposed by genetic sex determination. Significant
results in the opposite direction can be explained by demographic
factors [22,23].
2Note that all results in this paper hold in the simpler cases where
(i) the improved condition of offspring of high-condition mothers
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derives only from those mothers’ ability to invest more in their
offspring (I0(cm) . 0, (@=@cm)c(cm, i) ¼ 0 and (@=@i)c(cm, i) . 0), and
(ii) there is no difference in investment ability between high and
low quality mothers (I0(cm) ¼ 0 but (@=@cm)c(cm, i) . 0).
3This result, and the reason behind it, extend to any functions fF
and fC that satisfy f 0CðxÞ , f 0FðyÞ for any x and y, since then the gen-
eral first-order condition for i�s yields

f 0Fðcðcm, i�s ÞÞ@2cðcm, i�s Þ � f 0Cðcðcm, IðcmÞ � i�s ÞÞ@2cðcm, IðcmÞ � i�s Þ ¼ 0

) @2cðcm, i�s Þ
@2cðcm, IðcmÞ � i�s Þ

¼
f 0Cðcðcm, IðcmÞ � i�s ÞÞ

f 0Fðcðcm, i�s ÞÞ
, 1) i�s . IðcmÞ � i�s ,

where the last step follows from the concavity of c with respect to its
second argument.
4More precisely, in this case of convex fF(c), we require ð@2=@i2Þ
fFðcðcm, iÞÞ , 0, which translates to the condition j@22cðcm, iÞ=
@2cðcm, iÞj . j f 00Fðcðcm, iÞÞ=f 0Fðcðcm, iÞÞj, i.e., that c is relatively more
concave in i than fF is convex in c.
5On the strategic considerations, however, we expect that, in equili-
brium, a certain monotonicity condition should hold: in particular,
within-sex offspring condition rank should covary perfectly with
maternal condition rank. If this were not satisfied, we would have
the odd scenario that, in equilibrium, a mother in better condition
than another neglects her son (say) sufficiently much relative to the
other mother that her son’s post-investment condition is lower than
that of the other mother’s son. So, if this monotonicity condition
were to hold, we should not expect strategic concerns to alter the struc-
ture of the problem, at least in terms of the rank of offspring condition.
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