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Abstract The permeability barrier of nuclear pore complexes (NPCs) controls bulk

nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs

(FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar

films produced with three different end-grafted FG domains, and quantitatively analyzed the

binding of two different nuclear transport receptors (NTRs), NTF2 and Importin b, together with

the concomitant film thickness changes. NTR binding caused only moderate changes in film

thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a

single master curve. This universal NTR binding behavior – a key element for the transport

selectivity of the NPC – was quantitatively reproduced by a physical model that treats FG domains

as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring

the detailed arrangement of interaction sites along FG domains and on the NTR surface.

DOI: 10.7554/eLife.14119.001

Introduction
In eukaryotic organisms, the nuclear envelope separates the nucleoplasm from the cytoplasm and

encloses most of the genetic material in the cell. The ordered course of gene expression requires

selective transport through this double membrane. This function is provided by nuclear pore com-

plexes (NPCs), large membrane-spanning protein complexes that perforate the nuclear envelope

(Fahrenkrog and Aebi, 2003; Fernandez-Martinez and Rout, 2012; Floch et al., 2014;

Gorlich and Kutay, 1999; Grossman et al., 2012; Macara, 2001). Although small molecules up to

20–40 kDa (i.e., up to roughly 5 nm in diameter) can diffuse freely through the NPC, the passage of

larger macromolecules is impeded unless they are bound to nuclear transport receptors (NTRs)

(Gorlich and Kutay, 1999; Keminer and Peters, 1999; Mohr et al., 2009; Yang and Musser,

2006).
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The permeability barrier in the 30 to 50 nm diameter central transport channel of NPCs is formed

by domains of NPC proteins (nucleoporins) that are rich in phenylalanine-glycine motifs (FG domains;

single-letter code is used throughout) and that are grafted to the channel walls at a high density

(Bui et al., 2013). The FG domains are thought to be highly flexible and behave like natively-

unfolded proteins (Denning et al., 2003; Denning and Rexach, 2007; Denning et al., 2002;

Hough et al., 2015). As such, they do not have a defined secondary or higher-order protein struc-

ture. However, depending on their intramolecular and intermolecular interactions, these proteins

can organize into supramolecular assemblies such as protein meshworks, brushes or scaffolds

(Dyson and Wright, 2005; Uversky and Dunker, 2010). There is a broad consensus that FG

domains interact with NTRs and facilitate their passage through NPCs. In addition, there is an attrac-

tive (cohesive) interaction between FG domains. This promotes the formation and determines the

properties of FG domain phases (Eisele et al., 2013; Frey and Gorlich, 2007; Frey et al., 2006;

Patel et al., 2007; Schmidt and Gorlich, 2015), and is also essential for the formation of a functional

permeability barrier (Frey et al., 2006; Hulsmann et al., 2012). However, the nature of these inter-

actions remains controversial (Peters, 2009), both for the interactions between FG domains, and for

the interactions between FG domains and NTRs. As a consequence, there remains a large uncer-

tainty about the morphology of the permeability barrier (Frey and Gorlich, 2007; Frey et al., 2006;

Lim et al., 2007; Peters, 2005; Rout et al., 2000; Yamada et al., 2010) and about how it is influ-

enced by the substantial enrichment of NTRs in the NPC conduit (Frey and Gorlich, 2009;

Kapinos et al., 2014; Lowe et al., 2015; Mohr et al., 2009).

Because of the low degree of order in the FG domain meshwork and its spatial confinement

within the NPC, it has been difficult to address these questions using traditional biochemical assays

and structure determination methods. Alternatively, computational models can provide valuable

insights into collective behavior of FG domains, but are affected by the size and complexity of the

NPC, and in particular by the experimental uncertainty on protein distributions and interactions (see

Osmanovic et al., 2013a for a review).

eLife digest The cells of animals, plants and other eukaryotic organisms contain a compartment

called the nucleus that contains most of the cell’s genetic material. Proteins and other molecules –

collectively known as cargos – can enter and exit the nucleus via tiny channels in the membrane that

surrounds and protects it. Receptor proteins – called nuclear transport receptors – bind to potential

cargos and shuttle them through the channels.

This selective transport process relies on the nuclear transport receptors being attracted to

flexible, spaghetti-like proteins that are anchored to the walls on the inside of each channel.

However, because of their flexible and disordered nature, these so-called FG domains are difficult to

study, and the details of the transport process are poorly understood.

Zahn, Osmanović et al. decided to study how the FG domains behave and what happens when

they interact with nuclear transport receptors by using ultrathin films made of just the FG domains.

This is a good model system because the films are easier to study than the whole channels, but are

likely to retain the essential properties of the real barrier formed in the nuclear envelope. Zahn,

Osmanović et al. compared the binding of two nuclear transport receptors of different sizes, taken

from humans and yeast, to FG domain films made from one of three different FG domains. The

experiments showed that the different nuclear transport receptors bind to the different FG domains

in very similar ways.

Zahn, Osmanović et al. then used a computational model that essentially represented the FG

domains as sticky spaghetti and the nuclear transport receptors as perfectly round meatballs. This

sticky-spaghetti-with-meatballs model reproduced the experimental data, implying that the exact

chemical make-up and structure of the molecules may not be critical for controlling the transport of

cargo across the nuclear envelope. Future studies will test whether the generic physical features of

nuclear transport receptors and FG domains can indeed explain how the cargo molecules pass

through the nuclear envelope.

DOI: 10.7554/eLife.14119.002
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To obtain a more comprehensive understanding of the interactions between FG domains and

NTRs in the context of nucleo-cytoplasmic transport, we have employed a novel approach that com-

bines measurements of the uptake of NTRs by well-defined nanoscale assemblies of FG domains

with (coarse-grained) computational modeling for a quantitative interpretation of the experimental

results in terms of FG domain morphology and intermolecular interactions. Specifically, we produce

films of end-grafted purified FG domains that are similar to the protein meshwork in NPCs, both in

their thickness and in their FG motif density (Eisele et al., 2010; 2013). With such planar model sys-

tems it is possible to quantify NTR binding and investigate NTR-induced thickness changes

(Eisele et al., 2010; 2012; Schoch et al., 2012). Binding curves of several NTR/FG domain systems

have been shown to deviate from an ideal Langmuir isotherm, suggesting that the binding avidity of

NTRs to FG domain films strongly depends on the concentration of NTRs in the film (Eisele et al.,

2010; Kapinos et al., 2014; Schleicher et al., 2014; Wagner et al., 2015) and on the proportion of

FG motifs that are occupied by NTRs. Here, we describe the use of this system to identify common

features and obtain a more quantitative understanding of these interactions, by analyzing and com-

paring the binding of two different NTRs, nuclear transport factor 2 from Homo sapiens (NTF2) and

Importin b from Saccharomyces cerevisiae (Impb), to plane-grafted FG domain films that each are

generated from one of three different FG domains: the FG domain of Nsp1 from S. cerevisiae (that

has FxFG and just FG motifs), a glycosylated FG domain of Nup98 from Xenopus tropicalis (Nup98-

glyco; with primarily GLFG and just FG motifs) and an artificial, regular repeat with exclusively FSFG

motifs (reg-FSFG). The two transport receptors differ in size (29.0 kDa for the functional NTF2 homo-

dimer and 95.2 kDa for Impb) and in the number and distribution of binding sites for FG domains.

Two identical sites are located between the subunits of NTF2 (Bayliss et al., 2002), whereas for

mammalian Impb two different sites have been identified by crystallography (Bayliss et al., 2000)

and molecular dynamics simulations have suggested there may be up to nine sites spread over the

Impb surface (Isgro and Schulten, 2005). Recent crystallography work revealed eight binding sites

on the exportin CRM1 (Port et al., 2015), suggesting that the dispersal of binding pockets across

the protein surface is a common feature of the larger NTRs. The FG domains employed in this study

differ in prevalent FG motif types, FG domain size, abundance of FG motifs relative to FG domain

size (Table 1), as well as in the distribution of FG motifs along the peptide chains and the composi-

tion of the spacer regions between FG motifs (Table 1—source data 1) (Labokha et al., 2013;

Radu et al., 1995; Rout and Wente, 1994).

Our approach has enabled us to explore the universality/diversity of NTR binding to FG domains,

to quantify the binding and to interpret it in terms of NTR distribution in and on FG domain assem-

blies, while also demonstrating how we can benchmark parameters in computational simulations to

a well-defined experimental model. From the quantitative comparison between experiment and

computational modeling, we learn about the levels of structural and chemical detail and heterogene-

ity that are required to effectively model and understand NTR uptake by FG domain assemblies, and

gain new insights into the physical mechanisms – largely related to collective low-affinity interactions

Table 1. Properties of employed FG domain constructs. See Table 1—source data 1 for the full amino acid sequences of these

constructs.

FG domain amino acids a sequence

FG motifs

FG motifs/amino acidsFxFG GLFG Other

Nsp1 615 irregular, natural 19 0 14 0.054

Nup98-glyco 496 irregular, natural 3 8 28 0.079

reg-FSFG 315 regular, artificial 16 0 0 0.051

a Excluding the His tags but including all other auxiliary amino acids (TEV cleavage sites, Cys tags and spacers).

DOI: 10.7554/eLife.14119.003

Source data 1. Amino acid sequence of employed FG domain constructs. FG domains are shown in black letters, His tags in blue letters, and remaining

parts (i.e., TEV cleavage sites, Cys tags and spacers) in grey letters. FxFG motifs are marked in yellow, GLFG motifs in green, other FG motifs in purple.

Nup98-glyco features O-GlcNAc on ~ 30 of the S and T residues.

DOI: 10.7554/eLife.14119.004
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and the formation of a phase (Hyman and Simons, 2012) of FG domains and NTRs – that determine

NPC transport selectivity.

Results

FG domain film assembly and experimental approach
Selected FG domains, i.e., Nsp1, Nup98-glyco and reg-FSFG, were purified (Figure 1—figure sup-

plement 1) and anchored stably and specifically to planar surfaces, through their His tags (Figure 1—

figure supplement 2). We monitored the formation of FG domain films and their interaction with

NTF2 and Impb by spectroscopic ellipsometry (SE) and quartz crystal microbalance (QCM-D), simul-

taneously and on the same sample (Figure 1—figure supplement 3), to quantify areal protein densi-

ties, G (i.e., amounts of protein per unit area, expressed as pmol/cm2; 1 pmol/cm2 equals 0.6

molecules per 100 nm2), and effective film thicknesses, d, respectively.

The FG domain grafting density was tuned to range between 4 and 11 pmol/cm2 (i.e., between

2.4 and 6.6 molecules per 100 nm2), by varying the FG domain solution concentration and incubation

time. This range covers and extends around the estimated grafting density in a yeast NPC that is

thought to be 5.2 to 6.9 pmol/cm2 (i.e., 3.1 to 4.1 molecules per 100 nm2); this estimate is based on

the assumption of a cylindrical channel of 35–40 nm in diameter and 30–35 nm in length

(Yang et al., 1998), and of ~ 136 FG domains per channel (Rout et al., 2000; Strawn et al., 2004).

It is also a range (�5 pmol/cm2 for Nup98-glyco) over which the FG domain films maintain a homo-

geneous appearance, as previously verified by atomic force microscopy (Eisele et al., 2013).

NTRs were titrated into FG domain films over a range covering three orders of magnitude in NTR

concentration. This range includes the typical cellular concentrations of NTRs, e.g., 0.5 mM NTF2

homodimer in X. laevis eggs (Kirli et al., 2015), 0.3 mM NTF2 homodimer in HeLa cells

(Gorlich et al., 2003), and 3 to 5 mM Impb in X. laevis (Kirli et al., 2015; Wuhr et al., 2014). The

highest concentration in our experiments (10 mM) is comparable to the total concentration of NTRs

found in cells (Hahn and Schlenstedt, 2011; Kirli et al., 2015; Wuhr et al., 2014).

Figure 1 summarizes the experimental data at equilibrium as a function of NTR concentration,

cNTR, in solution. A set of controls confirmed that NTF2 and Impb bound specifically to the immobi-

lized FG domains (Figure 1—figure supplements 4 and 5), and that binding equilibriums were

indeed achieved (Figure 1—figure supplement 3B). Irrespective of the FG domain and NTR types,

NTR binding and unbinding was rapid, i.e., largely determined by mass transport to and from the

surface upon changes in NTR concentration (Figure 1—figure supplement 3B). This is consistent

with reports on the kinetics of NTRs interacting with individual FG motifs (Milles et al., 2015), FG

domains (Hough et al., 2015), and FG domain assemblies (Eisele et al., 2010; Frey and Gorlich,

2007), which all found binding to be exceptionally rapid. Taking these observations together, we

conclude that we measure genuine interactions between NTRs and supramolecular assemblies of FG

domains.

Analysis of NTR binding isotherms
Interestingly, the shape of the binding isotherms (i.e., the areal NTR density in the film, GNTR;eq, ver-

sus cNTR; Figure 1, top row) remained largely unchanged with FG domain type and grafting density.

This common shape prompted a more detailed analysis, including the use of phenomenological

models (see Figure 2A for a selected measurement; all other measurements led to similar conclu-

sions, see Figure 2B). For cNTR � 0.05 mM, the slope in the log-log binding isotherms is one (Fig-

ure 1; and Figure 2A, main plot, dashed line), as expected from the low-concentration limit of a

Langmuir isotherm. This indicates that – at low concentrations – individual NTR molecules bind to

the FG domain film independently. In this concentration range, the ratio GNTR,eq / cNTR = PC � d was

constant, with partition coefficients PC between 103 and 105 (Figure 2—figure supplement 1A),

implying that NTRs are strongly enriched in the FG domain films compared to their concentration in

solution.

For higher concentrations, however, the Langmuir isotherm (i.e., GNTR,eq = GNTR,max � cNTR / (K0.5

+ cNTR), with GNTR,max the maximum areal density of bound NTRs and K0.5 the concentration for half-

maximum binding) failed to faithfully describe the data (Figure 2A, inset, dashed line). This is in line

with earlier observations (Eisele et al., 2010; Wagner et al., 2015). For a quantitative comparison
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between different curves, we fitted the experimental data with the Hill equation (Figure 2A, main

plot, solid line), i.e., GNTR;eq ¼ GNTR;max � c
a

NTR=ðK
a

0:5 þ c
a

NTRÞ (Weiss, 1997). The Hill coefficients for all

curves lie within the narrow range a = 0.71 ± 0.04 (Figure 2—figure supplement 1B). This narrow

spread in a in the Hill fits and the small variations (typically less than a factor of two) in K0.5 for the dif-

ferent FG domain types and grafting densities (Figure 2—figure supplement 1C), confirm the unifor-

mity of the binding isotherms noted above. Unsurprisingly, there was more variation in the effective

maximal binding GNTR,max as determined from the Hill fits (Figure 2—figure supplement 1D). The uni-

formity of the binding isotherms can be further articulated by plotting normalized areal densities

(GNTR,eq/GNTR,max) versus normalized NTR concentrations (cNTR/K0.5), with GNTR,max and K0.5 deter-

mined from the Hill fit, to show that this reduces all data to a single master curve (Figure 2B). The
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Figure 1. Isotherms of NTR binding (top row, log-log presentation) and FG domain film thickness evolution (bottom row, lin-log presentation) for NTF2

and Impb binding to different FG domains (see labels at top) at selected FG domain grafting densities (visualized by distinct symbols and colors). Error

bars are shown for all data points in the binding isotherms, and for three selected data points (indicating the trends) per curve in the thickness

isotherms. The data for Impb binding to the 10.0 pmol/cm2 Nsp1 film were reproduced from Eisele et al. (2010); this data was acquired with Nsp1

carrying a His tag at the opposite end (N-terminus) compared to the other Nsp1 data in this study, in a separate SE measurement and no

simultaneously recorded thickness data are available. Full experimental details are available in ‘Materials and methods’ and Figure 1—figure

supplements 1–5; tabulated results are available in Figure 1—source data 1.

DOI: 10.7554/eLife.14119.005

The following source data and figure supplements are available for figure 1:

Source data 1. Tables of data shown in Figure 1.

DOI: 10.7554/eLife.14119.006

Figure supplement 1. Quality of purified recombinant proteins used in this study.

DOI: 10.7554/eLife.14119.007

Figure supplement 2. FG domains are anchored specifically and stably through their terminal His tag.

DOI: 10.7554/eLife.14119.008

Figure supplement 3. Schematic illustration of the experimental approach and representative data.

DOI: 10.7554/eLife.14119.009

Figure supplement 4. Controls for the binding of NTRs to His tag capturing surfaces monitored by QCM-D.

DOI: 10.7554/eLife.14119.010

Figure supplement 5. NTF2 binds all FG domains predominantly through its primary binding site.

DOI: 10.7554/eLife.14119.011
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agreement in curve shape is remarkable, given that the used FG domains provide a large spread of FG

motif types and FG motif arrangement along the peptide chains (Table 1) and that the two tested NTR

types differ both in size and in the number of binding sites for FG motifs.

Since a is smaller than one, the Hill fits indicate that NTR binding is negatively cooperative in the

physiologically relevant concentration range, i.e., the average binding strength decreases as the FG

domain assembly becomes enriched with NTRs. This finding is in line with recent reports that pro-

pose a modulation of NTR binding by the presence of other NTRs (Kapinos et al., 2014;

Schleicher et al., 2014; Wagner et al., 2015). In this context, it is worth noting that the areal density

of bound NTR represents only a small fraction of the FG motif density available in the films. The total

number of FG motifs per FG domain is 33 for Nsp1, 39 for Nup98-glyco and 16 for reg-FSFG

(Table 1). Our data illustrate that, at cNTR = 10 mM, the films contained at least 10 and 50 FG motifs

per bound NTF2 dimers and per bound Impb, respectively (Figure 2—figure supplement 1E). With

two binding sites for FG motifs per NTF2 dimer, and up to nine binding sites per Impb, this implies

that no more than 20% of the FG motifs were simultaneously engaged in NTR binding. Importantly,

NTR binding does not correlate with the total abundance of FG motifs: for example, Nsp1 binds

more than twice the number of NTF2 per FG motif compared to Nup98-glyco (Figure 2—figure

supplement 1E), consistent with its binding NTF2 more strongly (Clarkson et al., 1997).

Taken together, the analysis of binding isotherms demonstrates that NTRs are substantially

enriched in FG domain films, that the accumulation of NTRs in FG domain films progressively

reduces the strength of NTR binding, and that the NTR binding behavior has universal features that

are independent of the detailed chemical and structural features of the FG domains and NTRs.

Impact of NTR binding on film thickness
Variations in film thickness d (Figure 1, bottom row) following NTR binding were generally moder-

ate. At NTF2 solution concentrations up to 1 mM, the thickness remained virtually unchanged for

Nup98-glyco and reg-FSFG, and decreased marginally (by up to 7%) for Nsp1. At higher concentra-

tions, the thickness gradually increased, by between 5 and 35% at 10 mM compared to the pristine

FG domain film, depending on the FG domain type and grafting density. For Impb binding to Nsp1,

Figure 2. Quantitative analysis of the binding isotherms. (A) A selected data set (NTF2 binding to 6.1 pmol/cm2 reg-FSFG; symbols) with fits to simple

binding models (lines). Data at low NTR concentration (cNTR � 0.05 mM) display a close-to-linear relation (dashed line with slope 1.0 in the log-log plot),

as expected for independent binding, yet the Langmuir isotherm (inset, dashed line in lin-log plot) fails to reproduce the data over the full range of

NTR concentrations. The Hill equation provides a good description of the data in the high-concentration range (0.05 mM � cNTR � 10 mM; solid line). (B)

By normalizing the areal densities and NTR concentrations to GNTR,max and K0.5, respectively, all data could be overlaid on a single master curve, where

the effective maximal binding GNTR,max and the half-maximal binding K0.5 were determined from fits with the Hill equation (see main text and

Figure 2—figure supplement 1).

DOI: 10.7554/eLife.14119.012

The following figure supplement is available for figure 2:

Figure supplement 1. Quantitative analysis of the binding isotherms in Figure 1.

DOI: 10.7554/eLife.14119.013
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there was a moderate and gradual thickness increase up to 25% at 10 mM. In all cases, the increase

in film thickness was smaller than or comparable with the dimensions of the NTRs. These findings

are in clear disagreement with the film collapse by more than 50%, reported by Lim et al. on nano-

scale islands of FG domain assemblies (Lim et al., 2007), and the ’nanomechanical collapse’ model

proposed based on those data. Instead, our data are in full agreement with other thickness measure-

ments on similar systems (Eisele et al., 2010; Kapinos et al., 2014; Wagner et al., 2015), which

consistently did not give any indications for such a collapse, but rather indicate that the global mor-

phology of FG domain films remains preserved irrespective of the concentration and type of NTR.

Computational approach and cohesiveness of the FG domain films
In our experiments, the shape of the binding isotherms was independent of the detailed chemical

and structural features of the FG domains and NTRs. We therefore hypothesized that it must arise

from generic physical features of the FG domain / NTR system, among which are the nature of FG

domains as flexible polymers and of NTRs as globular colloids, as well as the mean, overall interac-

tions between FG domains and NTRs. To test this hypothesis, we adapted a previously developed

computational model (Osmanovic et al., 2012; 2013b) to planar surfaces (Figure 3A). The model

treats polymers as beads on a chain, where the bead diameter is set to twice the contour length of

an amino acid, to reproduce the flexibility of unfolded peptide chains (see Materials and methods);

the interactions between FG domains are essentially smeared out over the whole (homogeneous)

chain thus effectively including interactions between FG motifs, but potentially also with other parts

of the FG domain chains. The model explicitly considers the confinement through grafting, the size,

the flexibility, the geometrical excluded volume and the cohesiveness of FG domains, the concentra-

tion and geometrical excluded volume of NTRs, and the attraction between FG domains and NTRs.

The polymer and the colloid surface are homogeneous, and two adjustable parameters regulate the

interaction strengths (see Materials and methods): epp the cohesiveness (Eisele et al., 2013) of poly-

mer segments, and epc the attraction between a polymer segment and a colloid. From the computed

density maps (Figure 3—figure supplement 1) for appropriate polymers and colloids, physical

parameters such as average film thickness and binding isotherms were extracted (Figure 3—figure

supplements 2–5) and compared with the experimental data.

First, we considered the FG domain films without NTRs. Figure 3B displays the predicted film

thickness normalized by the number of amino acids in the protein. As expected, the film thickness

decreases (i.e., the film condenses) with increasing cohesiveness epp. At any given epp for the poly-

mers representing Nsp1 and Nup98-glyco, the normalized thickness is identical, as would be

expected based on mean field theory for polymer brushes, irrespective of the degree of cohesive-

ness (Zhulina et al., 1990). The somewhat larger values for the roughly two-fold shorter chain repre-

senting reg-FSFG are thus likely to reflect finite-size effects. To obtain estimates for the

cohesiveness parameter epp for all FG domains, we compared the computational predictions (sym-

bols in Figure 3B) to the experimental thickness data (horizontal bands in Figure 3B). Table 2 shows

epp as a function of FG domain type, obtained via a cubic interpolation (dashed line in Figure 3B)

between the epp values for which computational data were available. Because the interface between

the film and the bulk solution is not ideally sharp, it was unclear a priori which computational density

threshold (see Materials and methods) should match the effective thickness measured by QCM-D

most accurately. Reassuringly, however, the results were only weakly influenced by the precise defi-

nition of film thickness that was used in the computational model, i.e., density thresholds of 1% or

10% instead of 5% typically altered the estimates for epp by less than 10%. From the comparison of

computation and experiment, it was clear that epp for Nup98-glyco exceeded that of Nsp1, in good

agreement with our previous study (Eisele et al., 2013), in which we also found Nup98-glyco to be

more cohesive than Nsp1. Nup98-glyco and reg-FSFG have similar cohesiveness.

Using similar computational modeling in a NPC-mimicking pore geometry of 50 nm diameter, we

had previously estimated epp » 0.05 kBT from nanomechanical studies on intact NPCs

(Bestembayeva et al., 2015). This is close to the epp values found here, though slightly higher, prob-

ably because the presence of NTRs was not taken into account in the computational model to which

the nanomechanical data were matched.
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Figure 3. Computational model. (A) Schematic illustration of the computational model. FG domains are

represented as end-grafted polymers anchored at 5.5 pmol/cm2 (i.e., 3.3 molecules per 100 nm2) to the bottom of

a 100 nm diameter cylinder, and modeled as strings of beads, where each bead has equal bond length and

diameter (two amino acids, 0.76 nm). The number of polymer beads was set to match the length of experimentally

used FG domains. NTF2 dimers and Impb are represented as spherical colloids of 4.0 and 6.0 nm diameter,

respectively. (B) Matching of the computational model with experimental data for FG domain films in the absence

of NTRs. Horizontal lines represent the experimentally determined film thickness per amino acid for different FG

domains (black line - Nsp1 at 4.9 pmol/cm2; blue line - Nup98-glyco at 5.4 pmol/cm2; orange line - reg-FSFG at

6.1 pmol/cm2), with shaded areas in matching colors indicating confidence intervals. Symbols represent the

thickness as predicted by the computational model as a function of epp for the different FG domains (at 5.5 pmol/

cm2; colors match experimental data). The data points and the upper and lower ends of the vertical lines refer to

the effective thicknesses where the densities have dropped to 5%, 1% and 10% of the maximal densities in the

film, respectively. Symbols for Nsp1 and Nup98-glyco are translated along the x axis by +0.1 kBT and -0.1 kBT,

respectively, to improve their visibility. Dashed lines through the symbols are cubic interpolations (the black

dashed line is for Nsp1 and Nup98-glyco). Full computational details are available in ‘Materials and methods’ and

Figure 3—figure supplements 1–5.

DOI: 10.7554/eLife.14119.014

Figure 3 continued on next page
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Computational modeling – binding of NTRs to FG domain films
Next, we analyzed the binding isotherms. For a given cohesiveness parameter epp, we found that the

precise setting of the NTR.FG domain interaction epc strongly influenced the amount of bound NTRs

for any given NTR concentration, by orders of magnitude for 0.1 kBT changes in epc, in the explored

parameter range of 0.1 to 0.5 kBT. It also strongly affected the overall shape of the binding iso-

therms (Figure 3—figure supplements 2B, 3B, 4B and 5B). Figure 4 (top row) shows computational

data for parameter sets of epp and epc that best match the experimental results for the different FG

domain and NTR types, where epp was determined by the film thickness measurement in the absence

of NTRs (see Figure 3B). Taking into account that these are fits with a single free parameter (epc)

over several orders of magnitude in bound NTR and in NTR concentration, the agreement with the

experimental data is remarkably good. With epp estimated from the thickness in the absence of NTR

(Figure 3B) and epc from a comparison to the binding isotherms (Figure 4, top row), the perfor-

mance of the model was further validated via the film thickness as a function of NTR concentration in

solution. There is good agreement between the experimental data and the computational results

(Figure 4, bottom row). Table 2 summarizes the results of this analysis, with the estimates of epc
varying less than ~ 20% between the different FG domains and NTRs. Taken together, the measured

binding of NTRs to FG domain films was accurately modeled by our simplified description of the rel-

evant interactions in terms of the two key parameters epp and epc, where we treat all amino acids in

the FG domain chains identically and the NTR surfaces as homogeneous.

It should be emphasized that these interaction strengths represent effective, smeared-out affini-

ties between the polymer beads and colloids in our model (Figure 3A). To relate epc to a rough esti-

mate for the binding energy of an NTR in the FG domain film, one may assume the NTR colloid to

be surrounded by polymer beads at the maximum polymer packing in our calculations ( ~20%), yield-

ing at most ~ 26 and ~53 polymer beads in contact with the colloidal surface, for the NTF2- and

Impb-mimicking colloids, respectively. Hence for NTF2, the corresponding binding energy is <~ 26 �

epc; and epc between 0.3 and 0.4 kBT implies a binding energy of <~ 10 kBT per NTF2 homodimer.

Figure 3 continued

The following figure supplements are available for figure 3:

Figure supplement 1. Scheme illustrating how computational modeling data is presented in the form of maps of

the polymer and colloid packing fractions.

DOI: 10.7554/eLife.14119.015

Figure supplement 2. Computational modeling data for a polymer length equivalent to Nsp1 and colloids of 4.0

nm diameter (equivalent to NTF2 homodimers).

DOI: 10.7554/eLife.14119.016

Figure supplement 3. Computational modeling data for a polymer length equivalent to Nup98-glyco and colloids

of 4.0 nm diameter (equivalent to NTF2 homodimers).

DOI: 10.7554/eLife.14119.017

Figure supplement 4. Computational modeling data for a polymer length equivalent to reg-FSFG and colloids of

4.0 nm diameter (equivalent to NTF2 homodimers).

DOI: 10.7554/eLife.14119.018

Figure supplement 5. Computational modeling data for a polymer length equivalent to Nsp1 and colloids of 6.0

nm diameter (equivalent to Impb).

DOI: 10.7554/eLife.14119.019

Table 2. Interaction parameters determined based on comparison of experiment and computational

model.

FG domain "pp (kBT)
"pc (kBT)
NTF2

"pc (kBT)
Impb

Nsp1 0.024 ± 0.001 0.34 ± 0.02 0.40 ± 0.02

Nup98-glyco 0.030 ± 0.002 0.36 ± 0.02 -

reg-FSFG 0.030 ± 0.005 0.40 ± 0.02 -

DOI: 10.7554/eLife.14119.020
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Similarly, epc ~ 0.4 kBT implies a binding energy of <~ 20 kBT per Impb. Hence our results would cor-

respond to a few kBT binding energy per FG-binding site on the NTRs, in reasonable agreement

with the millimolar affinities per FG motif observed with Impb (Milles et al., 2015).

With the values for epp and epc constrained by the comparison to the experimental data, the

computational model makes predictions about the distribution of FG domains and NTRs along the

surface normal. These are shown in Figure 5 (top row) for cNTR = 10 mM, i.e., in the physiological

range of total NTR concentrations. They reveal that, given parameter settings that best match the

experimental system (Table 2), the NTRs effectively penetrate and fill all FG domain films.

Figure 5 (bottom row) demonstrates that a relatively small change in the FG domain cohesiveness

can have a dramatic effect on the NTR distribution. For example, with the NTF2.reg-FSFG interac-

tion maintained at epc = 0.4 kBT, an increase in inter-FG domain attraction by 33%, from epp = 0.03

kBT to 0.04 kBT, essentially impaired NTF2 accumulation inside the film, and the NTF2 was enriched

instead at the film-solution interface – that is to say, on the film rather than in the film. A similar

trend is observed for all other combinations of NTRs and FG domains tested, albeit to a lesser

extent for the least cohesive FG domains (Nsp1) with the smaller NTR (NTF2).

The model also indicated that a minor reduction in the colloid.FG domain interaction strength

drastically reduces binding (Figure 3—figure supplements 2, 3 and 5). Figure 6 illustrates this for a

selected colloid concentration (1.4 mM, in the range of individual NTR concentrations in the cell) in

the solution phase, and shows that by reducing epc by only 25% compared to the best match for the

respective NTRs and FG domains, there is a reduction in colloid binding by more than one order of

magnitude. Such a dramatic effect is remarkable: For comparison, a reduction of less than 25%
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Figure 4. Matching of experimental and computational data. The top row shows binding isotherms and the bottom row the concomitant film thickness

evolution. The grafting density was set to 5.5 pmol/cm2 in all computations, and the experimental data with the closest FG domain grafting densities

are reproduced from Figure 1 and visualized by black symbols. Computational data are shown as green lines. The solid lines represent the best match

to the experiment, and the corresponding epp and epc are indicated. The best match of the binding isotherms was determined by minimization of the

least square differences of log(GNTR,eq) over the range 0.025 mM � cNTR � 10 mM, where the experimental data was interpolated and extrapolated using

a linear fit for cNTR < 0.05 mM, and the Hill equation for cNTR > 0.05 mM, as shown in Figure 2 and Figure 2—figure supplement 1. Dashed lines and

dotted lines in the top row correspond to a change in epc by -0.01 kBT and +0.01 kBT, respectively, with epp unchanged. The lines and upper and lower

ends of the vertical bars in the bottom row correspond to effective thicknesses where the densities have dropped to 5%, 1% and 10% of the maximal

densities in the film, respectively (see Figure 3 and Materials and methods).

DOI: 10.7554/eLife.14119.021
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Figure 5. NTRs favor the penetration of and binding into FG domain films, but only just so. Computed packing fraction profiles (polymer – blue solid

line, colloid – red dashed line) in the presence of 10 mM NTR, as a function of distance from the grafting surface. The top row shows the predictions for

the parameter sets of epp and epc that match the experimental data best (cf. Figure 4 and Table 2). The bottom row shows predictions with epp
increased by 33% compared to the best match. Schemes (insets) illustrate the distinct distributions of NTRs with these two parameter choices.

DOI: 10.7554/eLife.14119.022

Figure 6. Colloid binding depends sharply on colloid.FG domain interaction strength epc. Computed colloid binding as a function of epc is shown, for a

colloid concentration in solution of 1.4 mM and with the FG domain cohesiveness epp set to the values that best match the experimental data (cf.

Table 2). The blue vertical lines indicate the epc values giving the best match to the experimental data for the indicated FG domains and NTRs (cf.

Table 2).

DOI: 10.7554/eLife.14119.023
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would be expected for simple Langmuir-type one-to-one binding. Collectively, these results suggest

that the native system is tuned to operate within a rather narrow parameter space in epc and epp that

facilitates the strong enrichment of NTRs within the FG domain film, whereas similarly sized proteins

with weaker binding strength are effectively excluded.

Discussion

FG domain films are significantly compacted compared to non-cohesive
polymer brushes
We have measured reconstituted assemblies of FG domains in planar geometry and at grafting den-

sities that are similar to those in the NPC. This yields laterally homogeneous films (Eisele et al.,

2013), which may be qualified as polymer brushes (Israelachvili, 1991). As pointed out previously

(Eisele et al., 2013), this qualification per se does not imply a distinction between a ’brush-like,

entropic’ scenario (Lim et al., 2007) of the NPC transport barrier on one side, and a hydrogel sce-

nario (Frey et al., 2006) on the other. The main distinguishing factor between these opposing sce-

narios is the level of cohesiveness of the FG domains, which in our computational model is

parameterized by epp, and defines the compactness of the FG domain phase (Eisele et al., 2013).

From the comparison between experimental and computational results for the thickness of the dif-

ferent FG domain films (in the absence of NTRs, Figure 3B), it appears that the FG domain assem-

blies are compacted by a factor two to four compared to a film of perfectly non-cohesive (epp = 0,

equivalent to a self-avoiding random walk model) and flexible peptide chains, as follows from an

extrapolation of the computational data (dashed lines in Figure 3B). In spite of this condensation,

the measured film thickness (Figure 1) for Nsp1 is larger than the inner radius of the S. cerevisiae

NPC (18 to 20 nm [Alber et al., 2007; Yang et al., 1998]), and that for Nup98-glyco more than 60%

of the inner radius of the X. tropicalis NPC ( ~25 nm [Eibauer et al., 2015]). This would be consistent

with the FG domains forming a pore-filling cohesive meshwork or condensed polymer brush, as

implied by the selective phase model (Frey and Gorlich, 2007; Frey et al., 2006; Hulsmann et al.,

2012; Ribbeck and Gorlich, 2001), at least for Nsp1 in S. cerevisiae, and possibly for Nup98-glyco

in X. tropicalis taking into account the nanopore confinement (Osmanovic et al., 2012).

Universal aspects and negative cooperativity in NTR binding to FG
domains
On exposing the FG domain films to NTF2 and Impb, we find a remarkable quantitative similarity

(Figure 2) in the binding isotherms for Nsp1, Nup98-glyco, and reg-FSFG, in spite of their chemical

diversity. Future studies should test if a different behavior is found for less cohesive FG domains

and/or other NTRs. Our analysis in terms of the Hill equation indicates negative cooperativity for

NTR binding to the FG domain assemblies. This implies that the free energy of binding per NTR

decreases with an increasing amount of bound NTR in the film, and that this decrease is more pro-

nounced than would be expected for the one-to-one binding of NTRs to independent and uncorre-

lated binding sites (i.e., the Langmuir isotherm). Similar observations have been made previously

(Kapinos et al., 2014; Schleicher et al., 2014; Wagner et al., 2015). Key findings of the present

work are that this negative cooperativity appears robust against variations in NTR and in the spread

of FG motifs between Nsp1, Nup98-glyco, and reg-FSFG, and that it can be reproduced, over

orders of magnitude in NTR concentration, by a model that considers the FG domains as homoge-

neous polymers and the NTRs as featureless spheres, i.e., ignoring chemical and structural

heterogeneity.

Our analysis suggests that NTR binding is largely determined by generic effects such as overall

binding energy, crowding and excluded-volume interactions, and by the entropic costs of NTR

absorption that, in turn, reduce the conformational freedom of the grafted and flexible FG domains.

Such effects may well be expected since, at physiological NTR concentrations, the absorption of

NTRs roughly doubles the total density of the films (Figure 5, top row). In our computational model,

these effects are included, and the amount of NTR binding follows from collective low-affinity inter-

actions – the balance between the overall cohesiveness of the FG domains (epp) and the smeared-

out, average NTR.FG domain interactions (epc).
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Functional relevance for nucleocytoplasmic transport
In this context, it is important to emphasize that enrichment of NTRs in an FG domain phase – in our

model films but also in the NPC – vastly differs from NTR.FG motif binding under dilute conditions.

This can be illustrated, for example, by comparing the enrichment of Nsp1 films for NTF2 and Impb:

the higher total Impb.Nsp1 binding energy (integrated over the Impb surface) does not translate

into a higher enrichment than for NTF2, even in the limit of low NTR concentrations (Figures 1 and

4, top rows). The binding energy is balanced by excluded-volume interactions and polymer cohe-

siveness and entropy, i.e., by generic physical effects. At equilibrium, this balance is such that, in

spite of the high binding energy between NTRs and FG domains, NTRs can exchange between the

NPC and the nucleus/cytoplasm at minimal cost, thus facilitating cargo uptake and release.

Remarkably, this overall balance appears rather finely tuned in several respects. Firstly, a small

reduction in epc produces a dramatic decrease in the uptake of colloids by the FG domain films (Fig-

ure 6). This is of major functional importance: by its strong dependence on epc, the variable colloid

uptake explains how FG domain assemblies in the NPC greatly favor the uptake of NTRs over other

cytosolic proteins, which have been inferred to also bind FG domains (Hough et al., 2015), albeit

more weakly. This then explains how, because of the selective uptake, NTRs can efficiently translo-

cate across the NPC while more weakly binding proteins cannot. We anticipate that this predicted

fine tuning can be experimentally validated by systematically adjusting protein affinity to FG domain

assemblies, which awaits further studies.

In addition, from our comparison between experiment and computational modeling, the NTRs

appear to favor the penetration of and binding into the FG domain assemblies, but only just so: pen-

etration is inhibited for slightly larger FG domain cohesiveness (i.e., larger epp), which results in NTRs

preferentially binding on top of (and not into) the FG domain assembly (Figure 5). This is consistent

with the remarkable selectivity exhibited by NPC transport and suggests that the cohesiveness of

the FG domains is tuned to be as tight as possible to optimize exclusion of inert proteins by their

size (Eisele et al., 2013), while still sufficiently loose to facilitate penetration by NTRs. These features

also lend themselves to further experimental validation: the model predicts how NTRs are distrib-

uted in FG domain assemblies and how these distributions depend on the interaction strength

between NTRs and FG domains, which can be verified in future neutron or X-ray reflectometry meas-

urements on FG domain films.

Extrapolating our results on planar assemblies to the pore geometry of the NPC, we note that

large structural changes can occur within the here determined parameter range of epp: In analogous

calculations for FG domains in an NPC-mimicking pore geometry of 50 nm diameter

(Osmanovic et al., 2012; 2013b), we observed a transition (Osmanovic et al., 2012) between, on

one hand, a central and pore-occluding condensate of FG domains in the NPC conduit, and on the

other hand, a more open state with FG domains localized closer to the pore wall (see, e.g., Figure 7

in Osmanovic et al., 2013b). Such large and collective transitions are required to facilitate transport

of larger cargo.NTR complexes, with a size comparable to the nuclear pore diameter, through the

NPC.

Towards a minimal physical model for the NPC
Depending on the interaction strengths, FG domains assemblies may thus adopt qualitatively differ-

ent behaviors, e.g., absorption versus adsorption of NTRs and different types of polymer condensa-

tion. The overall FG domain interactions and NTR.FG affinity appear to be tuned close to the

boundaries that separate these types of behaviors. The observed sensitivity to the values assigned

to parameters offers an explanation of why different modeling approaches thus far have led to quali-

tatively different predictions of FG domain behavior in the NPC (Ando et al., 2013;

2014; Gamini et al., 2014; Ghavami et al., 2014; Miao and Schulten, 2009; Mincer and Simon,

2011; Moussavi-Baygi et al., 2011a; 2011b; Opferman et al., 2012; 2013; Osmanovic et al.,

2012; 2013b; Popken et al., 2015; Tagliazucchi et al., 2013; Wolf and Mofrad, 2008), where

most models succeed in capturing at least some aspects of experimental data on NPCs. The here

observed sensitivity to parameter settings indicates that it is critical to calibrate computational mod-

els and their parameters against well-controlled experiments. We propose that experimental data

obtained on well-defined FG domain assemblies (such as those provided and used here), possibly

complemented by structural data of isolated FG domains in solution (Yamada et al., 2010), could
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serve as reference for such calibration. It would be desirable that identical sets of reference data are

used by the computational modelers, as this would enable rigorous comparison between different

computational approaches. To facilitate this effort, we provide data files of the NTR binding and

thickness isotherms (Figure 1—source data 1).

Our results have the advantage that they allow for a quantitative comparison between computa-

tional simulations and the experimental (model) system. For the entire NPC, such rigorous testing of

computational models is presently complicated by experimental uncertainties in the locations of dif-

ferent FG domains inside the NPC, by the difficulties in accurately validating interaction parameters

for the ensemble of FG domains in the NPC, and by the predicted bistable behavior of polymers

grafted in nanopore geometries (see, e.g., Peleg et al., 2011 and Osmanovic et al., 2012). That

said, given the observed insensitivity to chemical heterogeneity of the FG domains, one can estimate

the level of detail that will need to be included for building an appropriate model and understanding

of mechanisms of selective transport in the NPC. The results presented here indicate that it is essen-

tial to take into account the flexible nature and cohesion of FG domains, as well as the crowding of

NTRs that bind to the FG domain assemblies, but that heterogeneity at the scale of amino acids may

only be of minor importance.

Conclusion
In summary, we have used a bottom-up nanoscale system for a quantitative study of how NTRs inter-

act with FG domains from the NPC. Highly similar binding isotherms were found for NTF2 binding

to assemblies of Nsp1 from S. cerevisiae, of Nup98-glyco from X. tropicalis, and of an artificially

designed regular FSFG construct; and for a different NTR, Impb, binding to Nsp1. This similarity sug-

gests that – while the overall balance of interactions is essential – the detailed chemical and struc-

tural heterogeneity of the FG domains is not a critical factor for how NTRs interact with FG domain

assemblies and thus with the NPC. This conclusion is supported by the good agreement – over sev-

eral orders of magnitude of NTR concentration – between the experimental data and a physical

model that treats the FG domains as chemically and structurally homogeneous polymers and the

NTRs as spherical colloids.

These results imply that the enrichment of NTRs into the FG domain phase is determined by

generic physical effects – the flexible nature and spatial confinement of FG domains and the NTR

size – and by the overall balance of a collection of low-affinity inter-FG-domain and NTR.FG domain

interactions. Moreover, our computational data show that moderate changes in this overall balance

cause remarkably large changes in the protein uptake by the FG domain assemblies, an observation

that is fully consistent with the transport selectivity of the NPC.

Given the success of our model in replicating NTR binding behavior in a nanoscale mimic for the

NPC, we therefore propose that a similar approach may be viable to describe NPC transport selec-

tivity, i.e., in terms of generic polymer models, without necessarily taking into account the full amino

acid sequences of FG domains and NTRs. However, our results also show that computational models

need to be carefully calibrated to experimental data – such as has been done in this work – if they

are to provide a meaningful contribution to the NPC field, since small ( ~30% ) changes in interaction

parameters can result in qualitatively different behaviors.

Materials and methods

Proteins and buffers
We used the following FG domains: Nsp1 (64.1 kDa), amino acids 2 to 601 of Nsp1 with a C-terminal

His10 tag; Nup98-glyco (58.3 kDa), amino acids 1 to 485 of Nup98 with ~ 30 O-GlcNAc modified S

and T residues per chain (Eisele et al., 2013; Labokha et al., 2013) and an N-terminal His14-TEV

tag; reg-FSFG (34.1 kDa), an artificially designed regular FSFG domain with 16 repetitions of the

sequence STPAFSFGASNNNSTNNGT and an N-terminal His14-TEV tag; reg-SSSG (32.2 kDa), a poly-

peptide identical to reg-FSFG but with phenylalanines replaced by serines. All FG domains were

purified as described earlier (Eisele et al., 2010; 2013; Frey et al., 2006; Labokha et al., 2013) and

stored at a concentration of 10 mg/mL in 50 mM Tris pH 8.0, 6 M guanidine hydrochloride (GuHCl)

at –80˚C. We used the following NTRs: NTF2 from H. sapiens (NTF2, amino acids 1 to 127; 29.0 kDa

for the homodimer); and Impb from S. cerevisiae (95.2 kDa). NTF2, the W7A mutant of NTF2 and
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Impb were expressed and purified as previously described (Bayliss et al., 1999; Eisele et al., 2010)

and stored at a concentration of 100 mM in working buffer (10 mM Hepes, pH 7.4, 150 mM NaCl) at

�80˚C. Before use, all protein constructs were diluted in working buffer to desired concentrations.

For all our measurements, the residual concentration of GuHCl in the final solution was below

60 mM. The purity of proteins was verified by SDS-PAGE (Figure 1—figure supplement 1).

In situ combination of spectroscopic ellipsometry (SE) and quartz
crystal microbalance with dissipation monitoring (QCM-D)
The formation of FG domain films and the binding of NTRs to FG domain films were simultaneously

followed by SE and QCM-D on the same surface and in a liquid environment (Figure 1—figure sup-

plement 3A) (Richter et al., 2013). To this end, we used a custom-built cuvette-like open fluid cell,

placed in a Q-Sense E1 system (Biolin Scientific AB, Västra Frölunda, Sweden; providing QCM-D

data) and mounted on a spectroscopic rotating-compensator ellipsometer (M2000V, J. A. Woollam

Co., Lincoln, NE; providing SE data), as described in detail elsewhere (Carton et al., 2010).

In the SE measurements, ellipsometric angles (D and y) were acquired over a wavelength range

of l = 380 to 1000 nm at 70˚ angle of incidence and about 5 s time resolution. In the QCM-D meas-

urements, frequency and dissipation shifts (Dfi and DDi) were acquired for six overtones (i = 3, 5,... ,

13; corresponding to resonance frequencies of fi » 15, 25,... , 65 MHz) with a time resolution better

than 1 s. Prior to each measurement, the walls of the cuvette were passivated by incubation with a

buffer solution containing 10 mg/mL of bovine serum albumin (BSA; Sigma) for 30 min. The cuvette

was rinsed with buffer, ultrapure water and blow-dried with nitrogen. For the measurement, the

cuvette was filled with ~2 mL working buffer, continuously stirred and held at a temperature of

23˚C. Samples were injected directly into the buffer-filled cuvette at desired concentrations. To

remove samples, the cuvette content was diluted by repeated addition of excess buffer and removal

of excess liquid until the concentration of soluble sample, estimated from the dilution rate, was

below 10 ng/mL.

Surface functionalization, FG domain film formation, and titration with
NTF2
For measurements with NTF2 and Nsp1, we used His tag capturing QCM-D sensors (QSX340; Biolin

Scientific AB). These sensors are coated with a thin layer of poly(ethylene glycol) (PEG) that exposes

Cu2+ ions for the capture of His tagged molecules, and could be readily used as provided for FG

domain film formation. We previously demonstrated that His tag capturing QCM-D sensors are

suited to create dense monolayers of site-specifically anchored Nsp1, and that such Nsp1 films have

comparable properties to Nsp1 films formed on functionalized supported lipid bilayers (SLBs)

(Eisele et al., 2012). For measurements with Nup98-glyco, with reg-FSFG, and with Impb and Nsp1,

we used SLBs as immobilization platform instead as this provided improved binding specificity.

These measurements were performed on silica-coated QCM-D sensors that are optimized for com-

bined QCM-D/SE experiments (QSX335; Biolin Scientific AB). The sensors were cleaned by immer-

sion in a 2% sodium dodecyl sulfate solution for 30 min, rinsed with ultrapure water, blow-dried with

nitrogen, and exposed to UV/ozone (BioForce Nanosciences, Ames, IA) for 30 min. We mounted the

cleaned sensors in the combined SE/QCM-D and functionalized their surface with supported lipid

bilayers (SLBs) exposing Ni2+ ions for the capture of His tagged molecules, as described previously

(Eisele et al., 2010; 2013). Briefly, we used sonication to prepare small unilamellar lipid vesicles

(SUVs) containing dioleoylphosphatidylcholine (DOPC; Avanti Polar Lipids, Alabaster, AL) and 3 to

10 mol-% of lipid analogs with headgroups comprising two or three Ni2+-chelating nitrilotriacetic

acid moieties (bis-NTA or tris-NTA) (Beutel et al., 2014; Lata et al., 2006). SLBs were spontaneously

formed by injecting SUVs (at 50 mg/mL final concentration) with NiCl2 (at 10 mM final concentration)

into the buffer-filled SE/QCM-D fluid cell. SLB formation was monitored by SE and QCM-D and only

SLBs of good quality (i.e., showing low QCM-D dissipation shifts, DD < 0.5 � 10–6, and high fre-

quency shifts, |Df| > 25 Hz) were used for further measurements.

We formed FG domain films by injecting the FG domains directly into the SE/QCM-D cuvette

equipped with a functionalized sensor. FG domain film formation was monitored, and FG domain

concentration (up to 2.9 mM) and incubation time (up to 90 min) modulated to obtain FG domain

films of desired grafting density (Figure 1—figure supplement 3B). NTRs were titrated in discrete
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steps, first increasing and then decreasing, followed by at least 5 min of continuous rinsing with

working buffer to remove NTRs from the solution phase. Incubation times were 5 to 30 min for titra-

tion steps with increasing NTR concentrations and 5 min for decreasing concentrations, i.

e., sufficiently long for equilibrium to be reached, as verified from the SE/QCM-D curves (Figure 1—

figure supplement 3C).

Quantification of film thickness
We determined the thickness of FG domain films by fitting the QCM-D data to a continuum visco-

elastic model, as described in detail previously (Eisele et al., 2012). Briefly, we used the software

QTM (Johannsmann) (option “small load approximation” (Johannsmann, 1999; 2008)). The FG

domain films were modeled as homogeneous viscoelastic films with a storage modulus (G’) and a

loss modulus (G”) that depend on frequency in the form of a power law. The film density was fixed

based on the areal mass density (determined by SE, see below) and partial specific volume of pro-

teins, and the density of water. The semi-infinite bulk solution was assumed to be a Newtonian fluid

with the density and viscosity of water.

The interface between the FG domain film and the bulk solution is not ideally sharp, and the defi-

nition of film thickness thus not trivial. The viscoelastic model neglects the fuzzy interface and

assumes a homogeneous film. However, because the acoustic contrast in polymer materials is gener-

ally high (Johannsmann, 2008), the (acoustic) thickness measured by QCM-D is expected to include

a substantial part of the interfacial region that has a relatively low polymer density (Domack et al.,

1997). The specified errors represent a confidence level of one standard deviation (68%). In previous

studies (Eisele et al., 2010; 2012; 2013), we found that the thickness results obtained by QCM-D

for FG domain films are comparable to within the specified confidence levels to those obtained with

other techniques (atomic force microscopy and SE), thus confirming that the thickness determination

is robust.

Quantification of adsorbed amounts
SE data were fitted to a model of multiple optically homogeneous layers, implemented in the soft-

ware CompleteEASE (J. A. Woollam Co.), to quantify protein surface densities. The fitting methods

for QSX335 and QSX340 sensor substrates are described in detail in refs. (Carton et al., 2010) and

(Eisele et al., 2012), respectively. Irrespective of the substrate, the FG domain film was treated as a

transparent Cauchy film with an effective optical thickness dSE and a wavelength-dependent refrac-

tive index n(l). Protein surface densities G where obtained through de Fejter’s equation (De Feijter

et al., 1978), i.e., G = dSEDn / (MW � dn/dc), where Dn is the difference in refractive index between

the FG domain film and the buffer solution (assumed to be wavelength independent) and MW the

protein molecular mass. We used dn/dc = 0.18 cm3/g as refractive index increment for our protein

films (Richter et al., 2013). The resolution in G � MW was typically 0.5 ng/cm2. Among the optical

mass-sensitive techniques, SE is particularly suited to quantify the areal mass density of organic films

up to a few 10 nm thick, because mass determination is virtually insensitive to the distribution of

material within the film (Richter et al., 2013).

Computational model
To model the experimental systems, we adapted a classical density functional theory approach that

was derived, validated against Monte Carlo simulations, and applied in previous studies of polymers

in a cylindrical confinement (Osmanovic et al., 2012; 2013b). We described the FG domain assem-

bly as a collection of one-end-grafted polymers anchored homogeneously to the bottom of a cylin-

der of 100 nm in diameter and 120 nm in height (Figure 3A). Each polymer was modeled as a string

of physically and chemically identical beads that can rotate freely with respect to each other. The

bead diameter and (fixed) bond length of the polymers were both taken to be 0.76 nm, such that

each bead is in direct contact with its nearest neighbors on the string. Specifically, this yields a Kuhn

length of 0.76 nm, i.e., twice the contour length of an amino acid, and a persistence length of 0.38

nm, mirroring the flexibility of unfolded polypeptide chains (Stirnemann et al., 2013). The number

of beads per polymer chain was chosen to be 300, 260 and 155 to represent Nsp1, Nup98-glyco

and reg-FSFG, respectively. These numbers match half the number of amino acids (except the His

tag used for anchorage) of the respective FG domain constructs being modeled, and thus the
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contour length, to within 5% (Table 1). The polymer grafting density was set to 5.5 pmol/cm2, i.e.,

3.3 polymers per 100 nm2, to approximately match the FG domain grafting density in the NPC and

the majority of the experimental data sets presented here. It was kept identical for the different FG

domains to facilitate comparison and cross-validation of the computational results. For significantly

lower grafting densities, lateral heterogeneity became increasingly important – as also observed

experimentally (Eisele et al., 2013) – partly invalidating our approach in that regime. On the other

hand, for significantly higher grafting densities, excluded-volume interactions were such that the

computational convergence was much harder to achieve. NTF2 was represented as a colloidal

sphere of 4.0 nm diameter, where the latter value was based on the diameter of a sphere that

approximately includes the atomistic NTF2 dimer structure (Bayliss et al., 1999). Similarly, Impb was

represented as a sphere of 6.0 nm, roughly matching the atomistic Impb structure (Forwood et al.,

2010), and 50% larger than NTF2, in agreement with a difference in diameter expected based on

the mass difference between Impb and NTF2. The colloidal spheres could freely diffuse into and out

of the cylinder with a chemical potential corresponding to the molar concentration, as described

previously (Osmanovic et al., 2013b).

The affinity between two polymer beads was parameterized by epp, and the interaction between

a polymer bead and a colloid by epc, where epp and epc refer to the energy gain on bringing two

polymer beads, and a polymer bead and a colloid, respectively, from infinite separation to hard con-

tact. The attractive interactions were of the generic, exponential form with a decay length of 1 nm.

epp and epc were varied to map the morphological space of the FG domain/NTR films as a function

of the balance between inter and intra FG domain interactions on the one hand, and FG domain-

NTR interactions on the other. We assumed that there was no attraction between the colloids.

Rotational symmetry was assumed around the central axis of the cylinder (perpendicular to the

grafting surface), thus reducing the system to two dimensions for computational efficiency. For con-

sistency with our previously developed algorithms, zero-density boundary conditions were imposed

for both polymers and colloids at the side walls of the cylinder. At the cylinder top and bottom,

zero-density boundary conditions were used for the polymers and periodic boundary conditions for

the colloids.

Local (and a priori radially dependent) film thicknesses were defined via iso-density profiles corre-

sponding to a defined fraction (1%, 5% and 10% ) of the maximal density within the film. For com-

parison to the experimental data, these thicknesses were averaged across the cylinder (taking into

account the 2pr weighting factor in cylindrical coordinates). The results were verified for robustness

against the exact threshold setting (1%, 5% and 10%, see Results section), and found to typically cor-

respond to the thickness that includes >~90% of the total film material.

Amounts of bound colloids were expressed as areal densities averaged over the full surface (of

100 nm diameter) of the cylinder. To test for boundary-related artifacts in the computational results,

areal colloid densities were also computed as averages across the central part (of 50 nm diameter)

of the cylinder. Within the range of parameters relevant for comparison with experiment, the results

agreed to within less than a factor of two.

Polymer and colloid density profiles were determined from respective packing fractions versus

the axis that is normal to the grafting surface. Analysis of a profile was performed on the average of

profiles for different radial positions in the cylinder.
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