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Abstract

An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular
haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene
substituents and substitution patterns are compatible with this chemistry. Notably, electronically
unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title
transformation. We also demonstrate that the same catalytic system can be used in both
chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or
no modification.
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The field of catalytic asymmetric alkene halogenation has witnessed an explosive growth in
recent years, with tremendous advances being made both in terms of new reaction discovery
as well as mechanistic understanding. Two of the major issues that have thwarted the
development of asymmetric alkene halogenations are the rapid stereochemical degradation
of chiral halonium ions by olefin-to-olefin halenium transfer,[] and isomerization of
halonium ions to the open B-halocarbenium ions.[2] Not surprisingly, most early examples
have reported on the intramolecular capture of halonium ions via tethered nucleophiles; 3
the proximity-driven rate enhancement of the cyclization step presumably outcompetes any
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stereorandomizing events. Enantioselectivities of more than 95:5 are routinely obtained with
a variety of halenium precursors and nucleophiles.

More recently, the development of enantioselective intermolecular alkene
halofunctionalization reactions has come into focus.[1 A number of excellent reports have
shown a great deal of progress in this area.[42 5] Intermolecular aminohalogenation, 52—l
haloesterifications,[59:" K] halohydrin[®! 8] synthesis, and dihalogenation® Ml have all been
reported.

Despite this progress, numerous shortcomings are apparent. First, alcohols are yet to be
demonstrated as viable nucleophiles in this chemistry despite the success seen in
halocycloetherification reactions (Figure 1A and B).[”] Second, substrates with alky!
substituents on the alkene are known to afford poor or moderate levels of enantioselectivity
at best.[8] Third, substrate scope studies have been limited to electronically biased alkenes
and hence possible regioselectivity issues have remained unaddressed.[®l Finally, none of the
catalytic systems were demonstrated to be promiscuous enough to allow for the use of
different halenium sources and nucleophiles with the same substrates.

We sought to develop an enantioselective intermolecular haloetherification reaction with the
intention of both demonstrating the feasibility of this unprecedented transformation as well
as to address some of the limitations detailed above. We report herein the enantio-,
diastereo-, and regioselective intermolecular haloetherification, haloesterification and
halohydrin synthesis of a variety of alkenes, including those with no dominant bias for
regioselectivity (that is, alkenes with alkyl substituents).

In our prior work, we had demonstrated that the non-nucleophilic CF3CH,OH was crucial
for obtaining high yields and enantioselectivities for intramolecular cyclization of allyl
amides, [31] although traces of intermolecular incorporation of CF3CH,OH were still
observed in a few cases. Crucially, these chloroether by-products were formed with exquisite
diastereo- and regioselectivity (see the Supporting Information, Scheme S1 for an example).
As such, this result represented a good starting point for developing a practical and general
intermolecular chlorofunctionalization reaction of alkenes.

We chose the intermolecular reaction of £-1b-Brl1% with a chlorenium source and MeOH as
the test bed to optimize the process. The p-bromobenzamide group was retained in these
orienting studies based on our prior results.[3! (DHQD),PHAL (hydroquinidine 1,4-
phthalazinediyl diether; 10 mol%) was employed as the catalyst along with 2.0 equiv of 1,3-
dichloro-5,5-dimethylhydantoin (DCDMH) as the chlorenium source.[!1] At ambient
temperature both the desired chloroether product &2b-OMe-Br and the cyclized product
£3b-Br were observed (93% combined yield) in a 1.8:1 ratio. In line with our prior studies,
the cyclized product #3b-Br had excellent enantioselectivity (96:4 e.r.), whereas the desired
product a-2b-OMe-Br exhibited a lower 67:33 e.r. Lower temperatures and lower
concentration led to slightly improved enantioselectivity for a-2b- OMe-Br while not
significantly improving the d.r. or the 2b:3b ratio (Table 1, entries 2 and 3). Further
experimentation revealed that employing MeOH as a co-solvent in MeCN led to a significant
improvement in the enantioselectivity of &2b-OMe-Br (Table 1, entry 4).
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Other studies focused on varying the expendable amide moiety. While the 4-
methoxybenzamide gave practically identical results (Table 1, entry 5), the electron-deficient
4-NO,-benzamide gave a significant improvement in the enantioselectivity of a-2b-OMe-
NO, (92:8 e.r,; Table 1, entry 6). As evident from these preliminary results, although useful
levels of enantioinduction was seen for the intermolecular chloroetherification of £-1b-NOo,
the d.r. (3.4:1) as well the ratio of 2b:3b (ca. 1:1) were not ideal. Gratifyingly, on replacing
the aryl substituent on the alkene with an aliphatic group, the desired intermolecular
products were obtained with near complete diastereo- and regioselectivity. For example, the
reaction of £-1b-Br, bearing 7~C3Hy as the alkene substituent, led to the production of a-2c-
OMe-Br with more than 99:1 d.r. and r.r. (Table 2, entry 1). More importantly, a-2c-OMe-Br
was formed in 92% vyield and 81:19 e.r., and the formation of the cyclized product was
suppressed to a mere 5%. Employing the less nucleophilic 4-NO,-benzamide in afforded
exclusively &2c-OMe-NO, (Table 2, entry 2) in 86% yield, 87:13 e.r., more than 20:1 r.r.,
and more than 99:1 d.r.[12] ¢js-Allylic amides were even better substrates for this chemistry
as compared to the frans-allylic amide counterparts. Substrate Z~1¢c-NO, gave the
corresponding product s-2c- OMe-NO> in 87% yield and 99.5:0.5 e.r. (Table 2, entry 3).
Reactions that were run at ambient temperatures or with lower catalyst loadings showed no
loss in the diastereo- and regioselectivity and only a small decrease in the enantioselectivity
(97:3 e.r.; Table 2, entries 4 and 5). Nonetheless, the yields were lower (75-79%) owing to
the formation of side products arising from the competing addition of MeCN across the
alkene.[13]

In an effort to map out the generality of this transformation, a number of frans-disubstituted
allyl amides were initially exposed to the optimized reaction conditions. Compounds £-1b-
NO, and £-1d-NO, (Table 3, entries 1 and 2) with aryl substituents on the alkene gave
moderate yields of isolated product (due to competing chlorocyclization) and fair
diastereoselectivity for the corresponding products a-2b-OMe-NO, and &2d-OMe-NO,
(56% and 64% yields, respectively; ca. 3.3:1 d.r., mass balance in both cases was the
cyclized product; Table 3, entries 1 and 2). Nonetheless, the chloroether products were
formed with good enantioselectivity. 7rans substrates with alkyl substituents on the olefin
(Table 3, entries 3-5) predictably gave products with exquisite levels of diastereo- and
regioselectivity. Additionally, high yield and e.r. was observed for &2c-OMe-NO, (R = r+
C3Hy7). The e.r. dropped significantly on introduction of the bulky cyclohexyl group (see
a2a-OMe-NO,, 75:25 e.r.). The benzyloxy substituted compound gave only moderate yields
and r.r. (62%, 7:1 r.r.), although the enantioselectivity was good (see a-2e-OMe-NO,, 89:11
er.).

Aryl-substituted Z-alkenes were exceptional substrates, leading to the intermolecular
product exclusively, in good yields (73% to 80%), excellent regioselectivity (>99:1 r.r.), and
high enantioselectivity (= 98:2 e.r.; Table 3, entries 6-8). The diastereoselectivities for these
entries, however, were poor (ranging from 1:1 to 3.3:1), which was presumably due to the
increased carbocation character at the benzylic position. Z-alkyl-substituted olefins afforded
the desired products in near complete regio-, diastereo-, and enantioselectivity (Table 3,
entries 9-13). Trisubstituted alkene 1k-NO, provides the desired product in moderate yield
and excellent enantioselectivity (59%, 99:1 e.r.). The quasi-enantiomeric catalyst,
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(DHQ),PHAL, was also evaluated with four different substrates, yielding the enantiomeric
products in comparable yields and selectivities (Table 3, entries 15-17, and last entry in
Scheme 1). The exception was the results with the least successful category of substrates
(trans-substituted aryls), which does not mirror the (DHQD),PHAL catalyzed the reaction
well (Table 3, entries 1 and 15), yielding products with lower than expected
enantioselectivity.

Finally, we sought to explore the scope of this reaction with regards to the nucleophilic and
electrophilic components (Scheme 1). We were delighted to discover that a variety of
alcohols, carboxylic acids, and water may be employed as viable nucleophiles in this
chemistry with little or no modification of the optimized reaction conditions. Replacing
MeOH with other alcohols such as ethanol, allyl alcohol, and propargyl alcohol as the co-
solvents cleanly afford the desired products in more than 20:1 d.r. and more than 98:2 e.r.
(see s-2c-OEENO», s-2¢-OAllyl-NO, and s-2¢- OPropargyl-NO, in Scheme 1). These results
demonstrate the feasibility of introducing diverse functional handles into the products using
this chemistry, along with the highly stereoselective C-Cl and C-O bond installations during
the course of the reaction.

Acetic acid can be employed also as the nucleophilic cosolvent to furnish the corresponding
chloroacetates with excellent enantioselectivity with Z-, £, as well as trisubstituted alkene
substrates (= 93:7 e.r., see s-2¢c- OAc-NO,, a-2¢c-OAc-NO,, and 2k-OAc-NO, in Scheme 1).
Employing water as the nucleophile leads directly to the corresponding chlorohydrins in
excellent yields and e.r. values (see s-2¢c-OH-NO, and s-2h-OH-NO> in Scheme 1). Finally,
employing NBS in lieu of DCDMH leads to the corresponding bromoether and bromohydrin
products in good yields and e.r. (see s2¢’-OMe-NOo, s-2¢’-OH-NO,, a-2¢’-OH-NO,, and 2k
’-OMe-NO, in Scheme 1). The quasi-enantiomeric (DHQ),PHAL catalyst gave practically
identical results favoring the opposite enantiomeric product (Scheme 1, ent-2k’-OMe-NO>).
It warrants emphasis that a large excess of the nucleophile (>100 equiv) is currently required
to prevent predominant formation of cyclized products. Our lab is currently in the process of
addressing this limitation to enable the use of highly functionalized nucleophiles in this
chemistry.

A comparison of the non-catalyzed and catalyzed chloroetherification of £-1c-NO» and
Z-1¢-NOy is illuminating (Table 4). Meticulous characterization of the products of the non-
catalyzed reaction revealed a poor regioselectivity (3:1 and 4:1, respectively, for £-1c-NO,
and Z-1¢c-NO,) and only a marginal preference for the intermolecular capture of the putative
chloriranium ion over the intramolecular capture by the amide (ca. 3:2 for £-1c-NO» and ca.
3:1 ratio for Z-1c-NO, substrates). Under catalyzed reaction conditions, however, the
regioselectivity was superb for both £-1¢-NO, and Z~1¢-NO; (>20:1 r.r.). Additionally, the
intermolecular chloroetherification product was predominant in both instances (by a ratio of
10:1 and more than 99:1 respectively, for £-1c-NO, and Z~1¢c-NO5). These results
underscore the exquisite levels of catalyst control in these reactions (see the Supporting
Information for HPLC traces of the crude reaction mixtures). It is noteworthy that the
diastereoselectivity is >99:1, even for non-catalyzed reactions. Two other facts are highly
significant to report. First, the face selectivity in chlorenium delivery for the intramolecular
process is the same for both £and Zsubstrates (see the Supporting Information, Figure S3
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for chemical transformations).[*2] Second, surprisingly, the olefin face selectivity of
chlorenium transfer for the intramolecular process is opposite that of the intermolecular
reaction (Supporting Information, Figure S4). These results lead us to conclude that two
distinct mechanisms are in play that leads to either the cyclized dihydrooxazine products or
the desired intermolecular addition of the nucleophile and halenium ion across the alkene in
the same reaction.

A complete mechanistic picture that accounts for this nucleophile-dependent
stereodivergence is yet to emerge. Nonetheless, we have recently demonstrated the
importance of the nucleophile in modulating the ease of chlorenium capture by the alkene
functionality by means of an anchimeric assistance.[32¢] This aspect among others is
currently being looked into for explaining the observed stereoselectivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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The six-membered-ring intramolecular products are identified as either cisor trans (cor ),
followed by the number that corresponds to the substituent on the parent olefin (3a, 3b,...), and
then the identifier of the phenyl substituent for the amide. The five-membered-ring products are
named as above, with the exception of having a or s (antior syn) that precedes the numbering (4a,
4b,...).

11. See the Supporting Information for detailed DCDMH loading studies and optimization of other

variables.

12. The absolute stereochemistry of s2h-OH-NO, and s-2¢c-OMe-NO», and the relative

stereochemistry of a-2c-OH-NO», were established by single-crystal X-ray diffraction. Since the
absolute stereochemistry of &-2c-OH-NO> could not be determined from X-ray analysis, we
resorted to the chemical transformations detailed in the Supporting Information, Figure S3 for
confirmation of the structure. The absolute stereochemistry of the following compounds was
determined by single-crystal X-ray diffraction (their corresponding Cambridge Structural Database
deposition numbers are provided following each compound name). These are: s4¢c-NO»
(1039232), 5-2h-OH-NO> (994564), a-2c-OH-NO2 (1039233), s-2¢’-OMe-NO7 (1039234), #3c-
NO> (1039235), and s-2¢-OMe-NO, (994565).

13. Structure of the “Ritter-type” addition product is depicted in the Supporting Information (see 2c-

NHACc-NO»). Solvents other than MeCN were also evaluated as co-solvents; significantly inferior
results were obtained in all instances.
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A. Asymmetric Halocycloetherifications: Previous work

69

R’ R1
Chlral catalyst 2
H 0

R? X =F, Cl, Br, or |
Numerous reports in the last 5 years

B. Asymmetric Intermolecular haloetherification: This work

@

2 X ® 2 R R?
__ R chial catalyst X R* R.OH RO, R C
~ - v ROH_ A/ o
R X = Cl or Br R’ R'  Nu R X
Figure 1.

Enantioselective intra- and intermolecular haloetherification of alkenes. It should be noted
that the bridged halonium is used as only a demonstration of a putative intermediate,
although in many instances the open carbocation would predominate. The nature of the
intermediate is highly dependent on the nature of the olefin and the halogen.
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99:1 ev.r. 98:2 er. 98:2 e.r.
oy ¢l ¢y
03H7\/\/N\[]/Ar CSH7\/\/NTAr C3H7\‘/\/N\H/Ar
Me._ O o} OH o Me._ O 0
O 5-2¢-OAc-NO, $-2¢-OH-NO,! O a-2c-OAc-NO,

72% (64%) yield

98:zer. 99:1 (99:1) e.r. 80% (71%) yield
93.7 e.r.
¢y cl
CoHs A~ _N__Ar Me : H Ar Br
- \”/ Me% \n/ C3H7\/\/N Ar
Ok o Me._ _O 0 : hif
2h-OH-NO,! e N
;;o 54 vl O 2k-OAc-NO, s-2¢-OMe-NO,!"
09(9.1 o) vie SM (1K-NO,) 92% (84%) yield
ro te‘r' t 57% (53%) yield 99:1 er.
(X-ray structure) 982e.r. (X-ray structure)
CsHrn o~ Al r ; M “__N__A
. CsH7 N\H/Ar eh/\/ \[( r
- M
OH © \cl;\/ o “oMe O
s-2¢'-OH-NO, 1l a-2¢"-OH-NO, 1 2k'-OMe-NO,"
62% (53%) yield 51% yield 62% (54%) yield
99.5:05eur. 8515 e.r. 99.5:05eur.
59% vyield; 99.5:0.5 e.r 19!
Scheme 2.

86% (73%)® yield

SM (E-1¢-NO»)

Nucleophile scope of intermolecular chlorofunctionalization.[2P] [a] The r.r. was more than
20:1 and d.r. was more than 99:1 in all instances. [b] Yield determined by NMR with MTBE
as standard. Numbers in parentheses reflect yields of isolated products on a 0.1 mmol scale.
Enantioselectivity determined by chiral-phase HPLC. [c] Reaction was run under nitrogen in
the presence of molecular sieves. [d] The ratio of MeCN:H»0O was 9:1, reaction temperature
was —10 °C. [e] The results reflect a 1 g scale reaction. The corresponding Ritter product
(10%) was also isolated. [f] The prime symbol refers to Br instead of ClI in the product. [g]

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 May 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Soltanzadeh et al.

Page 10

Results with the quasi enantiomeric (DHQ),PHAL catalyst (ent-2k’- OMe-NO, was the
product).
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