Skip to main content
. Author manuscript; available in PMC: 2016 May 20.
Published in final edited form as: Angew Chem Int Ed Engl. 2015 Jun 25;54(33):9517–9522. doi: 10.1002/anie.201502341

Table 3.

Substrate scope of intermolecular chloroetherification.

graphic file with name nihms785914t3.jpg

Entry Starting material R1 R2 Product Yield [%][a] d.r. r.r.[b] e.r.[c]
1 E-1b-NO2 Ph H a-2b-OMe-NO2[e] 56 (49)[d] 3.4:1 >99:1 92:8
2 E-1d-NO2 pF-Ph H a-2d-OMe NO2[e] 64 (58)[d] 3.3:1 >99:1 90:10
3 E-1c-NO2 n-C3H7 H a-2c-OMe NO2 86 (79) >99:1 >20:1 87:13
4 E-1a-NO2 CyHex H a-2a-OMe NO2 70 >99:1 >20:1 75:25
5 E-1e-NO2 BnOCH2 H a-2e-OMe-NO2 62 (57) >99:1 7:1 89:11
6 Z-1b-NO2 H Ph s-2b-OMe-NO2 93 (82)[d] 3.3:1 >99:1 99.5:0.5 (90:10)[f]
7 Z-1f-NO2 H pMe-Ph s-2f-OMe-NO2 87[d] 1.3:1 >99:1 98:2 (97:3)[f]
8 Z-1g-NO2 H pMeO-Ph s-2g-OMe-NO2 80[d] 1:1 >99:1 99:1 (92:8)[f]
9 Z-1h-NO2 H C2H5 s-2h-OMe-NO2 83 (77) >99:1 >20:1 98:2
10 Z-1c-NO2 H C3H7 s-2c-OMe-NO2 87 (79)g >99:1 >20:1 99.5:0.5 (99.5:0.5)[g]
11 Z-1i-NO2 H C5H11 s-2i-OMe-NO2 83 (74) >99:1 >20:1 95:5
12 Z-1e-NO2 H BnOCH2 s-2e-OMe-NO2 60 (53) >99:1 7:1 99.5:0.5
13 Z-1j-NO2 H TBDPSOC2H4 s-2j-OMe-NO2 79 >99:1 >20:1 99.5:0.5
14 1k-NO2 Me Me 2k-OMe-NO2 59 (53) na na 99:1
15[h] E-1b-NO2 Ph H ent-a-2b-OMe-NO2[e] 42[d] 6.2:1 >99:1 75:25
16[h] Z-1f-NO2 H pMe-Ph ent-s-2f-OMe-NO2 82 1.2:1 >99:1 99.5:0.5 (96:4)[f]
17[h] Z-1c-NO2 H C3H7 ent-s-2c-OMe-NO2 69 >99:1 >20:1 95:5
[a]

Yield determined by NMR with MTBE as standard. Numbers in parentheses reflect yields of isolated product on a 0.1 mmol scale.

[b]

r.r. (regioselectivity) is defined as ratio of 2:5, see Table 4.

[c]

Enantioselectivity determined by chiral-phase HPLC.

[d]

Combined yield of diastereomers, Li2CO3 (15 equiv) was used as additive.

[e]

Mass balance was the cyclized product;

[f]

The e.r. values are for the minor diastereomer.

[g]

The result in parenthesis is from a 1 g reaction scale, illustrating the scalability of the method. The corresponding Ritter product[13] (6%) was also isolated.

[h]

The reactions in entries 15–17 were performed with the quasi enantiomeric (DHQ)2PHAL catalyst, yielding the enantiomeric product in each case.