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Inference Using SampleMeans of
Parametric Nonlinear Data
Transformations

In empirical HSR, statistics of key analytic interest are often of the following
general form

ĉ ¼
XN
i¼1

gðb̂; XiÞ
N

ð1Þ

where c ¼ E½gðb; XÞ� is the parameter of ultimate interest to be estimated
by equation (1), g( ) is a known (possibly nonlinear) transformation, b̂ is a pre-
estimate of b—a vector of “deeper”model parameters, and Xi denotes a vector
of observed data on X for the ith member of a sample of size n (i = 1,. . ., N).
The three most commonly encountered formulations of equation (1)—aver-
age treatment effect (ATE), average marginal effect (AME), and average incre-
mental effect (AIE)—correspond to the following formulations of g( ),
respectively

mðb; 1; XoÞ � mðb; 0; XoÞ ð2Þ

gðb; XÞ ¼ @mðb; Xp ; XoÞ
@ Xp

ð3Þ

mðb; Xp þ D; Xo Þ � mðb; Xp ; XoÞ ð4Þ
where mðb; Xp ; XoÞ ¼ E ½Y j Xp ; Xo� is a regression function written so as
to highlight the distinction between a policy-relevant regressor of interest, Xp,
and a vector of regression controls, Xo; X ¼ ½Xp Xo�; b is a vector of
regression parameters, and D is a known exogenous (usually policy-driven)
increment to Xp. After the regression parameter estimates are obtained [e.g.,
b̂—estimated via the nonlinear least (NLS) method], under fairly general
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conditions, in conjunction with equation (1), the formulations in equation (2),
(3), and (4), respectively yield consistent estimators of the ATE when Xp is bin-
ary; the AME when Xp is continuous and interest is in the effect attributable to
an infinitesimal policy change; and the AIE when Xp is discrete or continuous
and the relevant policy increment is D. In this note, we focus on the specifica-
tion and computation of the correct “t-statistic” for equation (1) as derived
from standard asymptotic theory. This t-statistic has the following general
form ffiffiffiffiffi

N
p ð̂c � cyÞ

se ð̂cÞ ð5Þ

where cy is the relevant “null” value of c (as in a test of the null hypothesis
H0: c ¼ cy), and se ð̂cÞ is the asymptotic standard error of equation (1) defined
as se ð̂cÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidavarð̂cÞp
, with davar ð̂cÞ being a consistent estimator of the asymp-

totic variance of ĉ. Under slightly stronger conditions than those required for
the consistency of equation (1), it can be shown that equation (5) is asymptoti-
cally standard normal distributed. In the remainder of this note, we take the
consistency and asymptotic normality of ĉ as given, and concentrate on the
correct formulation of se ð̂cÞ as derived from standard asymptotic theory. In
the Appendix, we show that for most (if not all) of the useful forms of equa-
tion (1)

davar ð̂cÞ ¼ A þ B ð6Þ

where A ¼
PN
i¼1

rbgðb̂; Xi Þ

N

0
B@

1
CA dAVARðb̂Þ

PN
i¼1

rbgðb̂; Xi Þ

N

0
B@

1
CA

0

B ¼
PN
i¼1

gðb̂; XiÞ � ĉ
� �2

N

rbgðb̂; XiÞ (a row vector) denotes the gradient of gðb; XÞevaluated at Xi

and b̂, and dAVARðb̂Þ is an estimator of the asymptotic covariance matrix of b̂.
Dowd, Greene, and Norton (2014) opine that inclusion of B in equation (6)
“seems incorrect to us” and exclude it from the suggested formulation of the
asymptotic standard error of ĉ given in their equation (18). That the inclusion
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of B is not “incorrect” is proven by the derivation in an appendix that is
included among the supplementary materials for this paper.1,2

So how does our derivation of equation (6) differ from the approach
taken by Dowd, Greene, and Norton (2014) in deriving their equation (18)? To
answer we must take a closer look at the sampling assumptions underlying the
respective derivations. Unlike Dowd, Greene, and Norton (2014), we assume
that the sample observations for all the relevant variables, including X, are
drawn randomly from the relevant joint distribution for the population
of interest. We impose no sampling restriction on X and we allow it to be
random—the same assumption that we make for the other elements of the
data vector. For example, for the case in which b̂ is obtained by regressing Yon
X (based on a correctly specified nonlinear model), we treat both Yand X as ran-
dom in sampling. What we have described here is simple random sampling
(SRS), which is clearly the most commonly encountered type of sampling in
empirical HSR. Moreover, we adopt the conventional approach to deriving
the asymptotic properties of ĉ (in particular, its asymptotic standard error).
Conventional asymptotic theory assumes SRS and focuses on the limiting
properties of estimators as the sample size (N in our case) approaches∞. (The
analysis assumes that the same sample is used to estimate b and the mean
effect on m( ), and that the objective of the analysis involves generalization to a
population that is potentially large compared to the sample; equation (6) can
be modified for alternative assumptions).

Dowd, Greene, and Norton (2014), on the other hand, supplant SRS
with an unrealistic fixed-in-repeated-sampling assumption (FIRS) in which
the matrix of observations on X (say v with N rows and K columns; K being
the number of regressors in X) is fixed (nonrandom) so that, in sampling, only
the observations on Y are randomly drawn. Moreover, they assume that
increases in the sample size are not effected by increasing N but instead by
holding it and v fixed and drawing repeated observations on Y for each of the
fixed rows of v. Denote the number of such FIRS observations on Y as N*.
Their formulation of the asymptotic standard error of ĉ is obtained while fix-
ing v and N and allowing N* to approach∞. Both the FIRS and its attendant
asymptotics are unrealistic and irrelevant in the present context because there
are no empirical contexts in HSR for which this assumption could be reason-
ably maintained. The FIRS assumption is characteristic of an experiment
where no generalization is intended beyond the specific designed distribution
of X, rather than of an analysis of a random sample drawn from and intended
to be representative of a larger population.
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Given that (a) the formulation of the asymptotic standard error of ĉ in
equation (6) is realistic, relevant, and indeed correct; (b) the practical signifi-
cance of including B can only be conclusively evaluated in the context of each
particular empirical application after it has been estimated; and (c) the calcula-
tion of B imposes only minimal marginal computational burden, there
remains no reasonable justification for excluding it from equation (6) as
Dowd, Greene, and Norton (2014) recommend in their equation (18).

ACKNOWLEDGMENTS

Joint Acknowledgment/Disclosure Statement: This research was supported by a
grant from the Agency for Healthcare Research and Quality (R01 HS017434-
01) and by grants from the National Institutes of Health (NIH-1 R01
CA155329-01 and NIH-1RC4AG038635-01).

Disclosures: None.
Disclaimers: None.

Joseph V. Terza

NOTES

1. Basu and Rathouz (2005) and Wooldridge (2010) derive equation (6) via standard
asymptotic theory. See Appendix C of Basu and Rathouz (2005), and problem 12.17
of Wooldridge (2010), the solution for which is on pp. 184–186 of Wooldridge
(2011).

2. In the Supplementary Appendix, we also show that for the most general version of
equation (1), an additional term would need to be included in equation (6). Such
general versions of equation (1) coincide with models that do not afford causal inter-
pretation of the estimates of b obtained there from and are, therefore, of very limited
empirical analytic interest. See the Supplementary Appendix for details.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article:

Appendix S1: Derivation of Equation (6).
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