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Objective. Simultaneously evaluate postoperative mortality, length of stay (LOS),
and readmission.
Data Source. National Surgical Quality Improvement Program (NSQIP).
Design. Retrospective cohort.
Methods. Data from elective general surgical patients were obtained from the 2012
NSQIP Participant Use File. For each postoperative day, each patient’s state was classi-
fied as index hospitalization, discharged home, discharged to long-term care (LTC),
readmitted, or dead. Transition rates were estimated using exponential regression,
assuming constant rates for specified time periods. These estimates were combined into
a multistate model, simulated results of which were compared to observed outcomes.
Findings. Age, comorbidities, more complex procedures, and longer index LOSwere
associated with lower rates of discharge home and higher rates of death, discharge to
LTC, and readmission. The longer patients had been discharged, the less likely they
were to die or be readmitted. The model predicted 30-day mortality 0.38 percent (95
percent CI: 0.36–0.41), index LOS 2.85 days (95 percent CI: 2.83–2.86), LTC dis-
charge 2.76 percent (95 percent CI: 2.69–2.82), and readmissions 5.53 percent (95 per-
cent CI: 5.43–5.62); observed values were 0.39 percent, 2.82 days, 2.87 percent, and
5.70 percent, respectively.
Conclusions. Multistate models can simultaneously predict postoperative mortality,
LOS, discharge destination, and readmissions, which allows multidimensional
comparison of surgical outcomes.
Key Words. Postoperative, mortality, LOS, readmission

The quality of hospital care is difficult to measure. Risk-adjusted mortality
during the index hospitalization is the outcome most frequently used, and a
hospital’s reputation may be affected if this result is publicized by payors or
regulators. Hospital length of stay (LOS) is used rightly or wrongly as a rough
measure of cost, and payment systems providing a fixed reimbursement for a

©Health Research and Educational Trust
DOI: 10.1111/1475-6773.12400
METHODSARTICLE

1074

Health Services Research



given diagnosis give hospitals an incentive to avoid prolonged LOS (Taheri,
Butz, and Greenfield 2000; Polverejan et al. 2003; Altman 2012). The Centers
for Medicare & Medicaid Services have also decided to reduce payment for
“avoidable” readmissions ( Jencks, Williams, and Coleman 2009). Hospitals
are thus expected to minimize three short-term outcomes (mortality, LOS,
and readmission) which are not independent and which may have different
utilities for each patient, each institution, and society as a whole.

The American College of Surgeons (ACS) has developed a National
Surgical Quality Improvement Program (NSQIP), which records mortality,
LOS, readmissions, and other adverse events (including those after initial hos-
pital discharge) up to 30 days after a surgical procedure. Using NSQIP data,
we sought to develop a statistical approach that would allow for the interde-
pendence of these short-term outcomes for surgical patients. “Multistate” or
“compartmental” models, like the one presented here, can simultaneously
estimate the effects of covariates on each transition of a patient’s postoperative
status, and thus enable prediction of cumulative outcomes that reflect overall
health and cost. Compared to separate analyses of mortality, LOS, and read-
mission, the multistate approach offers the potential for a more useful multidi-
mensional comparison of surgical outcomes for different hospitals and/or
regions.

METHODS

Data Management

The NSQIP Participant Use File (PUF) for 2012 was obtained in accordance
with its standard Data Use Agreement. A supplemental file containing the
PUF identifying numbers for patients from our own hospital was provided by
NSQIP upon request. PUF does not otherwise identify hospital characteristics
or even which patients were in the same hospital, and we made no attempt to
link PUF data to other patient data from our hospital. The use of these data for
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this project was judged exempt from further review by an Institutional Review
Board at our hospital.

PUF data were imported into Stata (Version 12; StataCorp, College Sta-
tion, TX, USA), and merged with the file identifying our own hospital
patients. For this study, analysis was restricted to elective general surgical
cases (surgspec = “General Surgery,” electsurg = “Yes”), admitted on the day
of operation.

Indicator variables (1 if yes, 0 if no) were created for each category
of “Targeted” elective general surgical procedures in NSQIP (ACS
2013a), namely pancreatectomy, colectomy, proctectomy, ventral hernior-
raphy, bariatric surgery, hepatectomy, thyroidectomy, and esophagec-
tomy. Variables were created to indicate each of the abnormal
preoperative symptoms or conditions recorded in the PUF. Variables
were created to indicate laboratory values considered abnormal in stan-
dard NSQIP risk-adjustment models (ACS 2013b), namely WBC>11.0,
platelets<150, PTT>35, albumin<3, creatinine>1.2, SGOT>40, BUN>40,
bilirubin>1.0, sodium>145, or alkaline phosphatase>125. Four age cate-
gories were also created (18–39, 40–64, 65–79, and 80+). Six categories
for postoperative LOS (each approximately twice as long as the previous
category) were created (1 day, 2 days, 3–4 days, 5–8 days, 9–16 days, 17–
30 days).

A variable was created to indicate that a patient had died in the hos-
pital if the date of death was the same as the date of discharge, and the dis-
charge destination was given as “Expired.” A variable was created for
discharge home if the discharge destination was “Home,” and a variable
was created for discharge to long-term care (LTC) if the discharge destina-
tion was not “Expired,” “Home,” or “NULL.” Variables indicating the
occurrence of each of the 20 complications recorded in the PUF were cre-
ated, separately indicating the complication as occurring prior to discharge
if the day of occurrence was before the day of discharge, or occurring after
discharge if the day of occurrence was on or after the day of discharge. A
variable was created to indicate that the patient had been readmitted at
least once if the “readmission1” variable was “Yes.” The postoperative day
(POD) of readmission was taken as the value of “readmpoday1”; if this
value was missing, the day of the first complication on or after the day
of discharge was assumed to be the day of readmission; if this value was
also missing, the day of readmission was imputed using predictive mean
modeling.
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Statistical Modeling

Using the Stata command “logit,” logistic regression (LR) models were fitted
predicting LOS >6 days (excluding patients who died during the initial hospi-
talization), readmission (excluding patients who were not discharged alive in
less than 30 days), and 30-day mortality. Preliminary models included all of
the procedure categories, age categories, abnormal symptoms, abnormal labo-
ratory values, LOS categories, and discharge destination categories described
above. Symptoms or laboratory values were assumed to be normal if missing.
Individual variables found to be significant predictors of any outcome
(p < .05) were combined to define indicator variables for any degree of obe-
sity (BMI ≥ 30), smoking and/or COPD, any of several other abnormal
symptoms (sepsis, SIRS, septic shock, dyspnea, weight loss, disseminated
cancer, steroid use, or dialysis), and any abnormal laboratory value.

After exploration of covariate effects using LR models, the first step
toward constructing a multi-state model was to consider subjects on a given
POD to be in one of several states: hospitalized for initial postoperative care,
discharged home after hospitalization, discharged to LTC after hospitalization,
readmitted to a hospital either from home or LTC, or dead. The Stata “stsplit”
command was used to separate each subject’s data into separate records corre-
sponding to the number of days they were at risk for a subsequent transition
while in each state.

An exponential model assumes that the baseline hazard for a given sub-
ject is constant, but if this is unrealistic, one can construct a “piecewise expo-
nential” (PWE) model, which assumes only that the baseline hazard is
constant for each of several specified time periods. We implemented PWE
models for each state transition by adding variables indicating the length of
time that subjects had been in their current state (1 day, 2 days, 3–4 days,
5–8 days, 9–16 days, 17–30 days). For each transition, the Stata “stsplit” com-
mand was used again to split each subject’s data further, so that separate transi-
tion rates could be estimated for each of these time periods based on the
number of days at risk in a given state.

Using the Stata command “streg, distribution (exponential),” PWE pro-
portional hazards regression models were created to predict covariate effects
on the rates (“hazards”) for each transition from one state to another, censoring
subjects who experienced an outcome other than the transition being mod-
eled. For posthospital transitions, the proportional hazards models also
included the initial hospital LOS categories.
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In a proportional hazards model,

log hazardðevent; tÞ ¼ b0ðtÞ þ b1X1 þ � � � þ bkXk ;

where the baseline hazard, exp(b0(t)), is the instantaneous probability for a
subject still at risk to experience the event of interest at time t. If both sides of
the equation are exponentiated, and the values of X1. . .Xn are restricted to 0 or
1, it can be seen that the hazard is equal to the baseline hazard multiplied by
any coefficients bk for which Xk = 1. Thus, for any subject on any day, the
probability that the subject will transition from his/her current state to another
state can be calculated from his/her current characteristics (including initial
hospital LOS and time elapsed in the current state).

Construction of the multistate model was completed by combining the
estimates obtained from PWE models for each state transition as depicted in
Figure 1. Subjects transferred to LTC were assumed to remain there until
POD 30, or until they were readmitted to a hospital or died. Subjects who
were readmitted to a hospital from home or LTCwere assumed to remain hos-
pitalized until POD 30, or until they died.

Estimated outcomes for the entire sample or any desired subsample
were obtained by simulating the experience of each subject based upon their
states on each day, with randomly generated transitions to other states based
upon the hazards predicted for each subject on each day. For the entire system,
outcomes of these simulated “event histories” were used to generate summary
statistics, including the number of subjects in each state at any time and the
number of days each subject had spent in each state up to POD 30. In order to
demonstrate the potential utility of multistate modeling for interhospital com-
parisons, we also simulated results for the subsample that had been admitted
to our own hospital (MMC), which was the only hospital we could identify
using the PUF.

For complex models, an estimate of the robustness of the predicted out-
comes can be obtained by running the model multiple times with different
random samples (with replacement) of the original dataset, a procedure
known as “bootstrapping” and implemented using the Stata command “bsam-
ple.” Five hundred bootstrapped simulations of the multistate model were per-
formed, and the results were used to estimate the mean of each 30-day
outcome, including a confidence interval based on the assumption of approxi-
mately normal distributions for these means. Model estimates were compared
to the actual observed outcomes for the entire PUF sample and for the sub-
sample fromMMC.
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RESULTS

The 2012 NSQIP PUF contained 543,885 records submitted from 374 partici-
pating sites. A total of 206,937 records met our definition of elective general
surgery. These patients were 60.2 percent female, and 94.2 percent under the
age of 80 years. A total of 200,048 patients (96.7 percent) were discharged
home after the initial hospitalization, and 6,280 (3.0 percent) were discharged
to LTC. A total of 491 patients (0.24 percent) died during their initial hospital-
ization, and another 118 patients (0.06 percent) remained in the hospital after
30 days; overall, there were 816 deaths within 30 days (0.39 percent). The
mean LOS for the initial hospitalization, excluding those who died in the hos-
pital, was 2.82 days; the 90th percentile for LOSwas 6 days. Among 205,437
patients discharged alive from the initial hospitalization within 30 days,
11,807 (5.8 percent) were readmitted. The day of readmission (or day of first
postdischarge complication) was recorded for 99.5 percent of the readmitted

Figure 1: Components and Relationships of the Multistate Model. At any
time, patients are considered to be in one of the following states: Initial hospi-
talization, discharged home, discharged to long-term care (LTC), readmitted
from home, readmitted from LTC, or dead. For a given patient on a given day,
the transition rates from one state to another can be determined from Tables 3
and 4
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patients, and it was imputed for the others. Further characteristics and out-
comes of the PUF sample are shown in Table 1.

Logistic regression models predicting LOS >6 days in the initial hospi-
tal, readmission after discharge from the initial hospital, and overall mortality
are shown in Table 2. All of these outcomes were more likely with greater
American Society of Anesthesiologists (ASA) preoperative classifications,
abnormal symptoms or laboratory values, pancreatectomy, colectomy, proc-
tectomy, hepatectomy, or esophagectomy. Ventral herniorraphy, bariatric
surgery, or thyroidectomy were associated with lower incidence of prolonged

Table 1: Characteristics, Procedures, and Outcomes for Elective General
Surgical Patients in NSQIP PUF 2012

Characteristics (N = 206,937) Number Percent

Patient factors
Age 18–39 36,940 17.8
Age 40–64 108,836 52.6
Age 65–79 49,056 23.7
Age 80–99 12,105 5.8
Male 82,446 39.8
ASA 1 18,409 8.9
ASA 2 103,628 50.1
ASA 3 79,422 38.4
ASA 4–5 5,478 2.7
Obese 91,584 44.3
Smoker or COPD 37,794 18.3
Other abnormal symptoms 29,550 14.3
Abnormal laboratory values 60,101 29.0
Procedures
Pancreatectomy 4,879 2.4
Colectomy 22,248 10.8
Proctectomy 3,939 1.9
Ventral herniorraphy 31,585 15.3
Bariatric surgery 18,680 9.0
Hepatectomy 2,715 1.3
Thyroidectomy 9,120 4.4
Esophagectomy 453 0.2
Other procedure 113,318 54.8
Outcomes
Died in hospital 491 0.24
Discharged home 200,048 96.67
Discharged to LTC 6,280 3.03
Readmitted from home 10,998 5.31
Readmitted fromLTC 809 0.39
Died within 30 days 816 0.39
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LOS, readmission, or mortality. Increased age was associated with prolonged
LOS andmortality, but a lower incidence of readmission.

Results of the individual PWE models are shown in Tables 3 and 4. For
a given patient on a given day, the rate for each transition to another state can
be estimated as the baseline rate multiplied by the applicable hazard ratios
shown in these tables. For example, consider a 75-year-old obese man with no
other comorbidities or laboratory abnormalities, who is POD 10 from a colec-
tomy, had been given an ASA score of 2, and had been discharged home from
the hospital on POD 7. The probability that this subject would be readmitted
to the hospital on POD 10 (i.e., the hazard for that day), can be calculated as:

Table 2: Separate Logistic Regression Models Predicting the Odds of
Prolonged Length of Stay (LOS >6 days), Readmission, and 30-Day Mortal-
ity. LOS prediction does not include patients who died in the hospital; read-
mission prediction does not include patients who died in the hospital or
never left the hospital. To predict outcomes for individual patients, the base-
line odds are multiplied by odds ratios corresponding to factors known at the
time of operation

Long LOS Readmission Death

Number of subjects at risk 206,446 205,436 206,937
Baseline odds (constant) .0137 .0203 .0000558
Odds ratios
Age 40–64 vs. <40 1.12** 0.90** 2.21**
Age 65–79 vs. <40 1.25** 0.87** 4.77**
Age 80–99 vs. <40 1.38** 0.96 9.51**
Male vs. female 1.14** 0.92** 1.34**
ASA 2 vs. 1 2.85** 1.94** 2.86
ASA 3 vs. 1 5.81** 3.18** 9.65**
ASA 4–5 vs. 1 9.15** 4.24** 32.17**
Obese 0.90** 1.04 1.00
Smoker or COPD 1.17** 1.11** 1.48**
Other abnormal symptoms 1.78** 1.44** 2.06**
Abnormal laboratory values 1.60** 1.35** 2.49**
Pancreatectomy 35.79** 2.94** 3.09**
Colectomy 6.89** 1.87** 2.02**
Proctectomy 14.07** 3.48** 2.13**
Ventral herniorraphy 0.71** 0.86** 0.78
Bariatric surgery 0.28** 0.87** 0.52**
Hepatectomy 8.57** 1.69** 2.76**
Thyroidectomy 0.13** 0.66** 0.13**
Esophagectomy 212.68** 2.18** 2.14

**p < .01.
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hðtÞ ¼ 0:00178 ½baseline hazard�
� 0:83 ½age 65� 79�
� 0:92 ½male sex�
� 1:61 ½ASA2�
� 1:07 ½obese�
� 0:92 ½colectomy�
� 3:78 ½initial LOS 5� 8 days�
� 0:66 ½home for 3� 4 days�

¼ 0:00537:

Calculating all of the transition rates (hazards) for each patient for each
POD was very rapid using a standard desktop computer. One simulation of
the entire system took about 2 minutes; however, bootstrapping 500 simula-
tions took several hours.

Tables 3 and 4 show that higher ASA classification, abnormal symp-
toms, and abnormal laboratory values were associated with increased daily
rates of mortality and readmission, and increased daily rates of discharge to
LTC, but decreased daily rates of discharge home. Increased age was associ-
ated with increased mortality, decreased daily rates of discharge home (but
increased daily rates of discharge to LTC), and decreased daily rates of read-
mission from home (but not readmission from LTC). Pancreatectomy, colec-
tomy, proctectomy, hepatectomy, and esophagectomy were associated with
decreased daily rates of discharge from the initial hospitalization, while ventral
herniorraphy and thyroidectomy were associated with increased daily rates of
discharge home.

In the multistate model, longer initial LOSwas generally associated with
lower daily rates of discharge home and higher daily rates of discharge to
LTC. The more days that patients had been hospitalized, the more likely they
were to be readmitted; the more days that patients had been discharged, the
less likely they were to be readmitted. Mortality increased with longer LOS,
for both hospitalized and discharged patients; mortality decreased markedly
the longer that patients had been discharged home, but mortality decreased
only slightly the longer that patients had been discharged to LTC.

For any given subject or cohort, it was possible to construct curves
depicting expected outcomes by graphing the simulated number in each state
on each day. For example, Figure 2 graphically compares the overall
outcomes for patients with selected “Targeted” procedures. In addition to
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Table 3: Exponential Regression Models Predicting Daily Transition Rates
(Hazards) from Hospital to Home, from Hospital to Long-Term Care (LTC),
and from Home or LTC Back to Hospital (Readmission). To predict outcomes
for individual patients, the baseline hazards are multiplied by hazard ratios
corresponding to factors known at the time of operation, and those corre-
sponding to the observed or simulated initial hospital length of stay (LOS) and
duration of time in the current state

Discharge from Hospital Readmission to Hospital

To Home To LTC FromHome From LTC

Number of subjects at risk 206,937 206,937 199,631 5,945
Baseline hazard (constant) .909 .00554 .00178 .00131
Hazard ratios
Age 40–64 vs. <40 0.97** 1.00 0.88** 1.31
Age 65–79 vs. <40 0.93** 1.95** 0.83** 1.40
Age 80–99 vs. <40 0.83** 4.69** 0.95 1.19
Male vs. female 1.00 0.76** 0.92** 1.03
ASA 2 vs. 1 0.83** 0.66** 1.61** 3.22*
ASA 3 vs. 1 0.65** 0.95 2.26** 4.54*
ASA 4–5 vs. 1 0.46 1.33** 2.87** 4.35*
Obese 1.04** 1.11** 1.07** 1.02
Smoker or COPD 0.96** 1.14** 1.09** 1.20*
Other abnormal symptoms 0.81** 0.98 1.29** 1.10
Abnormal laboratory values 0.84** 1.10** 1.22** 1.21*
Pancreatectomy 0.30** 0.47** 1.32** 1.21
Colectomy 0.42** 0.60** 0.92** 1.02
Proctectomy 0.35** 0.72** 1.59** 1.58**
Ventral herniorraphy 1.05** 0.98 0.88** 0.87
Bariatric surgery 1.00 0.48** 0.76** 1.23
Hepatectomy 0.43** 0.41** 0.86* 0.84
Thyroidectomy 1.34** 0.97 0.86* 0.86
Esophagectomy 0.23** 0.56** 0.95 1.02
Initial LOS 2 vs. 1 0.57** 0.65** 1.78** 1.44
Initial LOS 3–4 vs. 1 0.58** 1.22** 2.60** 1.56**
Initial LOS 5–8 vs. 1 0.68** 2.66** 3.78** 2.29**
Initial LOS 9–16 vs. 1 0.41** 3.78** 4.73** 2.09**
Initial LOS 17–30 vs. 1 0.18** 3.91** 4.73** 2.09**
Days in current state 2 vs. 1 0.73** 0.69*
Days in current state 3–4 vs. 1 0.66** 0.61**
Days in current state 5–8 vs. 1 0.51** 0.50**
Days in current state 9–16 vs. 1 0.32** 0.37**
Days in current state 17–30 vs. 1 0.18** 0.17**

*p < .05, **p < .01.
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showing the proportion of patients expected to be in any state at any time,
the mean LOS in any state can be visualized (and calculated) as the area
between two curves.

When event histories were simulated for all subjects using the multistate
model, results were similar to the outcomes that had actually been observed
(Table 5, “All hospital” columns). Outcomes related to LTC or readmission
were not quite as precisely reproduced by the model, but it should be recalled
that NSQIP provides no information about hospitals, or even which patients
were treated in the same hospital (other than a participant’s own institution).
When event histories were simulated for patients from our own hospital
(MMC), under the assumption that patient-level covariates had effects similar
to those in the entire PUF, we found that the observed number of discharges
to LTC and number of days spent in LTC were significantly lower than
expected (Table 5, “MMC” columns). When separate simulations were car-
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Figure 2: Depiction of Simulated Outcomes from the Multistate Model for
Elective Surgical Patients after Ventral Herniorraphy, Colectomy, Pancreatec-
tomy, or Esophagectomy. Mortality is shown by the dark shaded areas of the
graphs. Length of stay in a hospital or in long-term care (LTC) can be visual-
ized as the lighter shaded areas of the graphs
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ried out for each of the “Targeted” procedures, the simulated results were still
similar to the observed outcomes for each procedure, and significantly lower
LTC utilization byMMCwas still apparent.

DISCUSSION

Limitations of Binary Outcome Models

There have been many studies of hospital outcomes, especially mortality but
more recently emphasizing LOS or readmission. Most outcome studies have
been limited to a single binary dependent variable, such as hospital survival,
long LOS or not, readmitted or not (Chen et al. 2010). However, there are sev-
eral statistical and contextual limitations of looking at each of these outcomes
in isolation.

LR models (including random-effects models and other possible
refinements) are fairly robust for predicting the odds of mortality (in the
absence of censoring). However, a surprisingly large proportion of postop-
erative deaths occur after patients (especially older patients) have been dis-
charged from their initial hospitalization, so that outcome studies based
only on data from the index hospitalization are of limited value (Bilimoria

Table 5: Outcomes Estimated by the Overall Multistate Model (Using
Simulation), Compared to the Actual Observed Outcomes. Subjects not dis-
charged to home were assumed to be in long-term care (LTC) and to remain
there until the end of the 30-day period unless they died or were readmitted.
Subjects readmitted to the hospital were assumed to remain there until the end
of the 30-day period unless they died

Subjects from All Hospitals
(N = 206,937) Subjects fromMMC (n = 1,079)

Estimated 95%CI Observed Estimated 95%CI Observed

Hospital mortality (%) 0.24 0.22, 0.26 0.24 0.28 0.00, 0.59 0.19
Discharge to LTC (%) 2.76 2.69, 2.82 2.87 3.05 2.04, 4.07 0.76
Readmissions (%) 5.53 5.43, 5.62 5.70 5.69 4.29, 7.10 5.62
30-daymortality (%) 0.38 0.36, 0.41 0.39 0.42 0.02, 0.82 0.19
LOS initial hospital (mean days) 2.85 2.83, 2.86 2.82 3.33 3.02, 3.64 3.37
LOS LTC (mean days) 0.57 0.55, 0.58 0.64 0.59 0.37, 0.82 0.15
LOS readmitted (mean days) 0.94 0.92, 0.96 0.91 0.94 0.69, 1.19 0.91

CI = confidence interval; LOS = length of stay.
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et al. 2010). In this respect, NSQIP is an important advance because it
records mortality up to POD 30 regardless of whether a subject is still hos-
pitalized.

LOS can be minimized either by a desirable event (discharge alive) or
by an undesirable event (death), a situation that may be described as “compet-
ing outcomes.” Often, a “long LOS” (longer than some arbitrary number of
days) is modeled as a binary outcome; in the present study, a cutoff of LOS >6
was arbitrarily chosen to approximate the 90th percentile. LOS can only be
considered a measure of quality if hospital deaths are infrequent or are
accounted for in some way. Clark and Ryan have described PWE multistate
models with time-varying covariates to predict hospital LOS for acutely
injured patients, and suggested the use of suchmodels especially when a signif-
icant hospital mortality must also be anticipated (Clark and Ryan 2002).
Because an increasing number of older patients are discharged to LTC rather
than home, it is useful to extend this approach to accommodate more than one
discharge destination (Clark, Lucas, and Ryan 2007; Clark, Ryan, and Lucas
2007).

Binary outcome models for readmission have not performed very well
in practice (Kansagara et al. 2011) and have obvious theoretical problems.
Readmission is the result of several time-dependent intermediate outcomes:
First, the patient must survive the initial hospitalization, then be discharged
home or to one of several types of LTC facilities, and finally be readmitted
alive to the original hospital or another hospital. Patient and/or hospital fac-
tors may affect these intermediate transitions in different ways, and at different
times (Dharmarajan et al. 2013). Furthermore, the arguably undesirable event
of readmission for a given subject is still generally preferable to death and may
be preferable to prolonging the initial hospitalization (two simplistic ways to
reduce the incidence of readmission).

Others have also reported difficulties in using simple binary modeling
for NSQIP outcomes. Dimick and colleagues (Dimick et al. 2013) have pro-
posed using “composite”measures, in which a weighted combination of mor-
bidity, reoperation, LOS, and data from related procedures are combined.
Lucas and colleagues (Lucas et al. 2013) recognized the “immortal person-
time bias” when evaluating the relationship of LOS and readmission, and
restricted their analysis to subjects with shorter LOS. We believe our exten-
sion of proportional hazards modeling is a more natural approach to avoiding
some of these difficulties, and we can demonstrate some practical results as
evidence of its theoretical appropriateness.
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Enhanced Analysis Using a Multistate Model

Older age appears to reduce the frequency of readmission in the binary out-
come model (Table 2), whereas the PWE components of the multistate model
(Table 3) make it easier to see that this is because older patients are not dis-
charged as early as younger patients and are more often discharged to LTC.
Thus, when older patients encounter postoperative problems, they are more
likely to be still in the hospital or in a LTC institution. A na€ıve interpretation of
the binary model might lead to complacency about the outcomes of older
patients discharged home after surgery, when in fact they are at increased risk
of death (Table 4), especially on the first day home and after a prolonged
LOS.

The association of male gender and longer LOS seen in the binary
model (Table 2) can be explained using the multistate model (Table 3) primar-
ily by the much lower daily rates of discharge to LTC among males. Readmis-
sion to the hospital from LTC did not appear to be affected much by age or
gender, but readmission to the hospital from home was also less likely for
males. As with the older patients, males with postoperative problems may not
need to be readmitted as often in part because they have not yet been dis-
charged. Other reasons for the observed disparities are more likely to be
affected by social or economic factors than by physiologic differences or the
quality of hospital care, and they can more easily be hypothesized from the
multistate model.

Although the individual PWEmodels can be useful, the greatest value of
the multistate model comes from combining them to achieve a multidimen-
sional perspective of mortality, LOS, and readmission. If binary outcomes
alone are considered, our own hospital does not differ significantly from the
rest of the NSQIP sample with respect to any of these individual outcomes.
However, the multistate model (Table 5) demonstrates that discharge to LTC
from our hospital (MMC) is much less frequent than expected from our
patient mix, which may reflect our geographic region, our hospital type, or
other characteristics of potential interest for health care efficiency. These com-
parisons are with respect to hospitals of all sizes and locations (the only com-
parison possible using the current NSQIP PUF), and might be different if
MMC were compared to other hospitals of its own size and/or geographic
region.

The “All Hospitals” columns of Table 5 suggest that the PWE multistate
model described here reproduces the observed outcomes for the entire
population with reasonable accuracy. The simulation approach shows that it is

AMultistate Model Predicting Mortality, LOS, and Readmission 1089



feasible to develop a bootstrap sample of cases with the characteristics of
patients from one hospital, but following the predicted outcomes based on
hazards derived from the entire sample. Indeed, the multistate model allows
any desired composite outcome to be statistically compared among patients
with any desired categorization. The example using our own institution sug-
gests that there may be considerable variation in outcome patterns among US
hospitals and regions.

The ability to incorporate a patient’s “event history” as it develops over
time, by using multistate models, is a powerful addition to any form of out-
come analysis (Andersen and Keiding 2002; Putter, Fiocco, and Geskus 2007;
Beyersmann et al. 2011; Sutradhar et al. 2012). The models proposed here
envision subjects as spending predictable amounts of time in certain states and
therefore not only allow predictions of the short-term binary outcomes above,
but also longer term outcomes (e.g., survival at 30 days), the time spent in var-
ious states (e.g., LOS in LTC as well as LOS in hospital), and the differing
covariate effects on each transition. Figure 2 depicts the different event histo-
ries expected for different procedures, but a similar graphical comparison
could be made for any categorization of patients by procedure type, demo-
graphic characteristics, comorbidities, hospitals, etc. A more complex but
potentially interesting model could also be created by adding the occurrence
of postoperative complications or other events as factors affecting subsequent
state transitions.

Limitations of the Multistate Model

Any attempt at greater explanatory power, including the multistate model we
propose, will still share some of the limitations of binary models, including
unrecorded covariates or interactions. NSQIP does not include data on the
LOS in LTC institutions, so assuming that the patients remained in LTC
through POD 30 is an oversimplification; however, the standard Medicare
Skilled Nursing coverage is for 21 days after an acute hospital stay of at least
3 days (Mor et al. 2010), so the assumption seems fairly reasonable. NSQIP
does not include data on the LOS of readmissions, so assuming that a readmit-
ted patient would stay hospitalized through POD 30 is also an oversimplifica-
tion; the mean LOS for the second hospitalization in one study of readmitted
colorectal surgery patients was 8.69 days (Keller et al. 2014). However,
patients discharged a second time would theoretically not return to the same
state as patients discharged the first time, and it does not seem wise to create a
more complicated model with the limited data available.
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The PWE assumption for baseline transition rates from one state to
another is not too difficult to understand. If the number of “pieces” were the
same as the number of days it would be equivalent to a nonparametric model,
but by reducing the number of “pieces” to a relatively small number, this
“loosely parametric” method is able to present the results more clearly, with
little loss of generality (Friedman 1982). The starting and ending times for the
time “pieces” can be selected using various practical and goodness-of-fit crite-
ria: One practical point in time is clearly the 30-day limit of NSQIP; a good-
ness-of-fit criterion might be to minimize the daily difference between
modeled and observed incidence rates (Kooperberg and Clarkson 1997). It is
possible to make other parametric assumptions about transition rates (Collett
1994; Sa, Dismuke, and Guimaraes 2007), but describing a baseline hazard
function with a mathematical formula rather than piecewise constants would
probably be more confusing than helpful to clinicians.

Limitations of NSQIP Data

The production of reliable outcome data for hospital evaluation has been a
goal of the American College of Surgeons for more than a century (Codman
1914). In recent years, NSQIP has come closer than ever to achieving this
ideal (ACS 2013a,b), although 30 days of postoperative follow-up may still
not be long enough to evaluate some outcomes such as readmission after com-
plex procedures requiring prolonged LOS (Lucas et al. 2013). Comparisons
with administrative sources of hospital outcomes have found that the hospitals
identified as high or low performers may differ depending upon which data
source is used (Simorov et al. 2014; Lawson et al. 2015). As with any large
database, there are potential issues involving inclusion criteria, coding differ-
ences, andmissing data (Hamilton et al. 2010; Parsons et al. 2011). Data issues
are most likely to affect results when only a small subset of cases is examined;
although computer-intensive imputation methods can be employed, the pur-
pose of our study was such that we only used imputation for one variable of
direct interest (time until readmission).

CONCLUSION

This study demonstrates that a “multistate” or “compartmental” model can
extend the useful aspects of PH regression, without undue complexity.
The multistate modeling approach could be applied using other sources
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of data that include outcomes after patients leave an acute-care hospital
(e.g., Medicare data). The method accounts for the interdependence of short-
term outcomes, and it allows a more realistic multidimensional interpretation
of the quality of care that could improve comparison of different hospitals and
regions. While they are unlikely to replace completely the familiar binary out-
come predictions, multistate models could at least be a useful adjunct to help
explain interdependent outcomes and identify where potential interventions
might be most effective.
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