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Abstract

The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to 

influence processing of motor information by virtue of its widespread projections to all basal 

ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as 

Parkinson’s disease, we have only limited information about its cellular composition and 

organizational principles. In this review, we describe recent advances in our understanding of the 

diversity in the molecular profile, anatomy, physiology, and corresponding behavior during 

movement of GPe neurons. Importantly, we attempt to build consensus and highlight 

commonalities of the cellular classification based on existing but contentious literature. 

Additionally, we provide an analysis of the literature concerning the intricate reciprocal loops 

formed between the GPe and major synaptic partners, including both the striatum and the 

subthalamic nucleus. In conclusion, the GPe has emerged as a crucial node in the basal ganglia 

macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create 

new challenges, modern research tools have shown promise in untangling such complexity and 

will provide better understanding of the roles of the GPe in encoding movements and their 

associated pathologies.
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Introduction

The basal ganglia are an ensemble of subcortical nuclei that are critically involved in control 

of action (Albin et al., 1995; Graybiel, 2008; Redgrave et al., 2010; Turner & Desmurget, 

2010; Costa, 2011; Gerfen & Surmeier, 2011; Kravitz et al., 2012). The external globus 

pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence 

processing of motor information by virtue of its widespread projections to all basal ganglia 

nuclei (Difiglia et al., 1982; Beckstead, 1983; Walker et al., 1989; Kita, 1994; Kita & Kitai, 

1994; Shammah-Lagnado et al., 1996; Nambu & Llinas, 1997; Bevan et al., 1998; Smith et 
al., 1998b; Kita et al., 1999; Sato et al., 2000; Kita & Kita, 2001; Kita, 2007). Consistent 

with this anatomy, phasic changes in the firing of GPe neurons are associated with both 

passive and active body movements (DeLong, 1971; Georgopoulos et al., 1983; Anderson & 
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Horak, 1985; Mitchell et al., 1987; Filion et al., 1988; Nambu et al., 1990; Brotchie et al., 
1991; Mink & Thach, 1991b; a; Jaeger et al., 1995; Mushiake & Strick, 1995; Turner & 

Anderson, 1997; Boraud et al., 2000; Arkadir et al., 2004; Adler et al., 2010; Schmidt et al., 
2013; Dodson et al., 2015). Highly synchronous bursting in the GPe correlates with 

hypokinetic symptoms of Parkinson’s disease (PD) (Pan & Walters, 1988; Filion & 

Tremblay, 1991; Filion et al., 1991; Hutchison et al., 1994; Nini et al., 1995; Rothblat & 

Schneider, 1995; Hassani et al., 1996; Taha et al., 1996; Bergman et al., 1998; Boraud et al., 
1998; Wichmann et al., 1999; El-Deredy et al., 2000; Magill et al., 2000; Magnin et al., 
2000; Raz et al., 2000; Brown et al., 2001; Magill et al., 2001; Bar-Gad et al., 2003; Starr et 
al., 2005; Heimer et al., 2006; Wichmann & Soares, 2006; Kita, 2007; Tang et al., 2007; 

Zold et al., 2007a; Zold et al., 2007b; Mallet et al., 2008; Starr et al., 2008; Sani et al., 2009; 

Chan et al., 2011). Similarly, aberrant GPe neuron activity is also observed in Huntington’s 

disease (HD) and dystonia (Starr et al., 2005; Chiken et al., 2008; Starr et al., 2008; Baron et 
al., 2011; Nambu et al., 2011; Nishibayashi et al., 2011), arguing for the centrality of the 

GPe in motor function and dysfunction. Despite its critical role in regulating motor activity, 

the organization of GPe neurons within the basal ganglia circuitry remains poorly 

understood, preventing us from understanding how GPe activity is regulated in behavioral 

and disease contexts.

While the traditionally-held belief is that the GPe is a homogeneous population of neurons 

that act as a mere relay in the indirect pathway of the basal ganglia (Albin et al., 1989; 

Alexander & Crutcher, 1990; DeLong, 1990; Albin et al., 1995; Parent & Hazrati, 1995b; 

Joel & Weiner, 1997; Graybiel, 2000), recent studies are challenging this view. A number of 

important discoveries on neuron diversity were made in the past few years as a result of a 

resurgence of interest in the GPe. Furthermore, accumulating evidence suggests that striatal 

inputs to the GPe do not arise strictly from indirect pathway neurons. In this review, we aim 

to analyze the historical literature and provide a critical update on the recent progress 

regarding our understanding of the GPe. We will also discuss the fundamental biology of 

different GPe neuron classes, their synaptic partners, and their potential importance in motor 

function and disease etiology.

Heterogeneity of neurons in the GPe

Early evidence for distinct neuron types in the GPe

A large body of published work suggests the existence of multiple GPe neuron types. GPe 

neurons are diverse in their expression of molecular markers (Hontanilla et al., 1994; Kita, 

1994; Bevan et al., 1998; Hoover & Marshall, 1999; Kita & Kita, 2001; Cooper & Stanford, 

2002; Chan et al., 2004; Domaradzka-Pytel et al., 2007; Mallet et al., 2012; Mastro et al., 
2014; Abdi et al., 2015; Hernandez et al., 2015), dendritic morphology (Fox et al., 1974; 

Danner & Pfister, 1981; Iwahori & Mizuno, 1981; Difiglia et al., 1982; Park et al., 1982; 

Francois et al., 1984; Yelnik et al., 1984; Millhouse, 1986; Kita & Kitai, 1994; Nambu & 

Llinas, 1997; Cooper & Stanford, 2000), axonal projections (Difiglia et al., 1982; Beckstead, 

1983; Walker et al., 1989; Kita, 1994; Kita & Kitai, 1994; Parent & Hazrati, 1995b; 

Shammah-Lagnado et al., 1996; Bevan et al., 1997; Bevan et al., 1998; Smith et al., 1998a; 

Kita et al., 1999; Sato et al., 2000; Kita & Kita, 2001; Mallet et al., 2012), and 
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electrophysiology (Nambu & Llinas, 1994; Kelland et al., 1995; Nini et al., 1995; Nambu & 

Llinas, 1997; Cooper & Stanford, 2000; Raz et al., 2000; Paz et al., 2005; Gunay et al., 
2008; Mallet et al., 2008; Joshua et al., 2009; Bugaysen et al., 2010; Chan et al., 2011; 

Chuhma et al., 2011; Benhamou et al., 2012; Mallet et al., 2012; Schmidt et al., 2013; Jin et 
al., 2014).

Earlier studies were limited by non-categorical expression of a number of phenotypic 

markers. Analysis of GPe anatomical projections is complicated by the fact that single GPe 

neurons can project to multiple nuclei (Parent & Hazrati, 1995b; Bevan et al., 1998; Mallet 

et al., 2012). Both in vivo and ex vivo studies have demonstrated quantitative differences in 

the electrophysiological characteristics of GPe neurons. The first classification was provided 

by DeLong’s seminal in vivo recording study in behaving monkeys, in which GPe neurons 

were divided into “high frequency pausers” and “low frequency bursters” on the basis of 

their spontaneous firing patterns (DeLong, 1971). Several subsequent studies have provided 

evidence for the existence of subtypes of GPe neurons according to their 

electrophysiological properties in ex vivo slices (Kita & Kitai, 1991; Nambu & Llinas, 1994; 

Cooper & Stanford, 2000; Bugaysen et al., 2010; Chuhma et al., 2011). As the 

methodologies and measurements were unique to each experimental setup, the field still 

awaited reliable classification criteria for GPe neurons.

Recent advances delineate distinct neuron classes in the GPe

More recent multidisciplinary studies using adult rodents have provided compelling data that 

serve as the basis for newer classification schemes for GPe neurons. Except for a small 

population of cholinergic (ChAT+) neurons that make up ~5% of all GPe neurons (see 

below), GPe neurons are GABAergic and autonomously active (Kita & Kitai, 1991; Nambu 

& Llinas, 1994; 1997; Cooper & Stanford, 2000; Chan et al., 2004; Surmeier et al., 2005; 

Mercer et al., 2007; Deister et al., 2009; Bugaysen et al., 2010; Nobrega-Pereira et al., 2010; 

Chan et al., 2011; Miguelez et al., 2012; Mastro et al., 2014; Abdi et al., 2015; Hernandez et 
al., 2015). These GABAergic GPe neurons largely fall into one of two general categories. 

Neurons in the first category—‘prototypic’ GPe neurons—exhibit fast and regular firing 

rates in vivo (Abdi et al., 2015; Dodson et al., 2015), project strongly to the subthalamic 

nucleus (STN), and constitute ~70% of all GPe neurons (Mallet et al., 2012; Hernandez et 
al., 2015). Neurons expressing the calcium binding protein parvalbumin (PV) represent the 

majority of these prototypic neurons (Mallet et al., 2012), making up ~55% of all neurons in 

the GPe. Two recent studies show that these neurons express the transcription factor Nkx2.1 

(Abdi et al., 2015; Dodson et al., 2015). Additionally, at least a subset of these PV+ neurons 

also express Lhx6 (Abdi et al., 2015; Hernandez et al., 2015) (but see below). The principal 

electrophysiological characteristics of PV+ GPe neurons were recently established in ex vivo 
slices and include robust and regular autonomous firing, narrower action potentials, and 

lower membrane resistance, as well as large persistent sodium current, HCN current, and 

Kv4 current (Mastro et al., 2014; Abdi et al., 2015; Hernandez et al., 2015). The Type I and 

Type A neurons described in early electrophysiological characterizations of GPe neurons 

(Nambu & Llinas, 1994; Cooper & Stanford, 2000) share these key characteristics with PV+ 

neurons and likely correspond to the same class (see Table 1).
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Neurons in the second category—‘arkypallidal’ GPe neurons—exhibit slower and more 

irregular firing rates in vivo (Abdi et al., 2015; Dodson et al., 2015), project heavily to the 

dorsal striatum (dStr), and constitute ~25% of all GPe neurons. These neurons are devoid of 

PV (Mallet et al., 2012; Hernandez et al., 2015); instead, they express the opioid precursor 

preproenkephalin (Mallet et al., 2012; Abdi et al., 2015; Dodson et al., 2015) and the 

transcription factor Foxp2. Most arkypallidal neurons also express the transcription factor 

Npas1. However, it is important to emphasize that not all Npas1+ neurons express Foxp2. 

Additionally, a very small fraction of Foxp2+ GPe neurons do not express Npas1 (Abdi et 
al., 2015; Dodson et al., 2015; Hernandez et al., 2015). By generating an Npas1-Cre-2A-

tdTomato BAC transgenic mouse line and Npas1 antibodies de novo, Hernández and 

colleagues recently demonstrated that Npas1+ neurons are distinct from PV+ neurons 

(Hernandez et al., 2015)—a finding that is in agreement with previous studies (Flandin et al., 
2010; Nobrega-Pereira et al., 2010). Electrophysiological characterization of Foxp2+ 

neurons and Npas1+ neurons ex vivo find that they have high input resistances and low and 

variable firing rates (Abdi et al., 2015; Hernandez et al., 2015). These neurons share basic 

features with the Type II and Type B neurons described in earlier studies and likely 

correspond to the same class (see Table 1) (Nambu & Llinas, 1994; Cooper & Stanford, 

2000). Additionally, these neurons have smaller cell bodies (Kita, 1994; Nambu & Llinas, 

1997; Waldvogel et al., 1999; Waldvogel et al., 2004; Kita, 2007). Importantly, in chronic 6-

OHDA lesioned mice the autonomous pacemaking activity of Npas1+ neurons is decreased 

while that of PV+ neurons is unchanged, corroborating findings from earlier studies that 

showed disrupted pacemaking of a subset of unidentified GPe neurons (Chan et al., 2011; 

Miguelez et al., 2012).

The existence of cholinergic neurons in the GPe has been known for several decades. Rather 

than being part of the basal ganglia, ChAT+ GPe neurons have been considered displaced 

basal forebrain neurons because of their similar electrophysiological properties and their 

tendency to be located primarily at the medial and ventral borders of the GPe (Das & 

Kreutzberg, 1969; Mesulam et al., 1983; Rye et al., 1984; Ingham et al., 1985; Rodrigo et 
al., 1998; Unal et al., 2012; McKenna et al., 2013; Eid et al., 2014; Saunders et al., 2015). 

Although it can be argued that the small number of ChAT+ neurons in the GPe are merely a 

dorsal extension of the much larger group of basal forebrain cholinergic neurons, their inputs 

from the dStr and the STN (Hernandez et al., 2015; Saunders et al., 2015) suggest they are 

integrated with, and therefore a part of, the basal ganglia. The membrane properties of these 

ChAT+ GPe neurons have only been modestly investigated; they likely correspond to the 

Type III or Type C neurons on the basis of their relative scarcity, very low firing rates, 

longer-duration action potentials, and large somata (Bengtson & Osborne, 2000; McKenna 

et al., 2013; Abdi et al., 2015; Hernandez et al., 2015; Saunders et al., 2015).

Classifying GPe neurons: consensus and division

Although recent studies provide a strong foundation for the classification of GPe neurons, 

several questions remain. Neuronal birthplace was recently proposed to dictate some 

features of GPe neuron identity (Dodson et al., 2015). In brief, GPe neurons have distinct 

developmental origins, arising from the medial ganglionic eminence (MGE), lateral 

ganglionic eminence (LGE), or the preoptic area (PoA). While PV+ neurons arise from the 
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MGE, Npas1+ neurons are derived from both the MGE and LGE (Flandin et al., 2010; 

Nobrega-Pereira et al., 2010; Abdi et al., 2015; Dodson et al., 2015). Though developmental 

origins likely influence transcriptional programs that control the specifications of neurons, 

data from Hernández et al. (2015) do not fully support this idea. Despite the overlap between 

the developmental origins of PV+ GPe neurons and Npas1+ GPe neurons, their 

electrophysiological properties and axonal projections are strikingly different. As previously 

shown in the hippocampus, neurons can converge on a single anatomical and physiological 

phenotype despite differences in origin (Chittajallu et al., 2013). It is likely that a 

combination of transcription factors, chromatin modifiers, and enhancers are critical for the 

establishment and maintenance of distinct neuronal phenotypes (Deneris & Hobert, 2014).

A subset of GPe neurons express the transcription factor Lhx6, which is a nominal marker 

for MGE-derived neurons, but the field has yet to come to an agreement on whether Lhx6+ 

neurons are likely to represent a functionally-unique neuron class within the GPe. While 

recent studies converge on the existence of a distinct class of Lhx6+ GPe neurons (see 

below), a substantial population of Lhx6+ GPe neurons express PV or Npas1. Accordingly, 

Lhx6+ GPe neurons display electrophysiological and anatomical properties that span the 

range between PV+ GPe neurons and Npas1+ GPe neurons (Mastro et al., 2014; Hernandez 

et al., 2015). In particular, these studies do not agree upon the extent of the overlap of Lhx6 

with PV, covering the range from virtually no overlap to near-complete overlap (Mastro et 
al., 2014; Abdi et al., 2015; Dodson et al., 2015; Hernandez et al., 2015). Similarly, these 

studies describe PV+ neurons as constituting anywhere from 30% to 60% of all GPe neurons 

(Nobrega-Pereira et al., 2010; Mastro et al., 2014; Abdi et al., 2015; Hernandez et al., 2015). 

It is likely that the discrepancies arise from differences in the detection sensitivity of 

immunoreactions. In addition, the eGFP expression pattern in the Lhx6-eGFP mice is non-

discrete and does not reliably label neurons that natively express the transcription factor 

Lhx6 (Mastro et al., 2014; Dodson et al., 2015). Differences in the PV-Cre driver lines 

employed have not been examined and may also contribute.

Figure 1 represents an attempt to bring the different schemes for classification of GPe 

neuron classes into congruence. Readers should keep in mind that these classifications are 

only approximations; subtle species differences between rats and mice may exist. However, 

it is difficult to separate species differences from methodological ones especially given that 

Magill and colleagues are currently the only group to have published data using rats. Figure 

1 highlights the existence of at least four distinct classes of GPe neurons, including a PV–-

Npas1–-Lhx6+ neuron class, which represents the distinct Lhx6+ GPe neuron class described 

in previous studies (Mastro et al., 2014; Dodson et al., 2015; Hernandez et al., 2015). While 

the precise properties of these neurons have yet to be determined, they may be PoA-derived. 

This notion is supported by a recent study showing that while MGE-derived neurons express 

Lhx6, the PoA is another potential source of Lhx6+ neurons (Kanatani et al., 2015). 

Similarly, as the classification of GPe neurons is based on recent data derived from rodent 

studies, how such a classification would apply to primates remains to be determined.
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Principal GPe projections

STN-projecting GPe neurons

As the GPe-STN projection and its importance in both health and disease is well-established 

(Canteras et al., 1990; Parent & Hazrati, 1995b; Shink et al., 1996; Joel & Weiner, 1997; 

Smith et al., 1998a; Bolam et al., 2000; Bevan et al., 2002b; Francois et al., 2004; Nambu, 

2004; Bevan et al., 2007; Wilson & Bevan, 2011), only critical updates on the topic are 

included in the following section. PV+ GPe neurons constitute the principal GPe projection 

to the STN (Kita, 1994; Hoover & Marshall, 1999; 2002; Mastro et al., 2014; Abdi et al., 
2015; Hernandez et al., 2015), accounting for ~94% of total GPe-STN inputs (Abdi et al., 
2015; Hernandez et al., 2015). Subtle differences exist between the projections from PV+ 

GPe neurons and those from Lhx6+ GPe neurons to the STN. While PV+ GPe neurons target 

primarily the motor area of the STN, Lhx6+ GPe neurons preferentially target the limbic and 

associative areas of the STN (Mastro et al., 2014). Npas1+ GPe neurons send only a small 

number of axons to the STN. The vast majority of Npas1+ axonal projections instead run 

dorsally to the STN, along the lenticular fascicle (Hernandez et al., 2015). The caudal 

projection pattern of Npas1+ axons has not been examined systematically. However, it 

should map onto a number of brain regions that were charted previously (Hattori et al., 
1975; Bunney & Aghajanian, 1976; Kanazawa et al., 1976; Staines & Fibiger, 1984; Hazrati 

et al., 1990; Hazrati & Parent, 1991; Kincaid et al., 1991a; Shammah-Lagnado et al., 1996; 

Saunders et al., 2015). The GPe-STN projection is sparse and distributed; individual GPe 

neurons contact only 2% of STN neurons and neighboring STN neurons rarely receive input 

from the same GPe axon (Baufreton et al., 2009). In addition to the classic perisomatic 

baskets, GPe axons also terminate on the proximal and distal dendrites of STN neurons 

(Smith et al., 1990a).

The GPe-STN projection plays critical roles in regulating STN neuron activity via a number 

of mechanisms. In health, the GPe provides phasic inhibition that promotes decorrelated 

activity between the GPe and the STN (Atherton et al., 2013). Additionally, GPe input limits 

activation of STN neurons by cortical input through hyperpolarization and shunting 

inhibition (Chu et al., 2015). Dopamine, via presynaptic D2 receptors, inhibits GABA 

release at the GPe-STN synapse (Shen & Johnson, 2000; Baufreton & Bevan, 2008). 

Hypersynchronization of the GPe with the STN in PD is in part attributable to increased 

presynaptic release and postsynaptic strengthening of the GPe-STN input via an NMDA 

receptor-dependent mechanism (Fan et al., 2012; Chu et al., 2015). Strengthened GPe inputs 

then interact with intrinsic, active conductances on STN neurons to generate rhythmic 

bursting of STN neurons (Baufreton et al., 2005; Baufreton et al., 2009; Fan et al., 2012). A 

reverberating feedback loop formed between the GPe and STN was proposed to serve as an 

intrinsic oscillator that drives aberrant network activity throughout the basal ganglia (Bevan 

et al., 2002b) (see further discussion below).

dStr-projecting GPe neurons

A projection from the GPe to the dStr, the primary input center of the basal ganglia, was 

postulated over a century ago (Wilson, 1911; 1913), and its existence has since been 

confirmed in a variety of species. However, very little is known about the identity of the GPe 
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neurons that provide this input or the postsynaptic neurons they target (Nauta, 1979; Staines 

et al., 1981; Beckstead, 1983; Jayaraman, 1983; Staines & Fibiger, 1984; Smith & Parent, 

1986; Shu & Peterson, 1988; Walker et al., 1989; Kita & Kitai, 1991; Shinonaga et al., 1992; 

Rajakumar et al., 1994; Shammah-Lagnado et al., 1996; Spooren et al., 1996; Nambu & 

Llinas, 1997; Bevan et al., 1998; Kita et al., 1999; Sato et al., 2000; Kita & Kita, 2001; 

Mallet et al., 2012). A major impediment to our understanding of the pallidostriatal pathway 

arises from the cellular complexity in the dStr and the GPe, as each of these nuclei 

comprises several types of neurons (Kreitzer, 2009; Tepper et al., 2010; Gittis et al., 2014; 

Abdi et al., 2015). Therefore, it is evident that we need a systematic analysis to map the 

connectivity between specific pallidostriatal inputs and identified postsynaptic target 

neurons.

It was recently demonstrated that Npas1+ GPe neurons project heavily to the dStr but only 

sparingly to the STN (Hernandez et al., 2015). For this reason, we postulate that spiny 

projection neurons (SPNs), the principal neurons in the dStr (Kemp & Powell, 1971; 

DiFiglia et al., 1976; Somogyi & Smith, 1979; Dimova et al., 1980; Preston et al., 1980; 

Groves, 1983), receive input from Npas1+ GPe neurons. In support of this idea, 

ultrastructural data suggest that Npas1+-Foxp2+ (arkypallidal) axon terminals form synapses 

with spine-bearing dendrites in the dStr (Mallet et al., 2012). Although Lhx6+ GPe neurons 

also target the dStr, Npas1+-Foxp2+ neurons appear to do so to a much higher degree 

(Mastro et al., 2014; Hernandez et al., 2015); however, unlike Lhx6+ neurons, Npas1+-

Foxp2+ neurons do not project to the STN (Abdi et al., 2015). This suggests Npas1+-Foxp2+ 

neurons and Npas1+-Lhx6+ neurons are distinct (see Figure 1). Considering that Lhx6 

expression shows essentially no overlap with Foxp2 and that most Npas1+-Foxp2– neurons 

are also Lhx6+ (Abdi et al., 2015; Hernandez et al., 2015), it is tempting to speculate that 

Npas1+-Foxp2+ neurons and Npas1+-Lhx6+ neurons are both dStr-projecting but 

preferentially target distinct subsets of striatal neurons—for example, SPNs and GABAergic 

interneurons, respectively. PV+ GPe neurons also provide a small number of projections to 

the dStr, where they appear to preferentially target interneurons (Bevan et al., 1998; Kita et 
al., 1999; Mastro et al., 2014).

We still lack a systematic and quantitative analysis of the targeting properties of the 

pallidostriatal inputs. However, it is possible to calculate the contact probability of cell-

specific GPe axons with individual SPNs, as the number of neurons in both the dStr and the 

GPe has been previously determined (see Table 2). Similarly, the number of synaptic 

boutons formed by Npas1+ GPe neurons and PV+ GPe neurons in the dStr has also been 

estimated. Assuming 100% connectivity between GPe and dStr neurons, each SPN on 

average receives a small number of boutons from GPe neurons: roughly 40 from Npas1+ 

GPe neurons and less than ten from PV+ GPe neurons. In contrast, each SPN receives 2,500 

symmetrical synapses (Wilson, 2013). From these estimates alone, pallidostriatal inputs 

arising from GPe neurons would appear unlikely to have an important impact on the output 

of SPNs. However, we do not yet know if pallidostriatal neurons make contact with striatal 

neurons in a target cell-specific manner, as is often observed between SPN classes 

(MacAskill et al., 2012; Wall et al., 2013; Deng et al., 2015; Guo et al., 2015b) (but see 

Kress et al., 2013), or if they exhibit strategic positioning on the dendrites of SPNs. Either of 

these features could substantially increase the efficiency of their influence on the network. 
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Additionally, pre- and postsynaptic mechanisms may exist to provide anatomical and 

biophysical specialization at these connections. Finally, the temporal relationship between 

the activation of the pallidostriatal inputs and the excitatory inputs (e.g. from the cortex) will 

be a crucial factor in determining the impact of the postsynaptic effect.

GPe-dStr inputs and sparse coding in the striatum

What is the biological significance of the pallidostriatal inputs? Could they provide 

subcellular compartment-specific inhibition? To date, there has been no consensus on the 

coding scheme employed by SPNs. ‘Sparse coding’ is one potential computational strategy 

whereby information is communicated by spatially- and temporally-distributed activity in a 

relatively small fraction of neurons. This form of neural coding is well-established in 

sensory systems and allows for efficient and flexible information processing (Vinje & 

Gallant, 2000; Hromadka et al., 2008; Isaacson, 2010; Wolfe et al., 2010). In line with this 

idea, the dStr shares several characteristic features with neural networks that support and use 

sparse coding (Olshausen & Field, 2004). In addition to the large spatial volume of the dStr 

(Rosen & Williams, 2001), SPNs exhibit burst activity in response to a limited range of 

stimuli (DeLong, 1973; Wilson & Groves, 1981; Kimura et al., 1990; Stern et al., 1997) as 

well as an absence of redundancy and a loose temporal correlation between responses of 

nearby SPNs (Jaeger et al., 1995; Ponzi & Wickens, 2010; Adler et al., 2012; Adler et al., 
2013).

In addition, it has been previously demonstrated that a nonspecific inhibitory input can 

facilitate sparse coding by acting as a gain control (Laurent, 2002; Isaacson & Scanziani, 

2011). By dampening excitatory responses across a broad area of the dStr, Npas1+ GPe 

neurons could potentially promote sparse coding in SPNs (Burrone & Murthy, 2003; 

Semyanov et al., 2004; Silver, 2010). Typically, SPNs rest close to the potassium reversal 

potential, spiking only when they are driven by glutamatergic input from the cortex (Parent 

& Hazrati, 1995a; Smith et al., 2004). Specifically, through activation of NMDA receptors, 

SPNs in the dStr display dendritic plateau potentials in distal dendritic compartments 

(Plotkin et al., 2011). It is thus intriguing to speculate that pallidostriatal input controls SPN 

output by limiting the summation of excitatory inputs, preventing the subsequent nonlinear-

generation of dendritic plateaus; spiking would be limited to only those SPNs receiving 

robust or well-timed excitatory input. As the dStr is organized in a somatotopic fashion 

(Nambu, 2011), spatially-broad inhibition from the GPe could be used to suppress or reset 

somatotopically-complex motor sequences across the dStr (see below).

Synaptic and neuromodulatory control of the GPe

dStr forms the principal inhibitory input to the GPe

The dStr input to the GPe is topographically organized and highly convergent. In primates, 

the dStr-GPe projection displays a precise rostrocaudal, mediolateral, and dorsoventral 

topography. Furthermore, the injection of two different anterograde tracers into two small, 

adjacent areas of the striatum led to the formation of two clearly distinguishable sets of 

bands in the GPe (Hazrati & Parent, 1992; Parent & Hazrati, 1995a). In the rat basal ganglia 

there are roughly three million SPNs but only 46 thousand GPe neurons (Oorschot, 1996). 

Hegeman et al. Page 8

Eur J Neurosci. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Assuming all of the SPNs in the dStr are GPe-projecting, individual GPe neurons must on 

average receive input from at least 60 dStr SPNs. The high level of convergence in the dStr-

GPe projection is supported by both anatomical and electrophysiological findings. 

Retrograde tracer injections into a small area of the primate GPe label neurons in spatially-

broad areas of the putamen (Flaherty & Graybiel, 1993; 1994). Moreover, focal stimulation 

in the GPe induces antidromic activation of multiple striatal neurons over a wide area 

(Kimura et al., 1996). Anatomically, the dendritic arbor of GPe neurons is oriented 

perpendicularly to the incoming, radial striatal fibers, creating an ideal arrangement for 

intercepting axons from broad striatal regions (Chang et al., 1981; Percheron et al., 1984; 

Yelnik et al., 1984; Kawaguchi et al., 1990; Yelnik et al., 1997). Such an anatomical 

organization allows dStr axons to contact the dendrites of multiple GPe neurons. The sharing 

of dStr inputs by multiple GPe neurons provide an anatomical substrate for synchrony and 

pause-burst firing pattern in a large population of GPe neurons, as demonstrated by both 

experimental and computational studies (Terman et al., 2002; Elias et al., 2007; Zold et al., 
2007a; Zold et al., 2007b; Kita & Kita, 2011b; a; Adler et al., 2012; Schwab et al., 2013; 

Wilson, 2013; Schechtman et al., 2015). As PD progresses, the activity of GPe neurons 

transitions from decorrelated, single-spike pacemaking to synchronous, rhythmic bursting 

(but see Mallet et al., 2008). This pathological network behavior is thought to be critical to 

the core motor symptoms of PD (Pan & Walters, 1988; Filion & Tremblay, 1991; Filion et 
al., 1991; Hutchison et al., 1994; Nini et al., 1995; Rothblat & Schneider, 1995; Hassani et 
al., 1996; Taha et al., 1996; Bergman et al., 1998; Boraud et al., 1998; Wichmann et al., 
1999; El-Deredy et al., 2000; Magill et al., 2000; Magnin et al., 2000; Raz et al., 2000; 

Brown et al., 2001; Magill et al., 2001; Heimer et al., 2002; Bar-Gad et al., 2003; Starr et al., 
2005; Heimer et al., 2006; Wichmann & Soares, 2006; Kita, 2007; Tang et al., 2007; Zold et 
al., 2007a; Zold et al., 2007b; Mallet et al., 2008; Starr et al., 2008; Cruz et al., 2009; Sani et 
al., 2009; Chan et al., 2011). Although active decorrelating processes have been proposed to 

prevent synchrony among neighboring GPe neurons in the healthy state (Nini et al., 1995; 

Bar-Gad et al., 2003; Chan et al., 2011), the exact mechanisms involved and why they 

collapse in the absence of dopamine remain to be explored.

The dStr inputs originating from SPNs account for 65–80% of the GABAergic synapses 

within the GPe (Smith et al., 1998a; Kita, 2007). Approximately two-thirds of these dStr-

GPe inputs arise from the enkephalin and dopamine D2 receptor-expressing indirect-

pathway SPNs (iSPNs), while the remaining one-third originate from collaterals of 

substance P and dopamine D1 receptor-expressing direct-pathway SPNs (dSPNs) that form 

en passant synapses (Feger & Crossman, 1984; Gerfen & Young, 1988; Kawaguchi et al., 
1990; Parent et al., 1995; Wu et al., 2000; Levesque & Parent, 2005; Nadjar et al., 2006; 

Matamales et al., 2009; Fujiyama et al., 2011). Recent experimental data directly 

demonstrate the different roles played by dSPNs (movement facilitation) and iSPNs 

(movement suppression) in learned-behavior and motor dysfunction, in agreement with 

those proposed in the classic model (Kravitz et al., 2010; Cui et al., 2013; Freeze et al., 
2013; Calabresi et al., 2014; Sippy et al., 2015). While it has yet to be demonstrated how 

striatal information is processed at the GPe level, Saunders and colleagues find that dSPN 

and iSPN inputs target both GABAergic and cholinergic GPe neurons (Saunders et al., 
2015).
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Both types of dStr inputs to the GPe are likely important players in PD, given the remarkable 

anatomical remodeling following the perturbation of dopaminergic signaling. Direct 

examination using electron microscopy has revealed pathological enlargement of iSPN 

terminals in the GPe following chronic dopamine depletion (Ingham et al., 1997). Similarly, 

alterations in the dSPN axonal arborization within the GPe are observed when dopamine 

signaling is disrupted (Cazorla et al., 2014; Cazorla et al., 2015). Consistent with this idea 

that dStr-GPe inputs are remodeled after dopamine depletion, compelling evidence from in 
vivo studies suggests that in PD, increased dStr-GPe input contributes to neuronal synchrony 

within the GPe. This subsequently leads to pathological network oscillations throughout the 

basal ganglia (Bevan et al., 2002b; Terman et al., 2002; Kita & Kita, 2011b). It is important 

to note that, even in the healthy state, coordinated dStr-GPe input exhibits a strong ability to 

reset—and therefore temporarily promote synchronization of—the pacemaking of GPe 

neurons in an HCN channel-dependent manner (Chan et al., 2004). While ex vivo studies so 

far do not support the theory of altered dStr-GPe transmission in a chronic 6-OHDA model 

of PD (Miguelez et al., 2012), they were confounded by co-activation of both dSPN inputs 

and iSPN inputs with conventional electrical stimulation. Additionally, the identities of the 

postsynaptic GPe neurons were undefined. A recent modeling study suggests dStr input onto 

PV+ (prototypic) GPe neurons is stronger than that onto Npas1+-Foxp2+ (arkypallidal) GPe 

neurons (Nevado-Holgado et al., 2014), highlighting that much investigation of dStr-GPe 

signaling still needs to be done, particularly regarding how dSPNs and iSPNs are connected 

with distinct GPe neuron classes.

Local collaterals are another major inhibitory input to GPe neurons

In addition to the dStr input, local collaterals are a second source of GABAergic input onto 

GPe neurons. Juxtacellular labeling and intracellular dye-loading of GPe neurons have 

revealed the presence of local axon collaterals with numerous varicosities, suggesting the 

presence of lateral GABAergic inhibition within the GPe (Millhouse, 1986; Okoyama et al., 
1987; Kita, 1994; Kita & Kitai, 1994; Nambu & Llinas, 1997; Bevan et al., 1998; Sato et al., 
2000; Sadek et al., 2007; Mallet et al., 2012). Most, if not all, GPe neurons exhibit local 

axon collaterals; it is estimated that a single local collateral axon gives rise to as many as 

650 boutons within the GPe. However, this number varies with the identity and geographical 

location of the cell body (Park et al., 1982; Millhouse, 1986; Kita & Kitai, 1994; Nambu & 

Llinas, 1997; Bevan et al., 1998; Sato et al., 2000; Sadek et al., 2007; Mallet et al., 2012).

In the GPe, these local axon collaterals terminate on somata and proximal dendrites (Kita, 

1994; Kita & Kitai, 1994; Nambu & Llinas, 1997; Bevan et al., 1998; Sato et al., 2000; 

Sadek et al., 2007; Mallet et al., 2012), positioning them to have a powerful influence on the 

firing of their postsynaptic targets. Early electrophysiological analysis describing the 

kinetics of putative intrapallidal inhibitory synaptic currents—faster than those arising from 

dStr inputs—is consistent with this perisomatic location (Sims et al., 2008; Gross et al., 
2011). Although local collaterals are integral to GPe circuit dynamics and downstream 

network effects (Terman et al., 2002), they have not been studied in great detail due to the 

inherent difficulty in identifying and selectively activating individual classes of GPe neurons 

and their local collateral axons.
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Functional connections between GPe neurons are demonstrated in a recent study with 

paired-recordings. Connections between GPe neurons are mediated by GABAA receptors 

and strongly influence the firing rate of the postsynaptic GPe neuron, even at the level of 

unitary connections (Bugaysen et al., 2013). However, as connection probability is only ~1–

2% (Sadek et al., 2007; Bugaysen et al., 2013), only a handful of recordings were obtained 

in this study (Bugaysen et al., 2013). In a chronic model of PD, Miguelez and colleagues 

discovered a strengthening of this intrapallidal connection (Miguelez et al., 2012). While 

these studies have provided important insights into the basic biology of intrapallidal 

signaling, the identities of both pre- and postsynaptic neurons were not determined (Sims et 
al., 2008; Gross et al., 2011). Recent advances in transgenic (Heintz, 2004; Madisen et al., 
2010; Madisen et al., 2012; Gerfen et al., 2013; Hernandez et al., 2015; Madisen et al., 
2015) and optogenetic approaches (Boyden, 2015; Deisseroth, 2015) will undoubtedly 

promote future discoveries concerning the intrapallidal signaling between specific GPe 

neuron classes. Though it remains to be tested empirically, Mallet and colleagues show the 

existence of various connection types between GPe neuron classes (Mallet et al., 2012). It is 

likely that the connectivity pattern varies in a cell-specific manner. This idea is supported by 

a recent computational analysis (Nevado-Holgado et al., 2014) that suggests the inputs from 

PV+ (prototypic) GPe neurons to Npas1+-Foxp2+ (arkypallidal) GPe neurons are relatively 

strong, whereas inputs from Npas1+-Foxp2+ neurons to PV+ neurons are weaker. This 

analysis also predicts that the connections between Npas1+-Foxp2+ neurons are modest and 

that the connections between PV+ neurons are negligible. As local collateral inhibition plays 

a pivotal role in governing network synchrony (Jefferys et al., 1996; Paz & Huguenard, 

2015), it is tempting to speculate that intrapallidal connections between GPe neurons serve 

as a decorrelating mechanism in the healthy state. Inappropriate scaling of these 

connections, as occurs in the absence of dopamine, has been suggested to contribute to 

hypersynchrony in PD (Cruz et al., 2011). Lastly, gap junctions represent another means by 

which neurons can be electrically coupled and have been previously found on PV– GPe 

neurons at the electron microscopy level (Kita, 1994). Accordingly, the molecular correlates 

of electrical synapses (connexins 26, 32, 36, and 43) are expressed in the GPe (Dermietzel et 
al., 1989; Vis et al., 1998; Condorelli et al., 2000; Rash et al., 2000; Schwab et al., 2014; 

Phookan et al., 2015). However, the existence of electrical coupling between GPe neurons 

awaits functional confirmation.

Postsynaptic GABAA receptors

As previously discussed, the majority of synaptic inputs to the GPe are mediated by GABAA 

receptors, which are ligand-gated Cl– channels. Each receptor is a heteromeric structure 

composed of five out of at least 16 different subunits that are grouped into several classes. 

Eight subunit classes have been isolated to date (α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3). It is 

thought that most functional GABAA receptors in vivo are formed by co-assembly of two α 

subunits, two β subunits, and an additional subunit from one of the remaining classes 

(Schofield, 1989; Mohler et al., 1995; Sieghart, 1995; McKernan & Whiting, 1996; Mohler 

et al., 1996; Barnard et al., 1998; Rudolph & Mohler, 2004; 2006; Olsen & Sieghart, 2008).

Although mRNAs for essentially all cloned GABAA receptor-subunits are present in the GPe 

(Laurie et al., 1992; Pirker et al., 2000; Schwarzer et al., 2001), those subunits that are 
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generally thought to be extrasynaptic and underlie “tonic” inhibition (e.g. α4–α6, β3 and δ 

subunits) (Danglot et al., 2003; Jacob et al., 2005) are present only at extremely low levels. 

This may indicate that transfer of information at the GABAergic synapses is accomplished 

by phasic, point-to-point signaling (Farrant & Nusser, 2005). Concordantly, the α1 subunit is 

expressed at very high levels in the GPe, richly investing the dStr-GPe synapses (Wisden et 
al., 1992; Hartig et al., 1995; Somogyi et al., 1996; Riedel et al., 1998; Waldvogel et al., 
1998; Waldvogel et al., 1999; Pirker et al., 2000; Schwarzer et al., 2001; Sur et al., 2001; 

Waldvogel et al., 2004; Charara et al., 2005); zolpidem, an α1 subunit-selective 

imidazopyridine agonist, slows the decay kinetics of dStr-GPe postsynaptic inhibitory 

currents in the GPe without changing their frequency or amplitude. Zolpidem has a stronger 

impact on dStr-GPe inhibitory postsynaptic currents than those arising from local collaterals, 

suggesting synapse-specific enrichment of the α1 subunit (Chen et al., 2004b). Perhaps the 

most convincing evidence for an association between dStr-GPe synapses and parkinsonism 

is an observed downregulation of GPe α1 subunits in PD patients and animal models 

(Chadha et al., 2000a; Yu et al., 2001), as well as the therapeutic efficacy of zolpidem (Chen 

et al., 2008b; Huang et al., 2012).

At the same time, investigation of both the striatopallidal and local collateral inputs with 

TP003, an α3 subunit-selective agonist (Dias et al., 2005), suggests that the α3 subunit is 

uniquely present at local collateral synapses in the GPe and not at striatopallidal synapses 

(Gross et al., 2011). While these findings put the α3 subunit forward as a potential target for 

local collateral-specific therapy in motor disease, the data were collected using relatively 

young (postnatal 18–22 days) rats. Not only have α1 and α2 subunit expression levels in the 

GPe been shown to change considerably during the first month of development in rats 

(Fritschy et al., 1994), but in situ and immunohistochemical analyses have also confirmed 

that expression of the α3 subunit is present in the GPe in young rats but fades to low to 

undetectable levels once adulthood is reached (Laurie et al., 1992; Fritschy & Mohler, 

1995). Interestingly, immunohistochemical evidence from adult human brains indicates that 

α3 subunit expression is present but restricted to PV+ neurons (Waldvogel et al., 1999). 

Given that GABAA receptor pharmacology may allow specific therapeutic targeting of PV+ 

prototypic neurons via the α3 subunit, further investigation in a cell- and input-specific 

fashion is warranted.

GABAB signaling in the GPe

GABAB receptors are heteromeric G protein-coupled receptors composed of one GABABR1 

subunit and one GABABR2 subunit (Kaupmann et al., 1998; White et al., 1998; Kuner et al., 
1999; Ng et al., 1999). At the presynaptic sites, GABAB receptors suppress release by 

inhibiting voltage-gated calcium channels (Dolphin & Scott, 1986) and directly impeding 

synaptic vesicle exocytosis (Blackmer et al., 2001; Yoon et al., 2007; Rost et al., 2011), 

while at the postsynaptic membrane, they constrain excitability by activating an inward-

rectifying potassium conductance (Newberry & Nicoll, 1984b; a; Gahwiler & Brown, 1985; 

Luscher et al., 1997) in addition to inhibiting voltage-gated calcium channel activity and 

NMDA receptor calcium signaling (Mintz & Bean, 1993; Perez-Garci et al., 2006; 

Chalifoux & Carter, 2010; 2011; Lur & Higley, 2015).
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Immunogold labeling and immunocytochemistry have shown that the GABABR1 subunit is 

present in monkeys at the presynaptic membrane of both symmetric and asymmetric 

synapses in the GPe (Charara et al., 2000; Charara et al., 2005). Using the same approach, it 

has also been demonstrated that GABAB receptors are found at the postsynaptic membrane 

of both symmetric synapses and asymmetric synapses in the GPe, but that the majority are 

extrasynaptic (Chen et al., 2004a; Charara et al., 2005). Direct agonist of GABAB receptors 

in the GPe in vivo produces ipsilateral turning behavior in rats (Chen et al., 2002; Ikeda et 
al., 2010). Activation of postsynaptic GABAB receptors in the GPe neurons slows their 

pacemaking in ex vivo rodent brain slices (Chan et al., 2004; Kaneda & Kita, 2005). 

Additionally, in rat brain slices baclofen acts presynaptically in the GPe to reduce the release 

of glutamate (Chen et al., 2002; Kaneda & Kita, 2005; Jin et al., 2012) and GABA (Kaneda 

& Kita, 2005). It should be noted that electrophysiological assessment of GABAB signaling 

on bona fide striatopallidal and subthalamic inputs to the GPe has yet to be documented; 

previous assessments have either measured unidentified miniature events (Chen et al., 2002; 

Kaneda & Kita, 2005; Jin et al., 2012) or used contamination-prone terminal field electrical 

stimulation to evoke IPSCs and EPSCs (Kaneda & Kita, 2005), leaving open the possibility 

that the measured IPSCs and EPSCs were of pallidal and thalamic origins, respectively (see 

further discussion below).

To date, concrete information concerning the expression of GABAB subunits in GPe neuron 

subpopulations is lacking. Immunohistochemistry in human brains has indicated that the vast 

majority (98%) of PV+ GPe neurons express some combination of GABABR1 and 

GABABR2 while the same is true for two thirds of PV– GPe neurons (Waldvogel et al., 
2004), contrasting with results from Chen and colleagues, who reported postsynaptic 

inhibitory GABAB currents in response to baclofen in only a minority of GPe neurons (Chen 

et al., 2002). In addition to detection sensitivity, this discrepancy between immunological 

labeling and electrophysiological function may be explained by receptor trafficking. The 

proportion of total GABABR1 located intracellularly as opposed to membrane-bound has 

been calculated to be 70% in rats (Chen et al., 2004a) and 80% in monkeys (Charara et al., 
2005), perhaps limited by the availability of GABABR2, pairing with which is required for 

the localization of the GABAB heteromeric receptor complex to the membrane surface 

(Couve et al., 2000).

Similarly, changes in trafficking may produce the sensitized response to GABAB signaling 

that is seen in MPTP-treated monkeys (Galvan et al., 2011), as no increases in GABAB 

receptor expression have been noted in human PD patients (de Groote et al., 1999) or 

MPTP-treated monkeys (Galvan et al., 2011). It is tempting to speculate that that the 

minority of GPe neurons that display a significant outward postsynaptic current in response 

to baclofen in the healthy state (Chen et al., 2002) corresponds to the Npas1+ GPe neuron 

population (Hernandez et al., 2015), with a sensitized GABAB response contributing to the 

decrease in pacemaking of GPe neurons seen in 6-OHDA lesioned mice (Chan et al., 2011; 

Hernandez et al., 2015). Given that GABAB receptor pharmacology could offer a method of 

therapeutic modulation of GPe excitability, the field will benefit from a thorough 

investigation of GABAB receptor expression and signaling in identified GPe neurons in both 

healthy and PD model animals (Chen et al., 2002).

Hegeman et al. Page 13

Eur J Neurosci. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



STN forms the principal excitatory input to the GPe

Both anatomical and physiological studies historically show that the principal glutamatergic 

input to the GPe is from the STN (Kita & Kitai, 1987; Smith et al., 1990b; Smith et al., 
1998a). Recent estimations (Koshimizu et al., 2013), however, have found fewer STN-GPe 

synapses than expected, calling into question the prominence of the STN-GPe input (Wilson, 

2013). The boutons of STN terminals form medium-sized, asymmetrical synapses on the 

largely aspiny dendrites of GPe neurons. Anatomical approaches have shown that both 

AMPA and NMDA receptors are present at these synapses (Bernard & Bolam, 1998). This 

observation is consistent with pharmacological studies in which local application of AMPA 

and NMDA receptor blockers reduce spontaneous activity of GPe neurons in awake 

monkeys (Kita et al., 2004). Furthermore, stimulation of the STN evokes fast excitatory 

postsynaptic potentials mediated by AMPA receptors and slower, strong excitatory 

postsynaptic potentials mediated by NMDA receptors in GPe neurons (Kita & Kitai, 1991). 

Computational modeling suggests a preferential connection from the STN to Npas1+-

Foxp2+ (arkypallidal) GPe neurons (Nevado-Holgado et al., 2014). No experimental 

investigation yet delineates the difference in the connection strength and biophysical 

properties of STN inputs to distinct GPe neuron classes.

Of potentially major importance in understanding the influence of the STN on GPe neurons 

is the weak voltage-dependence of the NMDA component of the excitatory postsynaptic 

potentials induced by STN stimulation. Though NMDA receptor opening normally requires 

relatively depolarized membrane potentials to dislodge pore-blocking Mg2+ ions 

(Kutsuwada et al., 1992; Monyer et al., 1992; Ishii et al., 1993; Kuner & Schoepfer, 1996; 

Dingledine et al., 1999; Traynelis et al., 2010), this may not be a requirement in adult GPe 

neurons, as they express relatively high levels of the GluN2C and GluN2D subunits 

(Standaert et al., 1994; Wenzel et al., 1995; Wenzel et al., 1996; Kosinski et al., 1998), 

diminishing the efficacy of the Mg2+ block (Kuner & Schoepfer, 1996; Momiyama et al., 
1996). NMDA channels containing GluN2C and GluN2D subunits also have a higher 

affinity for glutamate and slower deactivation kinetics than GluN2A- or GluN2B-containing 

NMDA receptors (Cull-Candy et al., 2001; Traynelis et al., 2010). Thus, prominent 

expression of GluN2C- and GluN2D-containing NMDA receptors could serve to enhance 

the impact of STN inputs on GPe neurons. We do not know if the expression of GluN2C and 

GluN2D at the STN inputs can be generalized across all GPe neurons.

The assertion that the STN-GPe synapse grows in functional significance in PD is consistent 

with two other lines of evidence. First, both AMPA receptors and NMDA receptors in the 

GPe are downregulated in animal models of PD, suggesting a compensatory response to 

increased glutamatergic input (Porter et al., 1994; Betarbet et al., 2000). Consistent with this, 

systemic administration of NMDA receptor antagonists is effective in ameliorating motor 

symptoms in animal models of PD (Starr et al., 1997; Kelsey et al., 2004). NMDA receptor 

antagonists also lessen parkinsonian tremor and levodopa-induced motor fluctuations 

(Butzer et al., 1975; Koller, 1986; Danysz & Parsons, 1998; Verhagen Metman et al., 1998; 

Chase et al., 2000; Marjama-Lyons & Koller, 2000). However, there have not been any 

detailed functional studies of the STN-GPe synapse in animal models of PD. In spite of their 

efficacy in alleviating motor symptoms, broad spectrum glutamate receptor antagonists are 
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unlikely to be adopted therapeutically because of undesirable side-effects in other brain 

circuits. Recently, GluN2B-specific ligands have been developed, providing clinicians with 

an important tool for dissecting neural circuitry that has incidentally proven to be 

particularly important in treating pain (Chizh et al., 2001). The very restricted distribution of 

GluN2C- and GluN2D-containing subunits could make the side-effect profile of GluN2C- 

and GluN2D-selective antagonists and negative allosteric modulators very acceptable.

In addition to ionotropic receptors, metabotropic glutamate receptors (mGluRs) also exist in 

the GPe. On the basis of amino acid sequence homology, intracellular second messengers, 

and ligand selectivities, mGluRs are categorized into eight subtypes that are divided into: 

group I (mGluR1 and 5), group II (mGluR2 and 3), and group III (mGluR4, 6–8) 

(Nakanishi, 1994; Pin & Duvoisin, 1995; Conn & Pin, 1997).

In the GPe, group I mGluRs are abundantly expressed (Testa et al., 1994; Testa et al., 1998; 

Smith et al., 2000). Immunohistochemistry and electron microscopy studies show that group 

I mGluRs localize postsynaptically along dendritic processes (Testa et al., 1998; Hanson & 

Smith, 1999; Kaneda et al., 2005). The activation of group I mGluRs depolarize GPe 

neurons to increase their excitability (Stefani et al., 1998; Poisik et al., 2003; Kaneda et al., 
2007). Group II mGluRs have a more modest expression (Ohishi et al., 1993; Poisik et al., 
2005). Electron microscopy studies show group II mGluRs localize presynaptically on 

glutamatergic axon terminals (Poisik et al., 2005). However, as mGluR3 is robustly 

expressed in the striatum (Ohishi et al., 1993; Tanabe et al., 1993; Testa et al., 1994), it is 

also possible that they are targeted to the axon terminals in the GPe. Activation of group II 

mGluRs decreases neurotransmitter release from axon terminals (Poisik et al., 2005). Group 

III mGluRs are abundantly expressed in the GPe (Kinoshita et al., 1998; Bradley et al., 1999; 

Kosinski et al., 1999; Corti et al., 2002) and are primarily presynaptically localized 

(Kinoshita et al., 1998; Bradley et al., 1999; Corti et al., 2002; Bogenpohl et al., 2013). 

Functionally, group III mGluRs act as homo- and heteroreceptors by decreasing glutamate 

release from putative STN terminals and GABA release from inhibitory terminals (Marino et 
al., 2003; Matsui & Kita, 2003; Valenti et al., 2003; Gubellini et al., 2014). Much remains 

unknown about the purpose of mGluRs in the GPe. For example, the source of glutamate for 

these mGluRs has not been determined. As discussed below, the GPe receive a wide range of 

glutamatergic inputs in addition to the STN (see below). Coupled with the rich variety of 

mGluRs in the GPe, this suggests that these receptors may act as specific local regulators of 

network and neuronal activity. Astrocytes are abundant within the GPe and may play an 

important role in regulating the activation of mGluRs associated with neuronal elements 

within the GPe. This is likely in part through the detection of synaptic and ambient 

glutamate via the surface expression of mGluR3 and quite possibly mGluR5 on these cells 

(Testa et al., 1994; Sun et al., 2013; Panatier & Robitaille, 2015) (see further discussion 

below).

Intrapallidal and intracerebroventricular delivery of group III mGluR agonists have been 

explored as PD treatment with promising results (Valenti et al., 2003; MacInnes et al., 2004; 

Lopez et al., 2007; Agari et al., 2008). Given the therapeutic potential of mGluR 

pharmacology in PD, the field will benefit from addressing the current dearth of data on the 
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origin of presynaptic terminals expressing mGluRs and the expression of mGluRs in specific 

GPe neuron subpopulations.

GPe-STN loop in health and disease

Topographically, the excitatory STN-GPe and inhibitory GPe-STN projections form a 

reciprocally-connected loop. Compelling evidence from experimental and modeling studies 

suggests that the GPe-STN loop supports oscillatory activity (Shink et al., 1996; Smith et al., 
1998a; Plenz & Kital, 1999; Bevan et al., 2002b). Like GPe neurons, STN neurons are 

spontaneously active (Beurrier et al., 2001; Bevan et al., 2002a; Do & Bean, 2003), and the 

contribution of STN inputs to GPe firing has been examined in several preparations. In 

organotypic cultures, oscillatory activity in the GPe was abolished after cutting the input 

from the STN (Plenz & Kital, 1999). In awake rodents, silencing of the GPe after injection 

of the GABAA receptor agonist muscimol in the STN was seen only in 6-OHDA lesioned 

animals; control animals instead had only a slight reduction in GPe neuron activity (Chan et 
al., 2011). In primates, while muscimol blockade of STN initially decreased and even 

silenced GPe neuron activity for five to ten minutes, the activity eventually settled into a 

pattern of high frequency active phases separated by pauses (Nambu et al., 2000; Kita et al., 
2004), perhaps due to the effects of the inhibitory intranuclear collaterals that had been 

released from STN influence and regulation. Importantly, these studies highlight the role of 

excitatory STN input in regulating firing of GPe neurons.

In the normal state, activity in GPe neurons and STN neurons is uncorrelated and 

asynchronous, with complex spatiotemporal firing related to movement (Bevan et al., 
2002b). In parkinsonian animals, however, activity in GPe and STN neurons becomes 

synchronous and correlated, with an increase in tremor-related (3–8 Hz) and beta-frequency 

(13–30 Hz) oscillations (Cruz et al., 2011; Tachibana et al., 2011). It is proposed that the 

Npas1+-Foxp2+ (arkypallidal) GPe neurons receive much stronger input from the STN than 

do the PV+ (prototypic) GPe neurons (Nevado-Holgado et al., 2014). When combined with 

the strengthening of intrapallidal connections between GPe neurons that is seen in ex vivo 
slices from PD model rats (Miguelez et al., 2012), this would likely contribute to the 

pathological synchrony of the GPe-STN loop that develops in PD. It is clear that the 

organization of the GPe-STN network is more complex than just the simple reverberating 

feedback loop that was proposed originally (Bevan et al., 2002b).

As GPe and STN projections also converge on neurons in the internal globus pallidus and 

substantia nigra pars reticulata (the basal ganglia output nuclei), pathological oscillatory 

activity in the GPe-STN loop could have a major influence on basal ganglia dysfunction in 

PD (Terman et al., 2002; Hashimoto et al., 2003). In fact, the GPe-STN loop has been 

implicated in the onset, progression, and maintenance of dysfunctional oscillatory activity in 

PD (Bergman et al., 1994; Nini et al., 1995). In support of this theory, high-frequency (130–

180 Hz) electrical stimulation (HFS) of the STN improves motor symptoms and is the 

neurosurgical treatment of choice for mid- to late-stage PD (Starr et al., 1998; DeLong & 

Wichmann, 2001; Wichmann & Delong, 2006; Johnson et al., 2008; Bronstein et al., 2011; 

Wichmann & Delong, 2011; DeLong & Wichmann, 2012; DeLong & Wichmann, 2015). 

However, it is not clear that the therapeutic effects of HFS result from an increase in STN 

Hegeman et al. Page 16

Eur J Neurosci. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity (McIntyre & Hahn, 2010), as lesioning of the STN alleviates motor symptoms in the 

MPTP primate model of PD (Bergman et al., 1990) while a similar effect is achieved by 

application of HFS directly to the GPe in both MPTP monkeys (Johnson et al., 2012; Vitek 

et al., 2012) and PD patients (Vitek et al., 2004). Furthermore, repetitive activation of STN 

neurons leads to a reduction in their excitability as a consequence of decreased voltage-gated 

sodium channel availability (Beurrier et al., 2001; Do & Bean, 2003). However, 

microdialysis measurements in the GPe have shown increased extracellular glutamate levels 

after STN-HFS, supporting the notion that HFS functions through activation of STN neurons 

instead (Windels et al., 2000). Consistent with this, STN-HFS induced c-fos expression in 

GPe neurons (Shehab et al., 2014). STN-HFS in awake monkeys also increased the average 

firing rate in the GPe (Hashimoto et al., 2003). Additionally, using an MPTP monkey model 

of PD, Bar-Gad and colleagues demonstrate that HFS of the STN induces phase-locking of 

GPe neuron to the stimuli (Bar-Gad et al., 2004).

While STN-HFS impacts the activity of the neurons in the STN, the subsequent effects on 

their synaptic partners may be a possible explanation for the results obtained in these 

studies, HFS in MPTP monkeys supports the notion that antidromic stimulation of GPe 

neurons can contribute to the relief of bradykinesia (Johnson et al., 2012). Similarly, recent 

evidence suggests that STN-HFS exerts a therapeutic effect by antidromically activating 

layer 5 neurons in the motor cortex (Gradinaru et al., 2009; Li et al., 2012). This idea is 

supported by the literature showing STN-HFS is effective in suppressing abnormal activity 

in the motor cortex of PD patients (Sabatini et al., 2000; Payoux et al., 2004; Haslinger et 
al., 2005) and transcranial stimulation of the motor cortex is also efficacious in ameliorating 

motor symptoms of PD (Cioni, 2007; De Rose et al., 2012; Broeder et al., 2015) and 

levodopa-induced dyskinesias (Ferrucci et al., 2015). In summary, it is very likely that STN-

HFS alters the temporal structure and dynamics of a complex set of pathways within the 

entire cortico-basal ganglia-thalamocortical loop.

Multiplicity of excitatory inputs to the GPe

In addition to the STN, other sources of excitatory input to the GPe come from the thalamus, 

the cortex, and the pedunculopontine nucleus (PPN). Overall, very little is known about 

these projections, including whether or not they target distinct classes of GPe neurons.

Thalamic input to the GPe arises from the caudal intralaminar nuclei, consisting of 

centromedian (CM) and parafascicular (Pf) nuclei. Though these structures are anatomically 

less well-defined, the CM-Pf complex is conserved in rodents. As such, tracing experiments 

have shown that the CM-Pf projects topographically to the GPe in a manner that parallels the 

thalamo-dStr projections (Kincaid et al., 1991b; Sadikot et al., 1992; Deschenes et al., 1996; 

Smith et al., 2004; Yasukawa et al., 2004). These thalamic inputs to the GPe arise from 

collaterals that travel parallel to the GPe-dStr border, with some en passant boutons along 

the course, and terminate in dense aggregates of various sizes on the proximal dendrites of 

GPe neurons (Yasukawa et al., 2004). Electrophysiological data show that electrical 

stimulation of the thalamus evokes large excitatory postsynaptic potentials in some GPe 

neurons, suggesting that the thalamic input can have a powerful influence on a subset of GPe 

neurons (Yasukawa et al., 2004). It is tempting to speculate that at least a subset of Npas1+ 
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neurons are the major recipient of thalamic (or cortical—see below) inputs; a recent 

modeling study further reinforces this notion (Nevado-Holgado et al., 2014). CM-Pf also 

receives inputs from PV+ GPe neurons (Shammah-Lagnado et al., 1996; Mastro et al., 
2014). The importance of this complex feedback is not understood. Importantly, neuronal 

loss in the CM-Pf is observed in PD, and though it does not appear to correlate with the 

severity of motor symptoms, it may impact non-cognitive aspects of PD via altered GPe 

function (Brown et al., 2010; Kato et al., 2011; Bradfield et al., 2013; Smith et al., 2014).

While cortical input has traditionally been thought to reach the GPe through the cortico-

dStr-GPe and the cortico-STN-GPe pathways (Ryan & Clark, 1991; Kita, 1992; Yoshida et 
al., 1993; Nambu et al., 2000; Nambu, 2004; Kita & Kita, 2011a), there is increasing 

evidence of a direct cortical input to the GPe. Imaging data from humans suggest a direct 

projection from motor, orbitofrontal, and dorsolateral prefrontal cortex to the GPe (Milardi 

et al., 2015). Tracer injections into the precentral medial and lateral cortices in rodents 

anterogradely label the ipsilateral but not contralateral GPe (Naito & Kita, 1994). In 

monkeys, cortical terminals labeled by VGluT1 target the dendritic spines and small 

dendrites throughout the GPe (Smith & Wichmann, 2015). At the same time, the cortex 

receives direct inputs from both GABAergic and cholinergic GPe neurons (Chen et al., 2015; 

Saunders et al., 2015); the neuronal identity of the former is at present unknown. As the 

cortex and its downstream synaptic influence undergo remodeling in models of PD (Kita & 

Kita, 2011a; Guo et al., 2015a), further investigation of the functional properties of the direct 

cortical projection to the GPe is warranted.

The PPN is reciprocally connected with the GPe, sending mixed glutamatergic and 

cholinergic projections (Saper & Loewy, 1982; Gonya-Magee & Anderson, 1983; 

Moriizumi & Hattori, 1992; Charara & Parent, 1994; Lavoie & Parent, 1994; Mena-Segovia 

et al., 2004; Dautan et al., 2014; Eid et al., 2014). Tracing experiments show that PPN input 

is sparse, but arborizes profusely in the ventral third of the GPe, with some poorly branched 

fibers found dorsally (Lavoie & Parent, 1994). These inputs synapse onto the soma and 

proximal dendrites of the GPe neurons and elicit action potentials after electrical stimulation 

of the PPN (Gonya-Magee & Anderson, 1983; Lavoie & Parent, 1994).

Dopaminergic and other neuromodulatory inputs to the GPe

Dopamine, its metabolites, and its associated metabolic enzymes are present in the GPe at 

relatively high levels (Carlsson, 1959; Bernheimer, 1964; Hornykiewicz, 1966; 

Hornykiewicz et al., 1968; Vogel et al., 1969; Broch & Marsden, 1972; Rosengren et al., 
1985). Accordingly, dopaminergic fibers traverse the rodent, primate, and human GPe 

(Mettler, 1970; Fallon & Moore, 1978; Lindvall & Bjorklund, 1979; Arluison et al., 1984; 

Parent & Smith, 1987; Lavoie et al., 1989; Ciliax et al., 1995; Gaykema & Zaborszky, 1996; 

Rodrigo et al., 1998; Ciliax et al., 1999; Cossette et al., 1999; Gauthier et al., 1999; Hedreen, 

1999; Jan et al., 2000; Kirik et al., 2000; Prensa et al., 2000; Prensa & Parent, 2001; Fuchs 

& Hauber, 2004; Eid & Parent, 2015). There is evidence that dopaminergic neurons in both 

the substantia nigra and the ventral tegmental area project to the GPe (Lindvall & Bjorklund, 

1979; Smith et al., 1989; Kincaid et al., 1991b; Charara & Parent, 1994; Gauthier et al., 
1999; Debeir et al., 2005); as diverse subtypes of dopaminergic neurons are intermingled in 

Hegeman et al. Page 18

Eur J Neurosci. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the midbrain (Poulin et al., 2014; Anderegg et al., 2015), having genetic access to distinct 

classes of midbrain dopamine neurons will help determine if the GPe-projecting 

dopaminergic neurons belong to a mixture of cell classes or a single cell class.

Ultrastructural analysis confirms the presence of direct dopaminergic synaptic contacts on 

pallidal neurons (Rodrigo et al., 1998; Smith & Kieval, 2000; Eid & Parent, 2015). Moderate 

levels of D1- and D2-class receptor binding are evident in rodent, primate, and human GPe 

(Martres et al., 1985; Boyson et al., 1986; Dawson et al., 1986; Dubois et al., 1986; Savasta 

et al., 1986; Charuchinda et al., 1987; Richfield et al., 1987; Beckstead, 1988; Beckstead et 
al., 1988; Dawson et al., 1988; Richfield et al., 1989; Mansour et al., 1990; Bouthenet et al., 
1991; Fremeau et al., 1991; Joyce et al., 1991; Mansour et al., 1991; Mengod et al., 1991; 

Rao et al., 1991; Janowsky et al., 1992; Mansour et al., 1992; Mengod et al., 1992; Wamsley 

et al., 1992; Kessler et al., 1993; Levant et al., 1993; Herroelen et al., 1994; Murray et al., 
1994; Hall et al., 1996; Carey et al., 1998; Gurevich & Joyce, 1999). In situ hybridization, 

tissue-level PCR, and immunohistochemical studies have argued that at least some of these 

receptors are postsynaptically expressed by cells residing within the GPe (Meador-Woodruff 

et al., 1989; Najlerahim et al., 1989; Mansour et al., 1990; Bouthenet et al., 1991; Joyce et 
al., 1991; Mansour et al., 1991; Weiner et al., 1991; Mansour et al., 1992; Fox et al., 1993; 

Larson & Ariano, 1995; Mrzljak et al., 1996; Ariano et al., 1997; Gurevich & Joyce, 1999; 

Marshall et al., 2001; Shin et al., 2003; Billings & Marshall, 2004; Hoover & Marshall, 

2004). Nevertheless, an overwhelming majority of the dopamine D2 receptors are associated 

with dStr axons and their terminals (Hadipour-Niktarash et al., 2012). Local activation of 

dopamine receptors in the GPe produces stereotypy and increased locomotor activity, while 

local dopamine receptor blockade in the GPe produces profound akinesia and catalepsy 

(Costall et al., 1972a; b; Hauber & Lutz, 1999). Although the cellular effects of D1-class 

receptors on GPe neurons are poorly understood, the activation of D2-class receptors 

generally suppresses the responsiveness of GPe neurons to dStr GABAergic inputs via both 

pre- and postsynaptic mechanisms (Cooper & Stanford, 2001; Shin et al., 2003; Hernandez 

et al., 2006; Watanabe et al., 2009; Chuhma et al., 2011; Miguelez et al., 2012). Overall, the 

effects of dopaminergics on GPe neurons in vivo are more heterogeneous. In general, a 

decrease in the firing of GPe neurons is reported following systemic administration of 

haloperidol, a D2-class receptor antagonist. On the contrary, apomorphine, a non-selective 

dopamine receptor agonist, increases firing of GPe neurons (Bergstrom et al., 1982; Carlson 

et al., 1987; Walters et al., 1987; Napier et al., 1991; Kelland et al., 1995; Mamad et al., 
2015). Finally, nigral dopaminergic neurons are subjected to feedback regulation by a heavy 

projection from the GPe itself (Celada et al., 1999; Paladini et al., 1999; Cobb & 

Abercrombie, 2003; Lee et al., 2004; Brazhnik et al., 2008; Watabe-Uchida et al., 2012). The 

circuit effects arising from this feedback regulation may be responsible for the variation in 

the responses of GPe neurons to dopaminergic agents.

Compelling evidence has suggested that disruption of dopamine signaling within the GPe is 

causally linked to motor symptoms. Severe loss (up to 90%) of dopamine (and its 

metabolites) as well as dopaminergic fibers within the GPe have been observed in human 

patients and animal models of PD (Jan et al., 2000; Kirik et al., 2000; Rajput et al., 2008). 

Accordingly, intrapallidal administration of dopamine is capable of restoring normal 

sensorimotor behavior and ameliorating the motor symptoms of dopamine-depleted animals 
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(Galvan et al., 2001). As nigral dopamine neurons also release sonic hedgehog, brain-

derived neurotrophic factor, and other trophic factors (Seroogy et al., 1994; Gonzalez-Reyes 

et al., 2012), it remains to be determined if toxin-animal models and human patients of PD 

suffer from additional complex alterations of neurochemistry following the loss of 

dopaminergic neurons. It will be important in the future to specifically manipulate different 

nodes along these signaling cascades to pinpoint where in a pathway and what molecules are 

crucial to proper cellular and circuit function.

In addition to dopaminergic inputs, the GPe receives abundant serotonergic innervation from 

the dorsal raphe (DeVito et al., 1980; Pasik et al., 1984; Vertes, 1991; Charara & Parent, 

1994; Di Matteo et al., 2008; Bang et al., 2012; Eid et al., 2013; Ogawa et al., 2014; Pollak 

Dorocic et al., 2014) and expresses a plethora of serotoninergic receptors (Appel et al., 1990; 

Hoyer et al., 1990; Sijbesma et al., 1990; Sijbesma et al., 1991; Waeber et al., 1994; Waeber 

& Moskowitz, 1995; Wright et al., 1995; Compan et al., 1996; Vilaro et al., 1996; 

Bonaventure et al., 1998; Castro et al., 1998; Morales et al., 1998; Sari et al., 1999; 

Bonaventure et al., 2000; Clemett et al., 2000; Riad et al., 2000; Neumaier et al., 2001; Li et 
al., 2004; Martin-Cora & Pazos, 2004; Sari, 2004; Mostany et al., 2005). Accordingly, 

stimulation of the dorsal raphe nucleus evokes an increase of serotonin levels in the GPe 

(McQuade & Sharp, 1997). Serotoninergic receptor activation controls GPe neuron activity 

via complex mechanisms (Chadha et al., 2000b; Kita et al., 2007; Chen et al., 2008a; 

Hashimoto & Kita, 2008; Zhang et al., 2010; Miguelez et al., 2014). Hyperinnervation by 

serotonergic axons and increased serotonergic receptor responses occur following dopamine 

depletion (Di Matteo et al., 2008; Zhang et al., 2010) (but see Zeng et al., 2010). However, 

serotoninergic neurons eventually degenerate in advanced stages of PD (Halliday et al., 
1990; Jellinger, 1990; Chinaglia et al., 1993; Kish, 2003). Finally, additional 

neuromodulatory inputs such as those from cholinergic neurons also target the GPe while 

there is no evidence for the existence of a noradrenergic innervation (Rodrigo et al., 1998).

Astrocytic regulation of the GPe

Glia are the most abundant cell type in the GPe. Astrocytes alone are estimated to 

outnumber neurons by an order of magnitude (Lange et al., 1976; Karlsen & Pakkenberg, 

2011; Salvesen et al., 2015). This abundance implies that astrocytes play a crucial role in 

regulating GPe function. Astrocytes are important integral elements of neural circuits, where 

they integrate local and long-range modulatory signals through the expression of a myriad of 

surface receptors and transporters (Theodosis et al., 2008; Perea et al., 2009; Nedergaard & 

Verkhratsky, 2012; Araque et al., 2014). It has been shown that GPe astrocytes express 

glutamate (Glt1 and Glast) and GABA (GAT1 and GAT3) transporters (Furuta et al., 1997; 

Galvan et al., 2010; Jin et al., 2011; Scimemi, 2014). Astrocytes in turn regulate the 

spatiotemporal dynamics of activation, deactivation, and desensitization of neuronal 

receptors. In addition, astrocytes have the potential to release neuroactive substrates onto 

neurons (Halassa et al., 2007; Perea et al., 2009). While we have begun to understand the 

role of astrocytes in a few selective brain areas (Halassa et al., 2007; Araque et al., 2014), 

the biological importance and disease relevance of astrocytes in the basal ganglia is largely 

unexplored (Maragakis & Rothstein, 2006; Sofroniew & Vinters, 2010; Villalba & Smith, 

2011; Chan & Surmeier, 2014; Tong et al., 2014; Martin et al., 2015). In light of this, it will 
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be important to study how astrocytic regulation of synaptic inputs and chemical homeostasis 

in the GPe is altered in neurological diseases, such as PD.

Behavioral and clinical relevance of the GPe

The role of the GPe in movement

Results from lesion and pharmacological activation studies provide conflicting evidence as 

to the role of the GPe in movement. Unilateral ibotenic acid or kainic acid lesion of the GPe 

leads to ipsilateral turning behavior (Ossowska et al., 1983; Konitsiotis et al., 1998), bilateral 

quinolinic acid lesion of the GPe leads to a decrease in spontaneous movement (Hauber et 
al., 1998), and selective activation of the GPe by GABAA antagonist microinjection 

increases spontaneous movement (Grabli et al., 2004) and dyskinesias (Crossman et al., 
1984; Matsumura et al., 1995) in monkeys; all of these phenotypes are predicted by the 

classic basal ganglia model. Conversely, ibotenic acid GPe lesions in monkeys produce no 

motor deficits (Soares et al., 2004), and increased spontaneous movement has also been 

observed in rats with bilateral GPe lesion (Norton, 1976; Joel et al., 1998), findings that are 

inconsistent with the classic model. Furthermore, rats with bilateral GPe lesions display 

increased inaccuracy in a reaching task but not gross movement, suggesting a specific deficit 

in performance of organized limb movements (Schneider & Olazabal, 1984). There are 

several possibilities for the discrepancies between findings from different research groups, 

such as differences in the extent of lesion or the spread of drugs.

Studies of movement-related electrophysiological activity in the GPe have provided 

additional insight into its role in movement. Like neurons of other basal ganglia nuclei, GPe 

neuron firing patterns are related to movement amplitude, velocity, and direction 

(Georgopoulos et al., 1983; Mitchell et al., 1987; Turner & Anderson, 1997; Gage et al., 
2010). This activity is context-dependent and can be modulated by the presence of external 

cues that signal whether a particular movement should be performed (Turner & Anderson, 

1997; 2005; Gage et al., 2010). This cue-related activity in the GPe is consistent with the 

involvement of the basal ganglia in the integrative processing of movement with sensory 

information.

It is proposed that the basal ganglia control sequences of behavior via “chunking” (Graybiel, 

1998; Smith & Graybiel, 2014). In other words, the basal ganglia piece together related 

individual movements into single movement sequences to accomplish complex movement 

patterns (Levesque et al., 2007; Tremblay et al., 2009; Tremblay et al., 2010). Previous 

studies have found that GPe neurons can have distinct patterns of firing activity within 

different temporal phases of a movement or movement sequence, preferentially firing before, 

after, or throughout a movement (Anderson & Horak, 1985; Shi et al., 2004; Turner & 

Anderson, 2005; Jin et al., 2014); these movement-related firing behaviors have been found 

to correlate with the molecular identity of the GPe neurons (Dodson et al., 2015) and are 

thought to collectively represent a chunked motor sequence (Jin et al., 2014).
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The integrative role of the GPe—a circuit perspective

The GPe may play a role in reactive action cancellation, or suppression of planned actions 

(Schmidt et al., 2013; Gittis et al., 2014; Leventhal et al., 2014). Action cancellation is often 

studied in animals performing a stop-signal task, in which a “Go” cue is given to cue a rapid, 

specific movement, and a “Stop” cue is given just after the “Go” cue in a subset of trials to 

indicate the subject should cancel the movement (Schmidt et al., 2013; Leventhal et al., 
2014). Studies suggest that the behavioral response to these signals—whether subjects are 

able to successfully stop after hearing the “Stop” cue—involves a competition between 

distinct basal ganglia circuits (Schmidt et al., 2013). Specifically, dSPNs in the dStr mediate 

relatively slow “Go” signals, whereas STN neurons, likely by receiving direct input from the 

cortex, mediate faster “Stop” signals. However, as “Stop” signals from the STN lead to only 

transient inhibition of substantia nigra pars reticulata neurons, it is thought that an additional 

pathway must mediate inhibition of “Go” signals for full behavioral stopping to occur 

(Schmidt et al., 2013). A recent study suggests that the projection from the GPe to the dStr 

could provide this inhibition of “Go” signals (Mallet et al., 2016). However, this raises the 

question of whether the GPe projection to the dStr is also involved in the facilitation of 

action by appropriately inhibiting “No-go” signals immediately prior to movement initiation. 

Conversely, it is possible that excessive inhibition of the dStr by the GPe could underlie the 

hypokinetic symptoms (i.e., bradykinesia and akinesia) that are characteristic of PD.

The GPe is clinically important

As we have only begun to reliably identify GPe neurons, very little is known about how 

different classes of GPe neurons are involved in the symptomatology of movement 

disorders. An overview of the relevant literature has been provided throughout this review. 

The following section highlights a number of movement disorders in which the GPe is 

critically involved.

Dopamine loss leads to altered physiology in the GPe in PD. The altered firing behavior of 

GPe neurons is one of the most striking and consistent electrophysiological signatures of 

PD. Compelling evidence suggests that disruption of dopamine signaling within the GPe is 

causally linked to hypokinetic symptoms of PD. The loss of dopamine shifts the firing 

pattern of GPe neurons from decorrelated spiking to synchronized, oscillatory bursts (Pan & 

Walters, 1988; Filion & Tremblay, 1991; Filion et al., 1991; Hutchison et al., 1994; Nini et 
al., 1995; Rothblat & Schneider, 1995; Hassani et al., 1996; Taha et al., 1996; Bergman et 
al., 1998; Boraud et al., 1998; Wichmann et al., 1999; El-Deredy et al., 2000; Magill et al., 
2000; Magnin et al., 2000; Raz et al., 2000; Brown et al., 2001; Magill et al., 2001; Bar-Gad 

et al., 2003; Starr et al., 2005; Heimer et al., 2006; Wichmann & Soares, 2006; Kita, 2007; 

Tang et al., 2007; Zold et al., 2007a; Zold et al., 2007b; Mallet et al., 2008; Starr et al., 2008; 

Sani et al., 2009; Chan et al., 2011). Accordingly, administration of dopamine to the GPe is 

capable of reversing abnormal synchrony among GPe neurons (Heimer et al., 2002) and 

restoring normal sensorimotor behavior and ameliorating the motor symptoms of dopamine-

depleted animals (Galvan et al., 2001). In addition, high frequency stimulation of the GPe 

leads to symptomatic improvement in parkinsonian monkeys (Johnson et al., 2012; Vitek et 
al., 2012) and PD patients (Vitek et al., 2004).
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In addition to PD, HD is another major basal ganglia disorder. It is an autosomal dominant 

neurodegenerative disease that leads to progressive impairments in motor function, 

cognition, and behavior. A characteristic feature of HD is the presence of chorea (Zuccato et 
al., 2010; Plotkin & Surmeier, 2015). There is no apparent cell death in the GPe in HD until 

late in the disease progression (Reiner et al., 2011; Waldvogel et al., 2015). Instead, loss of 

GABAergic SPNs results in a dramatic upregulation of GABAA receptor-subunits in the 

GPe (Faull et al., 1993; Waldvogel & Faull, 2015). Currently, there is very little information 

available concerning the firing behavior of GPe neurons in HD. Consistent with its 

presumptive hyperactivity (Temel et al., 2006; Starr et al., 2008), GPe lesioning or electrical 

stimulation leads to symptomatic relief in both animal models and human patients (Ligot et 
al., 2011; Beste et al., 2015; Nagel et al., 2015). Further investigation of the changes that 

occur in the GPe in HD will be facilitated by the array of genetic mouse models that have 

been developed (Plotkin & Surmeier, 2015).

Finally, though its etiology has yet to be discovered, there is compelling evidence from both 

human patients and animal models of dystonia that aberrant activity is present in the GPe 

(Starr et al., 2005; Chiken et al., 2008; Baron et al., 2011; Nambu et al., 2011; Nishibayashi 

et al., 2011). Dystonia is characterized by involuntary repetitive twisting and sustained 

muscle contractions that result in abnormal movements and postures (Breakefield et al., 
2008; Schwarz & Bressman, 2009; Tanabe et al., 2009; Albanese et al., 2013; Jinnah & 

Factor, 2015). Recent evidence further suggests that altered cortico-dStr-GPe signaling may 

underlie the altered firing of GPe neurons in dystonia (Nishibayashi et al., 2011).

Concluding remarks

In summary, despite the clinical importance of the GPe, we have only limited information 

about its cellular composition and organizational principles. This undermines our 

understanding of the GPe in motor function and dysfunction.

This article reviews the literature on neuron diversity in the GPe. The discovery of novel 

cellular markers revealed that the heterogeneity in GPe neurons’ anatomical and 

electrophysiological properties observed in early studies could be correlated to their 

molecular signatures. We have only begun to understand the cellular makeup of the rodent 

GPe. An important next step is to refine the classification schemes that have been developed 

and to identify the specific inputs and outputs of distinct GPe neuron classes. We can begin 

to accomplish this goal using currently available genetic tools, including the Npas1 mouse 

line developed by our group. The identification of novel cell-specific markers will 

undoubtedly continue to shape future research. Neuronal diversity is an emerging theme in 

the basal ganglia (Kreitzer, 2009; Tepper et al., 2010; Antal et al., 2014; Barrot, 2014; Poulin 

et al., 2014; Anderegg et al., 2015; Xiao et al., 2015), and it will be important to fully 

understand how distinct classes of GPe neurons are integrated into large-scale computations.

In conclusion, this review provides an overview of the complex reciprocal loops formed 

between GPe neurons and their synaptic partners in addition to neuronal diversity in the 

GPe. As a whole, the literature now argues that the GPe should no longer be considered a 

simple relay in which information flows unidirectionally from the dStr to GPe.
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ChAT choline acetyltransferase, cholinergic

CM centromedian nucleus of thalamus

dSPNs direct-pathway spiny projection neurons

dStr dorsal striatum

GABA γ-aminobutyric acid

GPe external globus pallidus

HD Huntington’s disease

HFS high-frequency stimulation

iSPNs indirect-pathway spiny projection neurons

LGE lateral ganglionic eminence

MGE medial ganglionic eminence

mGluRs metabotropic glutamate receptors

PD Parkinson’s disease

Pf parafascicular nucleus of thalamus

PoA preoptic area

PPN pedunculopontine nucleus

PV parvalbumin

SPNs spiny projection neurons

STN subthalamic nucleus
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Figure 1. Diagrams summarizing the classification of GPe neurons
(a) Six different GPe neuron classes are identified based on the expression of various 

molecular markers. For consistency, only gene names are used throughout (though for 

readability they are not italicized). Plus and minus signs denote positive and negative-

expression, respectively. Alternative names are listed below to cross reference with the main 

text. Percentages given are only approximations because of the ranges in the results reported 

in the literature. The relative numbers of different classes of GPe neurons listed is a 

deduction based on comparative analysis across several experimental findings in Abdi et al. 

(2015), Dodson, et al. (2015), and Hernández et al. (2015). Though it is clear that a unique 

class of Lhx6+ neurons exist, there is evidence for the expression of Lhx6 in multiple classes 

of GPe neurons. The field has yet to come to a consensus on the abundance and origin of 

Lhx6+ GPe neurons. In contrast, it is now well-established that Npas1+ GPe neurons and 

Pvalb+ GPe neurons form two distinct classes that project heavily to the dorsal striatum and 
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subthalamic nucleus, respectively. Their relationships with arkypallidal GPe neurons and 

prototypic GPe neurons are illustrated in (b). See Table 1 for further description on their 

electrophysiological characteristics. (b) Four unique GPe neuron classes are identified so far 

based on the molecular signature, electrophysiological characteristics, projection patterns, 

and developmental origins. An additional list of molecular markers are listed for arkypallidal 

neurons and prototypic neurons. Prototypic neurons are more broadly defined in the 

literature than in the figure, which highlights the most well-defined subclass.

Alternative names: Chat, ChAT, choline acetyltransferase; dStr, dorsal striatum; Etv1, ER81; 

GPe, external globus pallidus; LGE, lateral ganglionic eminence; MGE, medial ganglionic 

eminence; Penk, PPE, preproenkephalin; PoA, preoptic area; Pvalb, PV, parvalbumin; STN, 

subthalamic nucleus.
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